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The error made by the majority of novices
in data-driven model learning

e Many beginners work for a long time their full understanding of
algorithms at the expense of their problem solving skills

e To carry out a data-driven model learning project, it is not enough to
know optimisation algorithms but it is also necessary to know how to use
these algorithms, which few people know how to do !

* The practical side of data-driven model learning is therefore crucial to be
successful

e This is what you will learn in the following, which is probably one of the
most important part from the practical point of view

2 H. Garnier
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Model identification of linear time-invariant systems

e For control design and analysis, Linear Time-Invariant (LTl) models
have been hugely important, mainly motivated by

— their simplicity
— their performance and robustness properties are well understood
e C(lassical SYSID methods of linear models

— share these properties in many regards
— have a relatively low computational complexity

— have strong systems-theoretical background, with well developed
concepts such as identifiability, input design, informative data selection

» Always try first data-driven methods for identifying

linear time-invariant (LTI) models

> If the fit is not good, try to estimate nonlinear or time-varying models

3 H. Garnier
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« System identification is an iterative process, where you identify models with
different structures from sampled data and compare model performance

« Ultimately, choose the simplest model that best describes the dynamics of

« A priori physical knowledge of the system is often a key for success

output
(measured)

oM

|

k

identification
algorithm

estimated
model

H. Garnier



UNIVERSITE POLYTECH'
DE LORRAINE NANCY

A palette of color for the models (structure + parameters)

Black-box model

White-box model

> Structure built » Structure built » Structure built
from Physics from Physics mainly from data
> Parameters a priori » Some parameters » Parameters
known are estimated from estimated from
data data

5 H. Garnier
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The iterative system identification workflow
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Linear System Identification — A refresher with Brian

MATLAB

Tech Talks

4 » Pl o) 019/1813 - Introduction >

Linear System Identification | System Identification, Part 2 16 mn

7 H. Garnier
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Data-driven system identification
An iterative procedure

Experiment design «

Y

Y

Data collection
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Data examination
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» Model structure selection
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Parameter estimation
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Model validation

Y

No —= Model OK? >

Yes
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Experiment design for data collection

* To obtain a good model of your system, you must have measured data that

reflects the dynamic behavior of the system

* The accuracy of the model depends on the quality of the measurement data,

which in turn depends on the experiment design

Often good to use a two-stage approach

1. Preliminary experiments
— step/impulse response tests to get basic understanding of system dynamics
— linearity, stationary gains, time delays, time constants, sampling interval

2. Data collection for model estimation
— carefully designed experiment to enable good model fit
— operating point, input signal type, number of data points to collect, etc.

H. Garnier



UNIVERSITE POLYTECH®
DE LORRAINE NANCY

Preliminary test: step response experiment

Resonance frequency

Staticgain 1F-------F-----==

0

I
|
0 I 5 10 15 20
I
I

Dead-time

Rise time
Useful for obtaining qualitative information about system

e indicates dead-times, static gain, time constants and resonances

10 H. Garnier
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Preliminary test: square wave response experiment
Apply, when ever possible, periodic square wave input

Drone altitude in cm

300 M T T T T T m
200 7
100 i

0 | | | | | |
0 10 20 30 40 50 60
Vertical velocity in cm/s
100 T T T T T T
0
-100 I I I | I |
0 10 20 30 40 50 60
Motor speed in %
100 T T T T T T
0
-100 | | | L | |
0 10 20 30 40 50 60

Time (s)

Give insights about non-linearity effects in the system

11
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Tests for veritying linearity

e a linear system has the same response independent of the operative
point

e test step response in different operating points

Staircase response
120 . : .

Temperature in °C
Heating power %

100
/

/|
'
Va

20

1

0 10 20 30 40 50 60 70 80

Time (mn)
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A simple linear model will not be able to capture the friction effects from these data
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Tests for detecting dry friction
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40 |
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| | | | | | | | |
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P Y -0.0585167
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_o0 | | Y0.384584
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Time (seconds)

Use a nonlinear model to better capture the friction effects

Use amplitude of the steps >0.2 to cancel out the friction effects

13
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A simple linear model will not be able to capture the friction effects from these data
Use a nonlinear model to better capture the friction effects
Increase the amplitude of the steps to cancel out the friction effects

POLYTECH’
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Tests for detecting friction

Friction can be detected by using small step increases in input

’ Aok
4
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Input moves every two or three steps.

14
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Choice of inputs for informative data

Needs to be sufficiently “rich.”

— Input signal is needed to excite the system
— The experiment should be carried out under conditions that are similar to

those under which the model is going to be used
Amplitude
— Trade-off is needed

e |arge amplitude gives good signal-to-noise ratio, low parameter estimate variance
e But most systems enter into nonlinear regimes for large input amplitude

Number of data points

— The larger, the better (...if data is informative)

15 H. Garnier
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Common choices of input for linear system identification

Step input/square wave PRBS
| [ |
Square chirp Sine chirp
— O M A
EERRRRRR I

Multisine are also common

16 H. Garnier
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Exciting input signal ?

What makes a input signal exciting?

The issue boils down to the ” frequency content” of the signal

17 H. Garnier
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Multi-sine signal

(this has been scaled to unit magnitude)
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Chirp signal

Continuously varying the frequency between @, and @, over a time period of
0<t<T creates a Chirp Signal:

u(t) = Acos[ ot +(o,—o,) ;_T ) This is one of the most

The nstantaneous frequency, @, , 1s obtained by differentiating: ¢(t)

frequently used technique

w,-=@+%(wz—wl)

[
| | | .ul“‘”“'i

Time T 0 1 3 « Tl
In Matlab, chirp function can generate a chirp input
»u = chirp(t,fmin, tfinal, fmax, method, -90)

20

H. Garnier



WL

UNIVERSITE
DE LORRAINE

POLYTECH’
0 NANCY

Pseudo Random Binary Sequence (PRBS)

Now that random binary signals are useful for system identification, how can we
generate them? A Pseudo-Random Binary Signal (PRBS) is a periodic, deterministic
signal with white noise like properties. It has been widely used for system identification

as well as for spread spectrum wireless communication and GPS.

Example: A 5 bit shift register

1 |1

1

—>

\4
o
o
o
p—
—

Initial state

Initial state
——

11111000110111010100001001011001111100011011101010000100101100

Output u(7)

Binary shift register with feedback

—

Output u(7)

31 bits=25-1

Repeat the same 31 bits

21
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How to design PRBS ?

© Choice of magnitude with a trade-off between signal to noise ratio and
system nonlinearity.

©Q Number of data ~ should be large enough to filter out the noise

© The length of shift register n is related to the number of parameters in
model and desired frequency resolution. n is chosen greater than 6 to have
at least 32 frequency points excited. If system contains very low-damped
modes a greater n should be chosen.

@ Number of periods is chosen such that 2 is satisfied.

© A PRBS can be enriched in low frequencies by using a frequency divider (the
clock frequency of the shift register is divided by p). A rule of thumb is :

length of the largest pulse in PRBS > settling time of the system

n PTs > tsettling

This rule should be used with caution because a large value of p reduces the
frequency contents of PRBS in high frequencies.

22 H. Garnier
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Input design in Matlab

In the Matlab SYSID toolbox, idinput function can generate various types of input
» u = idinput (N, type, band, levels)

where
- N: number of data points
- type:
® RGS: generates a Random, Gaussian Signal
® RBS: generates a Random, Binary Signal
e PRBS: generates a Pseudo-random Binary Signal (PRBS)

* SINE: generates a sum-of-sinusoid signal

In CONTSID toolbox, prbs function can generate a maximum-length PRBS input

» u = prbs(n,p, levels)
* n: order (number of stages) of the shift register. n must be between 6 and 18

+ p: coefficient such that the prbs signal remains constant over intervals of length p

n st > tsettling_time

23 H. Garnier
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Data collection — Sampling period selection

w(t) - disturbance

u(t) y(t)

> G(p)
e(t) - measurement
~€«——— noise
Anti-aliasing Anti-aliasing
filter Ly Ly filter

A\Ts &\TS
I -

u(kh) y(kh)

A common rule of thumb is to choose the sampling frequency such as:

< 2XTT
5 7 100xWpang
where wpana is the estimated system bandwidth (rad/s)

In practice: record the step response of the system, approximate it as a first-order
model and determine the time-constant T, then

1
Whand ™= 7

wgs > 100X wWpand or T

which leads to the constraint

2XTTXT /

100
/

25 H. Garnier
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Data collection — Sampling period selection

w(t) - disturbance

u(t) y(t)
> G(p)
e(t) - measurement
~€«——— noise
Anti-aliasing Anti-aliasing
filter Ly Ly filter

u(kh) y(kh)

?Ts i\ T, <
If you are uncertain of what an appropriate sampling frequency for the

system should be, keep in mind that it is better to sample a bit too fast
than a little too slow

Notice that sampling too quickly is not always good for discrete-time
model identification while oversampling is not critical for continuous-time

methods

26 H. Garnier
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Data-driven system identification

An

iterative procedure
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Examination of the collected data

ALWAYS plot FIRST the input/output data !

Examine carefully the measured data and identify possible problems

> Offset and drift (low-frequency disturbances)
> QOccasional bursts and outliers

> High-frequency noise/disturbance

Select good/relevant segments of data for model estimation and validation

28 H. Garnier
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Operating
Point fory

Operating
Point for u

"

>

80

70

60

50
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30 |

20

Examination of the collected data
What do you observed?

Temperature °C
Heating power (%) | |
1000 2000 3000 4000 5000 6000 7000
Time (s)
Transient PRBS
response response

29
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Post processing of the collected data

Input and output should be scaled to have approximately the same
magnitude to avoid the numerical problems

e Look at the data:

e Proper signal levels, frequencies, disturbance. . .
e Remove

e transients before reaching the correct operating point (for nonlinear

signal mean (if not a physical model)
drift and slow trends (detrend in MATLAB)

high frequency noise should have been removed by antialiasing filter. In

‘ case apply a low-pass filter (keeping the breakpoints of the Bode plot)
e "Outliers" (manifestly erroneous measurements): check plot of residuals

y(t) — y(t|6)

30 H. Garnier
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Post low-pass filtering of the collected data

> Use of the SignalAnalyzer App to display both input/output spectrum

[ ] [ ) Signal Analyzer - untitled*
ANALYZER DISPLAY TIME SPECTRUM MEASUREMENTS (2)
o0 [24 Clear Display ~ 25 - R
E (23] Snap to Data| @& @ Q [l Extract Signals  ~
Legend ~
Display Grid g Data cursors QEa PLAYBACK | Time | Spectrum  Time-Frequency | Panner [ ] preserve Start Time | 'MELIMITS | SHARE
- [] Link Time v - <
v v v
DISPLAY OPTIONS CURSORS ZOOM & PAN VIEWS REGION OF INTEREST a
Filter Signals
NAME LINE |INF(TIME | S M u_sine W y_sine
y_square ™= Ts:... O.. 1900
u_square — Ts:... O..
oo || o]
V| y_sine — Ts:... O.. 1800 ‘H I “ I“”“ I ‘” ‘u |
\
1700 i e H‘
1600
0 5 10 15 20 25 30 0 5 10 15 20 25 30
Time (s) Time (s)
20
Workspace Browser
. 60
Name Size Clas 10
Bt 1x15001 dout
. 40
5 u_sine 150011 dout 0
o o
EH u_square 15001x1 dout = z
Hy_sine  15001x1 dout £ -0
= § §
5 y_square  15001x1 dout 8 &
2 o § 20
o o
o a
-30
-20
-40
-40
0 30 60 90 120 150 180 210 240 0 30 60 90 120 150 180 210 240
Frequency (Hz) Frequency (Hz)
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Post low-pass filtering of the collected data

> Use of the SignalAnalyzer App to apply low-pass filtering on both
input/output data. Use the filtered data to fit a model

[ ] (] Signal Analyzer - untitled*
ANALYZER DISPLAY TIME SPECTRUM MEASUREMENTS o
50 Clear Display ~ 25 | . @ @
@ ’ Lzs, Snap to Data /@& ‘@ Q fﬂ; Extract Signals ~
Legen v
Display Grid & Data cursors Q3 PLAYBACK | Time | Spectrum Panner [] preserve Start Time | MELIMITS | SHARE
v M v M v v
DISPLAY OPTIONS CURSORS ZOOM & PAN VIEWS REGION OF INTEREST
Filter Signals
NAME LINE |INF(TIVE | & Wy sine My_sine0
square == Ts... 0
B 12
u_square == Ts... 0.
u_sine — Ts:... 0.
9
Faore || s o
V| y_sine0 —dTs:... 0.
6
3
0
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Time (s)
Workspace Browser
Name Size Cli 0
Bt 1x15001 do
EHu_sine 150011 doi 30 \
5 u_square 15001x1 doi| W
E
3 y_sine 15001%1 doi 2
S -60
B y_sine0  15001x1 dol| &
EE] y_square 15001x1 doi g
. -9
-120
0 20 40 60 80 100 120 140 160 180 200 220 240

Frequency (Hz)
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Data-driven system identification
An iterative procedure

Experiment design

Y

Y

Data collection

Y

Data examination

Y

Y

> Model structure selection «

Y

Parameter estimation

Y

Model validation

Y

No —= Model OK? >

Yes

33 H. Garnier
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Family of linear model structures

= A model structure is a mathematical relationship between input and
output variables that contains unknown parameters

= Common examples of linear model structures are:

B C

= Most of these model structures can be expressed in continuous-time
(CT/DT) and in discrete-time (DT)

34

» Input/output polynomial models Ay =zutse CT/DT
K
» Low-order process models plus delay G(s) = ﬁeﬁds cT
: _ (b0+b18+b282+ ) —Tys
» Transfer function models plus delay a6 = Py CT/DT
» State-space models X = Ax+Bu
y=Cx+Du CT/DT

H. Garnier
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Discrete-time versus continuous-time model ?

For several decades, the general mainstream identification approach has
been to identify DT models from sampled data

To obtain satisfying results, DT model identification

= Often requires the active participation of an experienced practitioner

Direct CT model identification includes many advantages and is
therefore recommended:

= well adapted to the current sampling situations: fast or irregular

= requires less participation from the user (inherent pre-filtering)

= makes the application of the SYSID procedure much easier

35 H. Garnier
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Models for measurement noise

So far: only deterministic models

V(I()l Mt utk) — input

u(k) y(k)
4+ System ——H—— v(k) = measurement noise

y(k) = output

e Measurement noise modelled as a stochastic discrete-time signal
e Stochastic models:

e means, covariances
e spectra (energy or power)

v(k) = H(q)e(k) = C(q_l) e(k) e(k) is a white Gaussian noise

q~1: delay operator

36
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Data-driven system identification
iterative procedure
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Optimization methods for parameter model estimation

= Common optimization algorithms for estimating the parameters of the
models are:

» Least-squares (LS) method

> Instrumental variable (IV) method

> Prediction error method (PEM)

» Subspace method

38 H. Garnier
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System:

Least squares (LS) method

y(t) =" ()6 +v(t),

Y =®6 +v

t=1,..

. N

where v(t) is a disturbance and Ev = 0, Evv! = R.

Estimate:

39
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Instrumental variable (IV) methods

System:
y(t) =t ()0 +v(t), t=1,...,N

where v(t) is a disturbance with Fv = 0.

Estimate: Modify the least squares solution. We get:

6= [ﬁjzuwm}l [iz(tw)}

where z(t) is the vector of instruments.

v' Amongst the different IV versions, one is particularly recommended:

= SRIVC: Simple Refined Instrumental Variable algorithm for COE models
* robust to noise assumptions and algorithmic aspects

40 H. Garnier
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Prediction error methods (PEM)

Idea: Model the noise as well. General methodology applicable to a

broad range of models.

The following choices have to be made:

e Choice of model structure. Ex: ARMAX, OE.
e Choice of predictor g(t|t — 1, 6).

e Choice of criterion function. Ex: V(6) = & > (¢, 6).

Estimate:

A

6 = arg mein V(6)

41
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Subspace methods

= Use linear algebra to estimate state-space models

» Well adapted to multivariable-input multivariable-output (MIMO)

systems

> More to come next week

42 H. Garnier
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Main estimation routines
in the SID and CONTSID toolboxes

Matlab SID toolbox CONTSID toolbox
Commands for Offline Estimation ‘ '
Model Type Estimation Commands
Transfer function models tfest tfsrive/tfrive
Process models (low-order transfer procest procsrive
functions expressed in time-constant
form)
Linear input-output polynomial models |armax (ARMAX and ARIMAX models)
arx (ARX and ARIX models) lssvf (CARX)
bj (BJ only) rive (CBJ)
iv4 (ARX only) srive (COE)
ivx (ARX only)
oe (OE only) coe (COE)
polyest (for all models)
State-space models n4sid sidgpmf
ssest
ssregest

» The majority of these estimation algorithms are iterative

> As these routines can estimate different models quickly, you should try as many
different structures as possible to see which one produces the best results

43 H. Garnier
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Data-driven system identification
An iterative procedure

Experiment design

Y

Y

Data collection

Y

Data examination

Y

Y

» Model structure selection

Y

Parameter estimation

Y

Model validation «

Y

No —= Model OK? >

Yes
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Recommended workflow of model validation

1. Compare simulated model output with estimation data
» use a model fit criterion: e.g. the FIT value or the coefficient of determination R;?

2. Compare simulated model output with validation data

1. Perform statistical tests on prediction errors
> Plot the autocorrelation of the residuals and the cross-correlation between the input

and the residuals
> This statistical test is often difficult to pass for real-life data

» Non-linear effects, time-varying effects, noise heteroskedasticity, ...

o ) © ® w0
Plot with random data showing &
heteroscedasticity: The variance of the
y-values of the dots increase with

increasing values of x.

2. Interpret the main features of the identified model in a physical sense
- Steady-state gain, time-constants, time-delay, damping coefficient, natural frequencies

45 H. Garnier
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Estimation data versus validation data

Split your data:

Estimation data Validation data

data use fOI’ parameter estimation data not used for Computing éN

use them to evaluate the quality of

the fit
Y Y
compute Oy Cross-validation

46 H. Garnier
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Common model accuracy measures

Let $, be the model prediction. Calculate the residuals/prediction errors as
& = Yk — Yk

Common model accuracy measures are:

— the FIT percentage
FIT =100x (1 — ”yk—ﬂ_]k”) (expressed in %)
lyk=kll
> indicates the agreement between the model and measured output

* 100% means a perfect fit, and O indicates a poor fit

— the coefficient of determination

2
RZ=1-2

2
Ty
> indicates the agreement between the model and measured output
 the closer R% to 1, the better the fit

47 H. Garnier
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Comparison of model response to measured response
with the estimation data

e Typically, you evaluate first the quality of models by comparing their model
responses to the measured output with the estimation data

z; measured
model1; fit: 64.67% []
model2; fit: 83.07%

Zul 1 1 1 1 1 1
0.2 04 0.6 0.8 1 1.2 1.4
Time (sec)

> model2 above is better than model1 because model2 better fits the data (83% vs. 65%)

48 H. Garnier
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Comparison of model response to measured response

with the estimation data: Warning message

* Do not be impressed by a good fit to data on a simulation test with the

estimation data

e The real test is to see how well the model can reproduce the validation

z (y2)
—m: 84.43%

s

10 15 20 25 30 35 40
Time (seconds)

data: cross-validation data test

49
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Comparison of model response to measured response
with the validation data

Apply input signal in validation data set to estimated model

Compare simulated output with output stored in validation data set.

Measured and simulated output

i ; £

It A

o} 5 10 15 20 25 30 35 40

Time [s]

50
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Choice of the model order

Example: LS polynomial model fit

f(@) =01+ 6z + -+ 0,2P7?

Model fit using estimation data of 100 noisy points

Plots below show simulation results on validation data of 100 points

2(0) degree 2 26 degree 6
\&/
X
2(0) degree 10 2(0) degree 15

=

s

%/
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RMS error versus polynomial degree
for both estimation and validation data

1
—®— [t
—m— Val
5 0.8
@
2
o 0.6
oy
=
<
T 0.4
0.2
0 5 10 15 20

Degree

Interpreting results:

With a 6-th degree polynomial, the
relative RMS test error for both
estimation and validation data is
around 0.3. It is a good sign, in terms
of generalization ability, that the
estimation and validation errors are
similar

RMS error plot suggest polynomial
degree 4, 5, or 6 as reasonable
choices

Too few parameters: model fails to capture the function

Too many parameters, the model captures the noise

If validation RMS errors are larger than estimation RMS errors, model is over-fit

Methods for avoiding overfit:
« Keep the model simple
« Use regularization
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Traditional criteria for model order selection

If fresh validation data is not available (=no cross-validation)

* Aloss function J(n,,ZN) is formulated from two functions:

— one term measuring the model fit based on the loss function

— one term penalizing the model complexity

J(np,ZN) = logV/(6, ,ZN)+/3(np,ZN)
p

—  f(n,,ZN) is a function which should increase with the model order

but decrease to zero when N— ®
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Traditional criteria for model order selection

* Usual approach: pick the model that minimizes

— AIC (Akaike's Information Criterion)

2n
Ny _ : N p
AIC(np,Z )—logV(an,Z )+T

— FPE (Final Prediction Error)

n
1+ P

FPE(n_,zZN)-— N v zN)
P n n,
1__P
N

— YIC (Young's Information Criterion)

2 n, 0-2 D ..

YIC = log| Z£ |+ log ! E ePj
o? n “~ 42
y pj=1 7j
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Choosing among different model orders

One approach is to fit multiple models to the same data
Which is the best model among these ?

Assuming the goal is to make good predictions on the validation data
» Select the model order that has the best YIC, AIC, FPE with the highest

associated FIT/ RZ on the validation data

np mn nk RT2

YIC Niter FPE AIC

|

5 2 3 0 08 -833 10 235 085
[ 6 2 4 0 092 -819 5 113 012
7 1 5 0 053 751 10 690 1.93
4 1 3 0 051 -372 10 840 212
5 1 4 0 003 -08 10 139 263

> It several model candidates achieve similar performance, you should choose
the simplest (lowest-order) one among these candidates
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Model order selection from
subspace state-space model estimation

A pragmatic and interesting way to choose the model order is to use the susbpace-
based estimation method n4sid directly, as an alternative to ssest

The algorithm automatically estimates a discrete-time state-space model of the
best order in the 1:10 range with the estimation data

>>M = nd4sid (data)

o [ ) Model Order Selection

Red: Default Choice (2)

More about n4sid to come

N4Horizon used: [15 5 5]

-10 -
-15
-20

-25 -

Log of Singular Values

-30

=35

-40 |

-45

Il Il Il 1 1 1 1 1 1 Il
1 2 3 4 5 6 7 8 9 10
Model Order

A
Chosen Order: 2 Apply
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Choice of the model order
Take-home message

« Choosing the model order is difficult

 Start with low-order candidate models, and so on. You can compare higher
order models against these

« Compare candidate models using validation data

* Increasing the model order will always increase the FIT/ R% on the estimation
data, but the important question is whether or not it substantially increases the
FIT/ RZ on the validation data sets

* Increasing the model order can easily lead to over-fit. To avoid the over-fit:
* keep the model simple (low-order)
* use information criteria

* use regularization
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Model assumption verification
via residual statistical tests

When you choose a model structure (ARX, ARMAX, OE, BJ, ...), you make the implicit

assumption that the input/output has been generated by the chosen model
(assumption about the noise model in particular)

With this assumption, residual tests coming from probability/statistics can be used

If we fit the parameters of the model

y[t] = G(q; 0)ult] + H(q; 0)e[t]

to data, the residuals
elt] = H(g; 0)~ " {ylt] — G(q; 0)ult]}

. explains mismatch between model and observed data.

If the model is correct, the residuals should be

— white, and

— uncorrelated with u
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Autocovariance of the residuals

Residuals

A

e(t,On) = y(t) — 9(t|0n)

e Ideally these should be independent (if noise model is well-estimated)

e Estimating Autocovariance of the residuals
! (t
=N Z +7)

e Plot R,

e independent residuals: R.(7) is a § function

 Large components indicate unmodelled dynamics for the noise model
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Cross-covariance between the residuals and the input

Residuals:

e |deally € should be independent of u

e Estimating Cross-covariance between ¢ and u
| N
N Z E t + T
t=1
e Plot Ifieu

e Correlation for negative 7: perhaps there is a feedback
(u(t) "depends" on €(t — 7))

+ Large components indicate unmodelled dynamics for the plant model
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Statistical tests on the residuals

1 Correlation function of residuals. Output # 1
I I I I

0 5 10 15 20 25

0 ?ross corr. function between input 1 and residuals from output 1

0.05

-0.05 - -

_O. 1 l l l ! !
-30 -20 -10 0 10 20 30
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Sotfware available

Most of the theory covered in the course for continuous-time model
identification is implemented in:

« the CONtinuous-Time System IDentification (CONTSID) toolbox for

Matlab

A lot can be learned from the demos available
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CONtinuous-Time System |Dentification

v Supports direct CT identification approaches

Key features

— Basic linear black-box models
» Transfer function and state-space models
* regularly and irregularly sampled data
« Time-domain or frequency domain data

— More advanced black-box models

* On-line, errors-in-variables and closed-loop situations
* Nonlinear systems: block-structured, LPV or LTV models

May be seen as an add-on to the Matlab System Identification toolbox

— Uses the same syntax, data and model objects

M=tfsrivc(data,np,nz)

P-coded version freely available from:

63
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Main features of the latest version 7.4

v' Core of the routines mainly based on refined optimal IV: SRIVC
— CONTSID includes also a few PEM and subspace-based methods

« SRIVC-based parameter estimation schemes for more advanced
identification

Polynomial models: SRIVC

Simple process models: PROCSRIVC

Transfer function + delay models: TFSRIVC
Transfer function + delay + noise models: TFRIVC
Time Varying Parameter models: recursive RSRIVC
Closed-loop identification: CLSRIVC

LPV models: LPVSRIVC

Hammerstein models: HSRIVC, ...

¢ Includes a new flexible GUI and many demos to illustrate its use and the
recent developments

64
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CONTSID graphical user interface

@ CONTSID Toolbox

More

A Welcome to the CONTSID Toolbox GUI CMNTSLD

TOOLBOX

Iterative model training procedure

Manage data Train model Validate model Deploy results
I:> Access data — Select model type 4 Model output = I:»
Export model
Analyze data Estimate model Cross-validation

1 1

Get started !

Want to train a new model ? Or already have one ?
In both cases click on Next to begin !

Next © Cancel ©

Allows the user to easily apply the iterative process of system identification
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CONTSID toolbox — Demonstration programs

>>contsid_ demo @900 MENU
Demonstration programs for case studies with the CONTSID toolbox

8 090 MENU | Estimating Simple Models for an Aero-thermal Channel

CONTSID demonstration prggrams - - . .
Estimating Transfer Function Models for a Flexible Robot Arm

Case Studies

Estimating Transfer Function Models for a Resonant Beam

Tutorials

. >

} | Estimating Transfer Function Models for a Rainfall Flow Process |
What has the CONTSID to offer ?

Estimating State-space Models for a SIMO Pilot Crane

More Advanced ldentification

. Estimating State-space Models for a MIMO Winding Process
Quit : /
Quit
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CONTSID toolbox — Demonstration programs

>>contsid_demo e 0 0O MENU

Tutorials for the CONTSID toolbox

e OO MENU
Getting Started
CONTSID demonstration programs /
Case Studies ' Estimating Models from Time-domain Data |
‘ Tutorials | | Estimating Models from Frequency-domain Data |
. What has the CONTSID to offer 2 | Estimating Models from Frequency Response Data |
More Advanced ldentification | ~ Estimating Simple Process Models from Step Response Data
Quit | | Determining Model Order and Input Delay
| Quit
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CONTSID toolbox — Demonstration programs

>>contsid_demo e 0O MENU

Advantages of the CONTSID toolbox methods

8 00O MENU

Identified Parameters Are Closer to the Physical Coefficients |

CONTSID demonstration programs

Case Studies | Can Cope with Non-uniformly Sampled Data J
| Tutorials Are Ideally Suited for Stiff Dynamic Systems |
; What has the CONTSID to offer ? Can Cope Easily with Fast Sampled Data

More Advanced Identification Include Inherent Data Filtering
Sl Make the Identification Procedure Easier for the User

Are Robust Against Measurement Setup Assumption

_/
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CONTSID toolbox — Demonstration programs

e O O MENU

>>contsid demo More Advanced System ldentification with the CONTSID

Identification of Box-Jenkins Models for Colored Measurement Noise |

®
-N& MENY Identification of Transfer Function Models plus Time-delay

CONTSID demonstration progr
', Identification of Multivariable Systems

Case Studies

Identification of Systems Operating in Closed Loop

Tutorials

-

. What has the CONTAID to offer ?

Identification of Errors-in-Variable (EIV) Models

More Advanced ldentification

Recursive ldentification of Linear Time-Varying (LTV) Models

Quit

Identification of Nonlinear Linear Parameter Varying (LPV) Models

Identification of Nonlinear Block-structured Models

Identification of Partial Differential Equation (PDE) Models

[
[
[
[
[
.| Recursive Identification of Linear Time-Invariant (LTI) Models
[
L
[
[
| Quit

>
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The simulated Rao-Garnier benchmark
See contsid tutorial1.m

4th order simulated system p=d/dt

K(1-T
6,(P)= — o
p2 +2§1p+1 p2 +2§2p+1
Dn 1 “n1 Dp 2 “n2

-6400p +1600

~ p* 4503 +408p2 + 416 +1600

v' 1 unstable zero

v’ 2 pseudo-oscillatory modes

K=1

W, 1= 2rad/s; W, 5 = 20rad /s

¢, =0.1;

¢, =0.25

70

H. Garnier



WL

UNIVERSITE
DE LORRAINE

o,

The simulated Rao-Garnier benchmark

* The step response

Step Response
T

Amplitude

1
a

Time (seconds]
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The Rao-Garnier benchmark

e The Bode diagram

Bode Diagram

Magnitude (dB;

T T T T T T T T T

Phase (deg)

10 ’

1l 1 Ll
¢
10 10 10

Frequency (radis)
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Simulation setup

ufty u(t) x(t

hold G.(p) ___T:
TS

ety
Lyt

— u(t): PRBS (respects the ZOH assumption)

— T,=10 ms

« fy 10 times the system bandwidth, an often given rule

— e(t) : DT white noise, SNR=10 dB
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/O data — Rao-Garnier benchmark

Input-Output Data
y1
15 | I | | I | I
10} 4
5 -
ul. 4
5 - .
10 B
§ -15 1 | 1 1 || 1 |
E
g u1
< 1 i T T
05} 1
0 1
05F :
-1 ’ 1
2 + 6 8 10 12 14

Time (seconds)
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Model order determination

Different model structures in the range [m n nk] = [1 3 0] to [2 5 O] have been
computed for the given data set
@bi s’
5 best models sorted according to YIC G(s) = 120 @S
npmn nk RT2 YIC Niter FPE AIC  2&7°
5 2 3 0 083 -833 10 235 0.85
(6 2 4 0 092 819 5 113 012 ]
7 1 5 0 053 -751 10 690 1.93
4 1 3 0 051 -372 10 840 212
5 1 4 0 003 -08 10 139 263
The second model with [m n nk]= [2 4 O] seems to be quite clear cut
It has the second most negative YIC=-8.19, with the highest R?; = 0.92

See srivestruc and selcstruc in the CONTSID toolbox
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Estimated model parameters and their uncertainties
via TFSRIVC

>> present(Mtfsrivc)
Mtfsrivc =

From input "ul" to output "yl":
-6480 (+/- 131.8) s + 1880 (+/- 251.4)

s™4 + 5.382 (+/- 0.2094) s~3 + 407.6 (+/- 3.565) s™2 + 424.2 (+/- 11.53) s + 1566 (+/- 26.24)
Continuous-time identified transfer function.

Parameterization:
Number of poles: 4 Number of zeros: 1
Number of free coefficients: 6
Use "tfdata", "getpvec", "getcov" for parameters and their uncertainties.

Status:

Estimated using Contsid TFSRIVC method on time domain data.
Fit to estimation data: 71.91

FPE: 1.140e+00, MSE 1.124e+00
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Comparison of model and measured output

10

Coefficient of determination R

2_
1=0.921

£ i
: . i 2 =
8 S A 3 210
[hs P B Eos E 3 a
O } ; o ‘I :.
: :
_5 = y
3
40 k
95% confidence bounds
—— Model output
~~~~~~~~ Measured output
_15 1 1 | 1 1

0 2 4 6 8
Times (sec)

10
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Statistical tests on residuals

1 Correlation function of residuals. Output # 1
T T T T

25

0 (1:ross corr. function between input 1 and residuals from output 1

e ]

oL |

0.05} |
130 20 10 0 10 20 30
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Data-driven linear model identification/learning
Takehome message

Several choices by the practitioners have to be made and often
revised

» Many of these choices have to be taken with the intended model use
in mind and thus have a subjective flavour

» The more a priori knowledge from physics you can exploit in the
SYSID workflow, the better

> Interpretability of the identified models in meaningful physical terms
is essential

Always keep in mind

> Good models cannot be obtained from bad data !

> All models are approximation of the real system !

» Good models are simple !
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