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State-space continuous-time model representation 
A  refresher

General form for nonlinear system: Linear system:
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Continuous-time linear state-space model

�̇� 𝑡 = 𝐴𝑥 𝑡 + 𝐵𝑢 𝑡
y 𝑡 = 𝐶𝑥 𝑡 + 𝐷𝑢 𝑡

+
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Identification of linear state-space models

It would be nice to be able to identify a state-space model (A,	B,	C,	D,	K) from 
measured input/output data (K matrix to account for the noise effect)

�̇� 𝑡 = 𝐴𝑥 𝑡 + 𝐵𝑢 𝑡 + 𝐾𝑒 𝑡
y 𝑡 = 𝐶𝑥 𝑡 + 𝐷𝑢 𝑡 + 𝑒 𝑡

Should work fine:
Ø For SIMO and MIMO systems 

Ø For continuous-time models (closer to the physics)

Ø For discrete-time models (possible but not considered here)

Main user parameter to be selected: model order (A matrix order) 

Issue: number of parameters is large when the state-space model has a general form
 

parameters parameters         
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State-space realizations

• There are an infinite number of possible realizations of any system
– A minimal realization is any form in which A has the smallest possible dimension

• A state transformation is a rotation of the state vector by an invertible 
matrix T such that

z 𝑡 = 𝑇𝑥 𝑡

• State transformation yields an equivalent state-space representation of the 
system, with

�̇� 𝑡 = /𝐴𝑧 𝑡 + 0𝐵𝑢 𝑡
z 𝑡 = /𝐶𝑧 𝑡 + 1𝐷𝑢 𝑡

where
/𝐴 = T A 𝑇!"
0𝐵 = T 𝐵
/𝐶 = C 𝑇!"
1𝐷 = D
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Canonical state-space forms

• Certain minimal realizations known as canonical forms can be useful for 
dynamic system identification, theory and analysis

– Modal form
– Controllable canonical form

– Observable canonical form
– Controllable companion form

– Observable companion form – sometimes known as observability canonical form

• Why use canonical form for state-space model identification

– Parameter reduction: canonical forms minimize the number of free parameters, improving 
computational efficiency and reducing overfitting risks

– Numerical stability: imposing structural constraints ensures better conditioning and robustness in 
parameter estimation

– Physical interpretability: canonical forms often align better with physical interpretations of the 
system, especially in control applications
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Controllable companion form
Represents a state-space system in a reduced parameter form where many elements of A and B matrices are fixed to zeros 
and ones.

The free parameters appear in only a few of the rows and columns in state-space matrices A, C and K. The free parameters 
are identifiable and can be estimated to unique values. 

For more information about the distribution of free parameters in the canonical form, see the Appendix 4A, pp 132-134, on identifiability
of black-box multivariable model structures in System Identification: Theory for the User, by Lennart Ljung, Prentice Hall PTR, 1999 
(equation 4A.16)
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Observable companion form
 also known as observability canonical form

Represents a state-space system in a reduced parameter form where many elements of A and C matrices are fixed to zeros 
and ones.

The free parameters appear in only a few of the rows and columns in state-space matrices A, B and K. The free parameters 
are identifiable and can be estimated to unique values. 
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Estimating canonical state-space models
with the System Identification toolbox for Matlab

You can estimate state-space models with chosen parameterization at the command line 
with the ssest routine

For example, to specify an observability canonical form, use the  'Form' name-value pair 
input argument, as follows:

>> opt = ssestOptions('Form','canonical'); 

>> Mss = ssest(data,n,opt);

>> display(Mss); 

Similarly, set 'Form' as ’modal' or ’companion' to specify ’modal' decomposition and 
’companion’ canonical forms, respectively

We will set the 'Form' as ’canonical’  when using ssest in the following
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Algorithm overview of the SSEST routine
The SSEST routine operates in the following steps:

Step 1: Subspace initialization
1. Applies subspace techniques to approximate the observability and controllability matrices
2. Provides an initial estimate for the system matrices A, B, C, D

Step 2: State and noise modeling
   Kalman Filter:

1. Estimates the unmeasured states x(t) based on the initial model and observed data
2. Computes the state covariance matrix and noise covariance matrices

   Noise parameter estimation:
1. Models the covariance of process noise w(t) and measurement noise v(t)
2. Incorporates these covariances into the likelihood function

Step 3: Maximum likelihood estimation
1. Refines the model parameters by maximizing the likelihood of observing the output y(t) given 

the input u(t)
2. Uses iterative optimization (e.g., Expectation-Maximization or gradient-based methods)
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Identification of a state-space model
for a SIMO a flexible link by using SSEST routine

It is a 1 input - 2 outputs (SIMO) system

• u(t) : the motor voltage proportional to the 

  torque t(t) applied

• a(t): the angle deflection of the flexible link

• q(t): the angular position of the servo base

u
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Input/output data for model estimation
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Model structure selection and estimation by SSEST

• A 4th order continuous-time model has been selected and identified by using 
SSEST (from the SID toolbox)

�̇� 𝑡 = 𝐴𝑥 𝑡 + 𝐵𝑢 𝑡 + 𝐾𝑒 𝑡
y 𝑡 = 𝐶𝑥 𝑡 + 𝑒 𝑡 		

>> opt = ssestOptions('Form','canonical’); 

>>[FlexlinkSS] = ssest(MeasuredData,4,opt);

>> display(FlexlinkSS); 
A = 

           x1      x2      x3      x4

   x1       0       1       0       0

   x2    -3.9  -47.42   559.8  0.3877

   x3       0       0       0       1

   x4   4.445   50.55   -1007  -2.485

 

   

  C = 

       x1  x2  x3  x4

   y1   1   0   0   0

   y2   0   0   1   0

 

 

B = 

u1

x1  -0.1807

x2     79.6

x3  -0.2154

x4   -84.14

K = 

y1      y2

x1   316.7  -4.734

x2    7535   762.3

x3   23.13   769.4

x4   -5842    1845
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Validation results with the estimation data

>>compare(MeasuredData, FlexlinkSS)
% very good fit to data for both outputs 
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Poles of the identified model

>> damp(FlexlinkSS)

Pole              Damping Frequency      Time Constant  
(rad/seconds)      (seconds)    

-7.42e-02                 1.00e+00       7.42e-02         1.35e+01    
-7.88e+00 + 2.25e+01i     3.30e-01       2.38e+01         1.27e-01    
-7.88e+00 - 2.25e+01i     3.30e-01       2.38e+01         1.27e-01    
-3.41e+01                 1.00e+00       3.41e+01         2.93e-02
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Step and Bode responses of the identified model

>>step(FlexlinkSS) >>bode(FlexlinkSS)
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Model-based LQR control

sys_ol = ss(FlexlinkSS);

% Set Q and R LQR weighting matrices
Q = diag([500 0 0 2]);
R = 1;

% Generate feedback control gain using LQR
K = lqr(sys_ol,Q,R);
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Model-based LQR control
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Performance evaluation of
the LQR control
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Identification of a state-space model
for a SIMO tower crane by using SSEST routine 

Motions of a rotary pendulum are similar to 

that of a tower crane. It is a 1 input - 2 outputs system

• u(t): the motor voltage 

• a(t): the angular position of the pendulum

• q(t): the angular position of the servo base/arm

u
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Example: 2 inputs - 2 outputs AERO helicopter

• Two inputs
• Front rotor thrust
• Read rotor thrust

• Two outputs (no roll)
• Pitch
• Yaw

• Coupled dynamics
• Pitch/yaw affect each other

We will study the identification and 
control of the AERO helicopter

(A,B,C,D)
y2


