

Data-driven learning/identification of dynamic systems

An engineer's perspective

Hugues GARNIER

hugues.garnier@univ-lorraine.fr

Course organization and prerequisites

- Organization
 - Lectures: 8h (4h HG+4h MM)
 - Tutorials: 4h (HG)
 - 2 mini-projects: 10h (6h HG+4h MM)
 - Oral presentation: 2h
- Prerequisites
 - Linear systems theory
 - Control theory
 - Linear algebra and matrices
 - Optimization theory and methods
 - Basic programming proficiency in Matlab
- Skill assessments
 - In pairs, you will work on a data-driven modelling mini-project using data coming from real-life systems
 - 2 scientific reports on the mini-projects (2*0,3 1HG + 1MM)
 - Oral presentation of the results obtained on HG's mini-project (0,4)

Course website & recommended textbooks

- Website of the course
 - w3.cran.univ-lorraine.fr/hugues.garnier/?q=content/teaching
- Recommended textbooks

System identification is part of Data science and is connected to Machine learning

- From Wikipedia
 - Data science is an interdisciplinary field that uses scientific methods, processes, algorithms and systems to extract knowledge and insights from data in various forms
 - Machine learning is a field of study in artificial intelligence concerned with the development and study of statistical algorithms that can learn from data and generalize to unseen data
 - System identification uses statistical methods to build mathematical models of dynamical systems from measured data

System identification is part of Data science and is connected to Machine learning

Vocabulary system theory vs. neural networks/machine learning:

- Estimate = train
- Identify = learn
- Validate = generalise
- Model structure = network topology (architecture)
- Estimation data/identification data = training set
- Validation data = generalisation set
- Overfit = overtraining
- Output = target

System identification is part of Data science and is connected to Machine learning

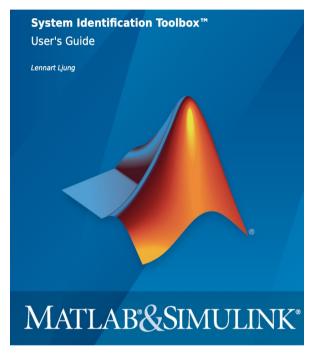
- (Triennial) IFAC Symposium on System identification
 - Well-established research area within Automatic Control
 - The term System identification first introduced by Lofti Zadeh in 1957 !
 - The first IFAC Symposium on System Identification was organized in Prague in 1967. This is now the longest running IFAC symposium series
 - the 21st SYSID edition will be held in Lyon in July 2027
- (Annual Learning) for Dynamics & Control (L4DC) Conference
 - The 7^{th} L4DC edition will be held in Ann Arbor (USA) in June 2025

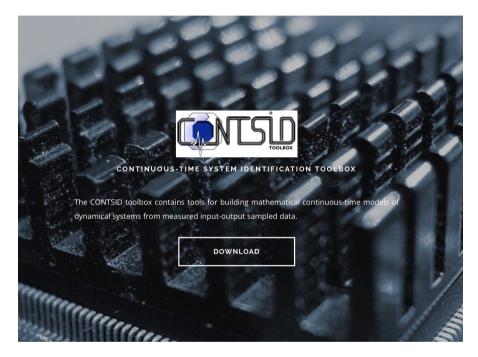
https://sites.google.com/umich.edu/l4dc2025

The cost of the modelling phase in a control-design project

- The modelling phase of an unknown system can be quite timeconsuming and is often a significant part of a control-design project
 - Normally modelling costs account for over 75% of the expenditures !
- This is true in particular for Physics-based modelling
- Convenient alternative: data-driven modeling via system identification

Software tools for data-driven system identification


- System identification is typically an iterative procedure, where the insights and judgements of the user can be mingled with:
 - extensive data handling
 - sophisticated parameter optimization algorithms
 - practical considerations and user experience
- To make the application of the system identification procedure successful:
 - it is necessary to exploit some user-friendly software tools



Software requirements for the course

We will make use of the Matlab SYSID toolbox and the CONTSID toolbox

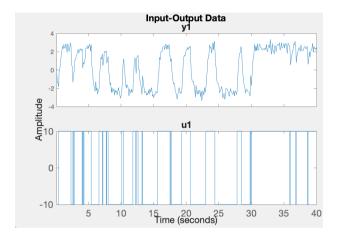
The principal architect of the toolbox is Prof. Lennart Ljung, a recognized leader in the field of system identification

Developed by the CRAN team at Polytech Nancy (mainly Hugues Garnier and his PhD students) www.contsid.cran.univ-lorraine.fr

A lot can be learned from the demos available

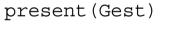
>>doc ident

>>contsid_demos



A typical session with Matlab

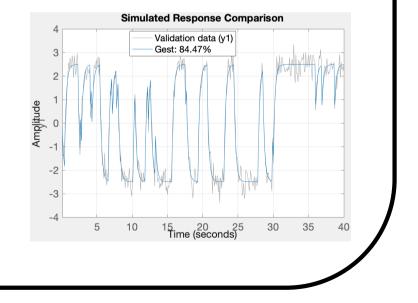
% Load the data
load dcmotor;


% Plot and examine the data
data=iddata(y,u,Ts);
idplot(data);

% Choose a model structure and estimate the parameters

% Let us test a 1st-order transfer function with no time-delay

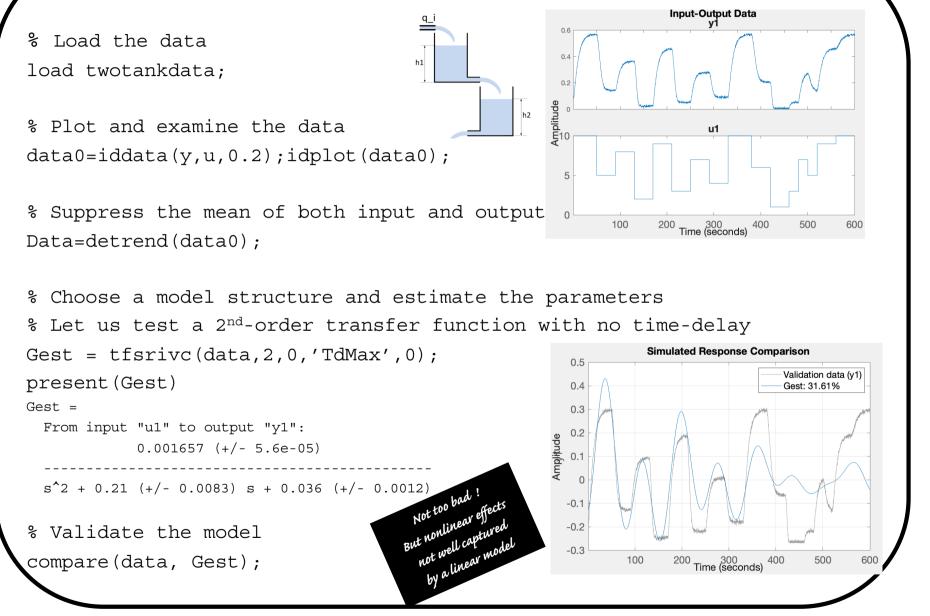
```
Gest = tfsrivc(data,1,0,'TdMax',0);
```



Gest =

From input "u1" to output "y1":
 1.037 (+/- 0.02287)

s + 4.161 (+/- 0.0994)

% Validate the model
compare(data, Gest);

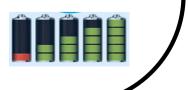




Course philosophy

- Experimental philosophy—like a lab course
- Some math, but « proof » and discovery mainly by Matlab
- Learn and understand by doing, failing, succeeding, and experiencing
- Apply methods in an investigative manner

What goes wrong and why?



Course outline

- I. Data-driven linear system identification A refresher
 - Application to the Blue Robotics T200 Thruster
- II. More advanced aspects for linear system identification
 - Identification in closed loop
 - Application to the Tello Drone
 - Identification of LPV systems
 - Application to the Qcar
 - Identification of state-space MIMO systems
 - Application to flexible robot arm
 - Application to a dual-rotor helicopter

III. Data-driven model learning of lithium-ion batteries (from Michel Mensler, Nissan)

- Application for state-of-charge estimation in battery electric cars

