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Part 1

State feedback control of the rotary
inverted pendulum

In this part, we will mainly use the QUBE-Servo 2 with the inverted pendulum.

1.1 Download of the files required for the lab

1. Download the zipped file Lab_QUBE_Pendulum.zip from the course website. Save and
unzip it in the local disk folder C:/temp/.

2. Start Matlab.

3. In the Current Folder window of Matlab, click right on the folder
C:/temp/Lab_QUBE_Pendulum and select add to path the selected folder.

4. Double-click on the folder Lab_QUBE_Pendulum so that it becomes your current folder.
You should see the different .slx and m. files needed for this Lab.

Layout of the Lab

A balance system is a mechanical system in which the center of mass is balanced above a
pivot point. Some common examples of balance systems are shown in Figure 1.1. The Segway
personal transporter uses a motorized platform to stabilize a person standing on top of it.
When the rider leans forward, the transportation device propels itself along the ground but
maintains its upright position. Another example is a rocket, in which a gimbaled nozzle at the
bottom of the rocket is used to stabilize the body of the rocket above it. Other examples of
balance systems include humans or other animals (gorilla, kangaroos, etc) standing upright.
This might seem easy but it is not and requires some learning process and skill. You can test
your ability to balance a pen at the end of one of your finger to feel the difficulty.
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Part 1 – State feedback control of the rotary inverted pendulum

Figure 1.1: Examples of balance systems. (a) Segway personal transporter, (b) Saturn rocket and (c)
inverted pendulum on a cart.

While PID control is applicable to many control problems and often perform satisfactorily, it
can perform poorly in some applications. This is in particular the case when the system has
multiple inputs and multiple outputs or when the system is unstable in open loop.
This lab considers the two previous situations: it addresses the control of an inverted pen-
dulum balanced on a rotary arm. We investigate how the inverted pendulum can be sta-
bilized/balanced using full state feedback, and explore pole placement and optimal LQR as
techniques for choosing the feedback gains. The objective is to illustrate the various stages
of design that lead to both pole placement and LQR control to stabilize/balance the rotary
inverted pendulum.
The lab is structured into the following sections:

1. a refresher about model-based state feedback control by the pole placement method. The
methodology is illustrated by using a simple second-order simulation example and tested
in Simulink;

2. the design of a pole placement controller based on the physics based linearized state-space
model and the evaluation of its control performance in simulation by using Simulink;

3. the implementation and test of the designed pole placement based state feedback control
to stabilize/balance the physical rotary inverted pendulum.

4. the design of an optimal LQR controller based on the physics based linearized state-space
model and the evaluation of its control performance in simulation by using Simulink;

5. the implementation and test of the designed LQR based state feedback control to stabi-
lize/balance the physical rotary inverted pendulum.

1.2 Control performance requirements

The performance requirements and time-domain specifications for balancing the pendulum and
for tracking a rotary arm setpoint are described in Table 1.1.
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Part 1 – State feedback control of the rotary inverted pendulum

Requirement Assessment criteria Level
Balance the inverted
pendulum

Position setpoint tracking balanced & stable with
no steady-state error

Motor input voltage limited to [-10V ; +10 V]
Percent Overshoot D1 = 6.8 %
Settling time at 5 % T 5%

s = 1.5 s
Disturbance rejection Rejection of impulse-

type flick
Table 1.1: Performance requirements for the state-feedback control of the inverted pendulum

Thus, as the rotary arm goes back and forth to track the reference while balancing the pendu-
lum, it should have a percent overshoot and settling time matching these requirements.

1.3 Pole placement control - A refresher from a simulation
example

1.3.1 A video to start with

To get a refresher about pole placement (or full) state feedback control, watch at the beginning
of the lab, all together, the video from Brian Douglas on this topic:
What is Pole Placement (Full State Feedback) | State Space - Part 2
www.youtube.com/watch?v=FXSpHy8LvmY
Listen carefully to the different comments given by Brian Douglas !

1.3.2 Background

Pole placement is a method of calculating the feedback gain matrix used to assign closed-loop
poles to specified locations, thereby ensuring system stability. Closed-loop pole locations have
a direct impact on time response characteristics such as rise time, settling time, and transient
oscillations.
The standard state-space representation of a multi-input multi-output (MIMO) continuous
linear time-invariant (LTI) system with n state variables, r input variables, and m output
variables is {

ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t)
(1.1)

where x ∈ Rn×1 is the vector of state variables, u ∈ Rr×1 is the control input vector, y ∈ Rm×1

is the output vector, A ∈ Rn×n is the state matrix, B ∈ Rn×r is the input matrix, C ∈ Rm×n

is the output matrix, and D ∈ Rm×r is the feedforward matrix.
The schematic of a standard state-feedback control is shown in Figure 1.12 where K is a matrix
of control gains. Note that here we feedback all of the system states x, rather than using the
system outputs y for feedback.
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Part 1 – State feedback control of the rotary inverted pendulum

Figure 1.2: Block diagram of standard state-feedback control

Let u(t) be a state feedback control law of the form

u(t) = −Kx(t) + r(t) (1.2)

where K ∈ Rm×n is the feedback gain vector. Applying this to the first equation of (1.1) gives
the closed-loop system equation

ẋ(t) = Ax(t)−BKx(t) +Br(t) = (A−BK)x(t) +Br(t). (1.3)

1.3.3 Controllability

If the system is unstable, we might be able to design a state-feedback controller to stabilize
it. Even if the system is stable, we may still want to regulate the performance of the system
according to some design specifications (e.g., final state, rate of convergence, and settling time).
These are possible if the system is controllable.
By controllable, we mean that for any initial state vector xa and any desired final state xb, there
exists a control input u that can steer the state of the system from xa to xb in finite time [1].
Otherwise, we say that the system is uncontrollable. Note that the definition does not require
u to be bounded.
To check if the system is controllable, we can compute the rank of the Controllability matrix

C =
[
B AB A2B . . . An−1B

]
(1.4)

where n is the dimension of the state vector x. Then, we say that the linear system described
by (1.1) or, equivalently, the pair (A,B) is controllable if and only if rank(C) = n. Otherwise,
we conclude that the linearized system (or, in other words, the pair (A,B)) is uncontrollable.
We will use the MATLAB command ctrb to generate the controllability matrix and the MAT-
LAB command rank to test the rank of the matrix.

Co = ctrb(A,B);
controllability = rank(Co)

1.3.4 Pole placement

If (A,B) is controllable, we can use the state-feedback to place the poles at desired locations,
e.g. in the left half of the s-plane. Thus we can find a matrix gain K for the closed-loop system
in (1.3) to obtain a desired characteristic equation

n∏
i=1

(s− λi) = sn + an−1s
n−1 + . . .+ a1s+ a0 = 0 (1.5)
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Part 1 – State feedback control of the rotary inverted pendulum

where λi ∈ C for i ∈ {1, . . . , n} and aj ∈ R for j ∈ {0, 1, . . . , n− 1}.
We will use the MATLAB command place to generate the matrix gain K
P=[λ1 . . . λn]

K=place(A,B,P)

Caution
Pole placement can be badly conditioned if you choose unrealistic pole locations. In particular,
you should avoid:

• Placing multiple poles at the same location.

• Moving poles that are weakly controllable or observable. This typically requires high gain,
which in turn makes the entire closed-loop eigenstructure very sensitive to perturbation.

1.3.5 State feedback control design of a simulation second-order sys-
tem

To illustrate how to designK to obtain desired pole location, i.e. desired characteristic equation,
we consider the design in the case of a simulation second-order system.

1.3.5.1 Analytical determination of the feedback gain

Consider a LTI system described by the following second-order ordinary differential equation:

ÿ(t) + ẏ(t)− 2y(t) = u̇(t) + u(t) (1.6)

1. Show that the transfer function of the system is

G(s) =
Y (s)

U(s)
=

s+ 1

s2 + s− 2
(1.7)

2. Determine the poles and show that the open-loop system is unstable.

3. Let us transform the transfer function model into state-space.
G(s) can also be decomposed as

Y (s)

U(s)
=
Y (s)

Z(s)
× Z(s)

U(s)
(1.8)

with
Y (s)

Z(s)
= s+ 1 (1.9)

and
Z(s)

U(s)
=

1

s2 + s− 2
(1.10)

Show that (1.9) and (1.10) are respectively equivalent to

y(t) = ż(t) + z(t) (1.11)
z̈(t) + ż(t)− 2z(t) = u(t) (1.12)
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Part 1 – State feedback control of the rotary inverted pendulum

4. Assume x1(t) = ż(t) and x2(t) = z(t), such that

x(t) =

[
x1(t)

x2(t)

]
(1.13)

show that the state space model in canonical form can be written as{
ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t)
(1.14)

with

A =

[
−1 2

1 0

]
, B =

[
1

0

]
, C =

[
1 1
]

(1.15)

5. Show that the characteristic equation of the open loop system is

|λI − A| = λ2 + λ− 2 = 0. (1.16)

6. Determine the eigenvalues of A and show that the open loop space-space model is unstable.

7. We use here the pole placement method such that the closed loop poles have the values
at -1 and -2.
The desired closed loop characteristic equation is therefore:

(λ+ 1)(λ+ 2) = λ2 + 3λ+ 2 = 0 (1.17)

The control law is:
u(t) = krr(t)−K x(t) (1.18)

where kr is a scalar and K is a 1×2 gain matrix.

K =
[
k1 k2

]
(1.19)

Show by plugging (1.18) into (1.14) that the closed-loop state-space model becomes:{
ẋ(t) = ACLx(t) +BCLr(t)

y(t) = Cx(t)
(1.20)

with

ACL = A−BK =

[
−1− k1 2− k2

1 0

]
, BCL = krB =

[
kr

0

]
, C =

[
1 1
]

(1.21)

8. Show that the characteristic equation of the closed-loop model is :

λ2 + (1 + k1)λ− 2 + k2 = 0 (1.22)

Hint: determine the eigenvalues of ACL by calculating |λI − ACL| = 0.

9. Show that equating the coefficients of the polynomial (1.22) with the desired polynomial
in (1.17) leads to {

k1 = 2

k2 = 4
(1.23)
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Part 1 – State feedback control of the rotary inverted pendulum

1.3.5.2 Determination of the feedback gains with Matlab

Verify all your analytical calculations above by writing the following code in a Matlab script:

Num=[1 1];
Den=[1 1 -2];
roots(Den)
[A,B,C,D]=tf2ss(Num,Den)
eig(A)
Co = ctrb(A,B);
controllability = rank(Co)
P=[-1 -2];
K=place(A,B,P)
Acl=A-B*K
eig(Acl)
Sys_cl=ss(Acl,B,C,D);
kr=1/dcgain(Sys_cl)

1.3.5.3 Simulation of the full state feedback control with Simulink

We will now set up a Simulink model to implement the full state feedback.
Different options are possible to implement the state feedback depending how the open loop
state space model is built. We use 3 different possibilities here.
Reproduce the Simulink diagram given in Figure 1.3.
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Part 1 – State feedback control of the rotary inverted pendulum

Figure 1.3: Different implementations of the full state feedback control with Simulink

Configure the signal generator and the configuration parameters as shown in Figure 1.4 and
Figure 1.5 respectively.
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Figure 1.4: Setting of the signal generator block

Figure 1.5: Setting of the configuration parameters

Note that when you use the state-space model block of Simulink, you need first to define the
state-space block with an artificial identity C matrix to assess the full states to be feedback
and apply the true C matrix to the states to get the output variable.

Build and run the Simulink model. The response of the three scopes should be identical.
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Part 1 – State feedback control of the rotary inverted pendulum

1.4 Pole placement-based balance control for the inverted
pendulum

1.4.1 State-space model of the inverted pendulum

A schematic diagram of the rotary pendulum model is shown in Figure 1.6. The arm has a
length of Lr, a moment of inertia of Jr, and its angle θ increases positively when it rotates
counter-clockwise (CCW). The servo (and thus the arm) should turn in the CCW direction
when the control voltage is positive (Vm > 0).

The pendulum link is connected to the end of the rotary arm. It has a total length of Lp and it
center of mass is at Lp/2. The moment of inertia about its center of mass is Jp. The inverted
pendulum angle α is zero when it is hanging downward and increases positively when rotated
CCW.

Figure 1.6: Schematic diagram of the rotary pendulum

1.4.1.1 State-space model of the non-inverted pendulum

The design of the state-space controller is based on a model of the system. There are two
approaches available to determine a mathematical model of a dynamical system:

• Data-driven modelling where a model is determined by using the system response data
to an excitation input (step input for example) ;

• Physics-informed modelling where the equations of motion for the system are developed
from the Physics.

We will used the second approach here. This rotary inverted pendulum system has been
widely studied and as a consequence the physics-informed model has been established and is
available.

However, when the QUBE-Servo 2 is used with the pendulum is the up position, the system is
unstable and therefore no experimental open-loop test can be recorded to test the quality of the
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Part 1 – State feedback control of the rotary inverted pendulum

derived model. As the model of the inverted and non-inverted pendulum are very close (they
only differ with some minus signs for some coefficients) we will first deal with the non-inverted
pendulum.
If the state vector x of the rotary pendulum system is chosen as

x(t) =
[
θ(t);α(t); θ̇(t); α̇(t)

]
(1.24)

the linearized state-space model of the rotary pendulum-down system is:{
ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t)
(1.25)

with

A =
1

JT


0 0 JT 0

0 0 0 JT

0 1
4
m2
pL

2
pLrg −

(
Jp +

1
4
mpL

2
p

)
Dr

1
2
mpLpLrDp

0 −1
2
mpLpg (Jr +mpL

2
r)

1
2
mpLpLrDr − (Jr +mpL

2
r)Dp

 (1.26)

B =
1

JT


0

0

Jp +
1
4
mpL

2
p

−1
2
mpLpLr

 , C =

[
1 0 0 0

0 1 0 0

]
, D =

[
0

0

]
(1.27)

1.4.1.2 Experimental model validation from step response

It is important that you verified your model for the pendulum-down case with the steps below.

1. In Matlab, run the setup_non_inverted_pend_ss_model.m script. This creates, in the
Matlab workspace, the QUBE-Servo 2 rotary pendulum-down state-space model matrices
A,B,C, and D based on numerical values of the different physical parameters. The A
and B matrices should be displayed in the Command Window. Ensure that the generated
matrices match the solution.

A =
0 0 1 0
0 0 0 1
0 149.3 -14.93 4.915
0 -261.6 14.76 -8.614

B =
0
0

49.73
-49.15

2. Open the Simulink model test_non_inverted_pend_ss_model_2_square_wave.slx
whose contents is shown in Figure 1.7. It applies for 20s a 0 − 1V, 1 Hz square wave
to the physical inverted pendulum system and to the physics-based state-space model.
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Part 1 – State feedback control of the rotary inverted pendulum

Figure 1.7: Applies a square wave voltage and displays the measured responses and the simulated
model pendulum responses

3. Place manually the pendulum close to the 0◦ position and click on Monitor & Tune to
build and run the test.
The scope response should be similar to Figure 1.8. Does your model represent the actual
pendulum-down well?
The model of the arm response should display the same characteristics of the measured
arm response, but an offset may be observed due to possible un-modelled dynamics such
as the disturbance introduced by the encoder cable.

Figure 1.8: Step response of the pendulum system.

4. In the Matlab script setup_non_inverted_pend_ss_model.m, the rotary arm viscous
damping coefficient Dr is set to 0.0015N.m.s/rad, and the pendulum viscous damping
coefficient is set to Dp to 0.0005N.m.s/rad.
These parameters were found experimentally to reasonably accurately reflect the viscous
damping of the system due to effects such as friction, when subject to a step response.
However, the viscous damping of each inverted pendulum can vary slightly from system
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Part 1 – State feedback control of the rotary inverted pendulum

to system. If your model does not accurately represent your specific pendulum system,
try modifying by trial and error the damping coefficients Dr and Dp to obtain a more
accurate model.

1.4.1.3 Time-domain specifications for higher order systems

The rotary inverted pendulum system has four poles. However, if two of the closed loop poles
are chosen to be closer to the imaginary axis (typically by a factor equal or greater than four)
than the remaining poles, the conjugate poles are considered to be dominant and the system
behavior can be approximated by a second-order system. As depicted in Figure 1.2, poles p1 and
p2 are the complex conjugate dominant poles and are chosen to satisfy the natural frequency,
ωn, and damping ratio, ζ, second-order specifications. Let the conjugate poles be

p1 = −σ + jωd (1.28)
p2 = −σ − jωd (1.29)

where σ = ζωn and ωd = ωn
√
1− ζ2 is the damped natural frequency. The remaining closed-

loop poles, p3 and p4, are placed along the real axis to the left of the dominant poles, as shown
in Figure 1.9.

Figure 1.9: Desired closed-loop pole locations

1.4.2 Pole placement control design for the inverted pendulum

1. In Matlab, run the setup_inverted_pend_ss_model.m script. This creates, in the
Matlab workspace, the QUBE-Servo 2 rotary pendulum-up state-space model matrices
A,B,C, and D based on numerical values of the different physical parameters. The A
and B matrices should be displayed in the Command Window. Ensure that the generated
A and B matrices match the form given below.

A =
0 0 1 0

14
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0 0 0 1
0 149.3 -14.93 -4.915
0 261.6 -14.76 -8.614

B =
0
0

49.73
49.15

2. Ensure that the open-loop poles of the inverted pendulum are: {0,−28.64, 10.67,−5.57}
Note that the system is unstable because of the positive pole at 10.67.

3. Evaluate the controllability of the rotary inverted pendulum system. Use the ctrb func-
tion to compute the controllability matrix and explain whether or not the system is
controllable.

4. The percent overshoot and settling time specifications given translates into the following
natural frequency and damping ratio requirements:

ζ = 0.65

ωn = 4 rad/s

Based on these specifications, find the location of the two dominant poles p1 and p2.

5. Find the desired characteristic equation if the other poles are placed at p3 = −40 and
p4 = −45.

6. Use the pole placement design command in Matlab to find the state-feedback gain, K, re-
quired to place the closed-loop poles to the desired locations. Give the Matlab commands
used and the obtained matrix gain K.

1.4.3 Implementation of the balance control to the rotary inverted
pendulum

Figure 1.10: Simulink model used with pole placement-based balance controller

1. Open the balance_inverted_pend_poleplace.slx Simulink model whose contents is
shown in Figure 1.10.

2. Make sure the variable K is set in the Matlab workspace.
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Part 1 – State feedback control of the rotary inverted pendulum

3. Set the Signal Generator block to the following:

• Type = Square

• Amplitude = 1

• Frequency = 0.125 Hz

4. Set first the Gain block that is connected to the Signal Generator to 0.

5. Click on Monitor & Tune to build and run the file.

6. When the QUBE-Servo 2 turns green, gently and manually rotate the pendulum in the
upright position until the controller engages. Observe the scopes. The balance state-space
control should work fine. There i so magic here even if this is quite amazing.

7. Once the pendulum is balanced, set the Gain to 30 to make the arm angle go between
±30 degrees. The scopes shown in Figure 1.11 show an example response when using a
state feedback gain of K = [−2 35 − 1 3].
Attach your response of the rotary arm, pendulum, and controller voltage using the
control gain found in the previous Section.

8. Does the rotary arm and pendulum response match the settling time and percent over-
shoot specifications given in Table 1.1? If not, give one reason why there is a discrepancy.
Modify the desired closed-loop poles to get better results.

9. Stop the controller.

Note that the encoders only provide measurements for the arm and pendulum angular positions.
We need to also measure or estimate the arm and pendulum velocities in order to perform full
state feedback. In this lab, we will estimate the two angular speeds from the angular position

measures by using high-pass filters of the form
50s

s+ 50
already implemented in the Simulink files

provided (double-click on the Rotary Pendulum Interface block to see the high-pass filters).
Computing any variable time-derivatives by using simple numerical approximations should be
AVOIDED. Next year, you will build an observer and estimate the arm and pendulum velocities
from the measurements of arm and pendulum position alone.
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(a) Rotary Arm

(b) Pendulum

(c) Motor input voltage
Figure 1.11: QUBEServo 2 example rotary pendulum response using default gain
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1.5 Optimal LQR-based balance control for the inverted
pendulum

1.5.1 A video to start with

If you need a refresher about LQR control, watch Brian Douglas’ video:
What Is Linear Quadratic Regulator (LQR) Optimal Control? | State Space, Part
4
www.youtube.com/watch?v=E_RDCFOlJx4&list=PLn8PRpmsu08podBgFw66-IavqU2SqPg_w&index=4
Listen carefully to the different comments given by Brian Douglas !

1.5.2 LQR control

Linear Quadratic Regulator (LQR) theory is a technique that is ideally suited for finding the
controller parameters to balance the inverted pendulum.
Given that the equations of motion of the inverted pendulum system can be described in state-
space form (1.1). The LQR algorithm computes a control law u such that the performance
criterion or cost function

J =

∫ ∞
0

(xref − x(t))T Q (xref − x(t)) + u(t)TRu(t)dt (1.30)

is minimized. The design weighting matrices Q and R hold the penalties on the deviations of
state variables from their setpoint and the control actions, respectively.
When an element of Q is increased, therefore, the cost function increases the penalty associated
with any deviations from the desired setpoint of that state variable, and thus the specific control
gain will be larger.
When the values of the R matrix are increased, a larger penalty is applied to the aggressiveness
of the control action, and the control gains are uniformly decreased.
In our case the full state vector x is defined

x =
[
θ α θ̇ α̇

]T
. (1.31)

Since there is only one control variable, R is a scalar. The reference signal r is set to:

r =
[
θr 0 0 0

]T
,

The control strategy used to minimize the cost function J is thus given by

u = K(r − x) = kp,θ(θr − θ)− kp,αα− kd,θθ̇ − kd,αα̇. (1.32)

This control law is a full state-feedback control and is illustrated in Figure 1.12.

Figure 1.12: Block diagram of standard state-feedback control
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1.5.3 Design and implementation of the LQR control

The goal is to build a QUARC controller similarly to Figure 1.13 that balances the pendulum
on the QUBE-Servo 2 rotary pendulum system using a generated control gain K.

Figure 1.13: Simulink model used with QUARC run optimized balance controller

The LQR theory has been packaged in the Matlab Control Design Module. Given the model
of the system, in the form of the state-space matrices A and B, and the weighting matrices Q
and R, the LQR function computes the feedback control gain automatically.
In this experiment, as the state-space model is already available, the effect of changing the Q
weighting matrix while R is fixed to 1 on the cost function J will be explored.

1.5.3.1 LQR control design

1. In Matlab, run the setup_qube2_rotpen.m script. This loads the QUBE-Servo 2 rotary
pendulum state-space model matrices A,B,C, and D. The A and B matrices should be
displayed in the Command Window:

A =

0 0 1.0000 0
0 0 0 1.0000
0 149.2751 -0.0104 0
0 261.6091 -0.0103 0

B =

0
0

49.7275
49.1493
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2. Use the Matlab eig command to find the open-loop poles of the system. You should
observe that the inverted rotary pendulum system is unstable because there is one pole
in the right-hand plane.

3. Find and use the Matlab command to compute the controllability matrix and evaluates the
controllability of the rotary inverted pendulum system. Look through the documentation
to find the appropriate command if necessary.

4. Use the Matlab lqr function with the loaded model and the following weighting matrices

Q =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 and R = 1,

to compute the optimal gain vector K.
Using the following Matlab commands:
Q = eye(4,4);
R = 1;
K = lqr(A,B,Q,R);
You should get the following control gain vector:

K =
[
−1.00 34.24 −1.23 3.08

]
.

5. Use the Matlab eig command to find the poles of the closed-loop system state matrix
A−BK. You should observe that the controlled inverted pendulum system is now stable
as all poles are now in the left-hand plane.

6. Change the LQR weighting matrix to the following and generate a new gain control gain:

Q =


5 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 and R = 1.

Using the following Matlab commands:
Q = diag([5 1 1 1]);
K = lqr(A,B,Q,R)
You should get the following new gain vector:

K =
[
−2.24 37.62 −1.50 3.38

]
Interestingly, changing the q11 element primarily increases the rotary arm proportional
gain, kp,θ, but it also affects all the other gains. This makes sense when looking at the
cost function in (1.30). Increasing q11 makes the LQR algorithm work harder to reduce
the x21 = θ2 term (as well as other states affected by this change), which augments the
gain kp,θ.
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1.5.3.2 LQR-based balance control

1. Run the setup_qube2_rotpen.m script in Matlab.

2. Open and understand the different elements in the Simulink model
q_qube2_bal_lqr.mdl, shown in Figure 1.13

3. Load the gain K obtained in (4). Make sure it is set as variable K in the Matlab workspace.

4. Set the Signal Generator block to the following:

• Type = Square

• Amplitude = 1

• Frequency = 0.125 Hz

5. Set the Gain block that is connected to the Signal Generator to 0.

6. Click on Monitor & tune to build and run the QUARC controller.

7. Manually rotate the pendulum in the upright position until the controller engages.

8. Once the pendulum is balanced, set the Gain to 30 to make the arm angle go between
±30◦. The scopes should read something similar as shown in Figure 1.14. Attach your
response of the rotary arm, pendulum, and controller voltage.

(a) Rotary Arm (b) Pendulum

(c) Motor Voltage
Figure 1.14: QUBE Servo 2 rotary pendulum response
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9. In Matlab, generate the gain using Q = diag(
[
5 1 1 1

]
). The diag command specifies

the diagonal elements in a square matrix.

10. To apply the newly designed gain to the running QUARC controller, go to the Simulink
model and select Edit | Update Diagram (or press CTRL-D).

11. Examine and describe the change in the Rotary Arm (deg) and Pendulum (deg) scopes. As
shown in Figure 1.15, the arm response should become faster, i.e. peak time decreases,
mainly due to the increased arm proportional gain. Because the rotary arm responds
faster, the pendulum tends to deflect more from its vertical position.

(a) Rotary Arm (b) Pendulum

(c) Motor Voltage
Figure 1.15: QUBE Servo 2 rotary pendulum response when increasing q11 to 5

12. Adjust the diagonal elements of Qmatrix to reduce how much the pendulum angle deflects
(overshoots) when the arm angle changes. Describe your experimental procedure to find
the necessary control gain.

Based on the analysis done in section 1.5.3.1, the elements in Q that are most likely to
affect the pendulum gains are q22 and q44. When going through the procedure outlined
below, it will be observed that changing q22 has little affect on the generated gain K.
Leaving q44 as the main variable to adjust.

The procedure to find out which Q element affect the pendulum the most effectively is as
follows:

i - Adjust Q matrix element.
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ii - Compute the gain K.

iii - Verify if the new gain has changed significantly. If not, then adjust another element
or increase more. If it has changed, go to next step.

iv - Implement the gain on QUARC controller.

v - Examine the pendulum response.

13. List the resulting LQR Q matrix and control gainK used to yield the desired performance
results.

The gain generated using Q = diag
([

5 1 1 20
])

should be:

K =
[
−2.24 53.86 −1.70 6.53

]
.

The response when increasing the LQR gain element q44 = 20 is shown in Figure 1.16.
As shown, the pendulum deflection is decreased from ±4.5◦, as depicted in Figure 1.15,
down to ±1.9◦. Having larger proportional and derivative gains acting on the pendulum
decreases the amount it deflects when the rotary arm rotates back-and-forth.

Responses when increasing the LQR gain element q44 = 20 are shown in Figure 1.16.

14. Stop the QUARC controller.

1.6 Bonus - Automatic swing-up and balance control of the
inverted pendulum

1.6.1 Non-linear energy-based swing-up control of the inverted pen-
dulum

1.6.1.1 Energy control

In theory, if the arm angle is kept constant and the pendulum is given an initial perturbation,
the pendulum will keep on swinging with constant amplitude. The idea of energy control is
based on the preservation of energy in ideal systems: the sum of kinetic and potential energy is
constant. However, friction will be damping the oscillation in practice and the overall system
energy will not be constant. It is possible to capture the loss of energy with respect to the
pivot acceleration, which in turn can be used to find a controller to swing up the pendulum.
The dynamics of the pendulum can be redefined in terms of the pivot acceleration u as

Jpα̈ +
1

2
MpgLp sinα =

1

2
MpLpu cosα. (1.33)

Here, u is the linear acceleration of the pendulum.
The potential energy of the pendulum is

Ep =
1

2
MpgLp (1− cosα) ,

and the kinetic energy is

Ek =
1

2
Jpα̇

2.
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(a) Rotary Arm (b) Pendulum

(c) Motor Voltage
Figure 1.16: QUBE Servo 2 rotary pendulum response with less pendulum deflection
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Figure 1.17: Free-body diagram of pendulum

The pendulum angle α and the lengths of the pendulum are illustrated in the free body diagram
in Figure 1.17.
The potential energy is zero when the pendulum is at rest at α = 0 and equalsMpgLp when the
pendulum is upright at α = ±π. The sum of the potential and kinetic energy of the pendulum
is

E =
1

2
Jpα̇

2 +
1

2
MpgLp (1− cosα) . (1.34)

Differentiating (1.34) yields

Ė = α̇

(
Jpα̈ +

1

2
MpgLp sinα

)
. (1.35)

Recalling (1.33) and rearranging terms as

Jpα̈ = −1

2
MpgLp sinα +

1

2
MpuLp cosα

eventually yields

Ė =
1

2
MpuLpα̇ cosα.

Since the acceleration of the pivot is proportional to current driving the arm motor and thus
also proportional to the drive voltage, it is possible to control the energy of the pendulum with
the proportional control law:

u = (Er − E)α̇ cosα. (1.36)

By setting the reference energy to the pendulum potential energy (Er = Ep), the control law
will swing the link to its upright position. Notice that the control law is nonlinear because the
proportional gain depends on the cosine of the pendulum angle α. Further, the control changes
sign when α̇ changes sign and when the angle is ±90 degrees.
For the system energy to change quickly, the magnitude of the control signal must be large. As
a result the following swing-up controller is implemented in the controller as

u = satumax (µ(Er − E)sign(α̇ cosα)) (1.37)

where µ is a tunable control gain and the satumax function saturates the control signal at the
maximum acceleration of the pendulum pivot, umax. The expression sign(α̇ cosα) is used to
enable faster control switching.
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1.6.1.2 Hybrid swing-up control

The energy swing-up control in (1.36) (or (1.37)) can be combined with the balancing control
law to obtain a control law that swings up the pendulum and then balances it.
Similarly as described in the Balance Control laboratory experiment, the balance control is to
be enabled when the pendulum is within ±20 degrees. When it is not enabled, the swing-up
control is engaged. Thus the switching can be described mathematically by:

u =

{
ubal if |α| − π ≤ 20◦

uswing_up otherwise
(1.38)

1.6.2 Implementation of the swing-up and balance control

The Simulink model that swings up and balances the pendulum on the QUBE Servo 2 rotary
pendulum system is shown in Figure 1.18. The Swing-Up Control subsystem implements the
energy control described in section 1.6.1.

Figure 1.18: Simulink model used with QUARC to run swing-up controller

1.6.2.1 Energy control

1. Open the q_qube_swingup.mdl Simulink model.

2. Run the setup_qube_rotpen.m Matlab script. This loads the pendulum parameters that
is used by the Simulink model.

3. To turn the swing-up control off, set the Slider Gain block called mu to 0.

4. Click on Monitor & tune to build and run the QUARC controller.

5. Manually rotate the pendulum at different levels and examine the pendulum angle and
energy in the Pendulum (deg) and Pendulum Energy (mJ) scopes.

6. What do you notice about the energy when the pendulum is moved at different positions?
Record the energy when the pendulum is being balanced (i.e. fully inverted in the upright
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vertical position). Does this reading make sense in terms of the equations developed in
section 1.6.1?

The pendulum energy should increase proportionally with the pendulum angle. When
being balanced, the energy read is 30mJ . As discussed in section 1.6.1, the reading
corresponds to the potential energy of the pendulum: Er =MpgLp.

7. Click on the Stop button to bring the pendulum down to the initial downward position.

8. Set the swing-up control parameters (i.e. the Constant and Gain blocks connected to the
inputs of the Swing-Up Control subsystem) to the following:

• mu = 50m/s/J

• Er = 10.0mJ

• u_max = 6m/s2

9. If the pendulum is not moving, gently perturb the pendulum with your hand to get it
going.

10. Vary the reference energy, Er, between 10.0mJ and 20.0mJ . As it is changed, examine
the pendulum angle and energy response in Pendulum (deg) and the Pendulum Energy
(mJ) scopes and the control signal in the Motor Voltage (V) scope.

Figures 1.19 show the responses when increasing the reference energy from 10 to 20mJ .

(a) Pendulum Angle (b) Pendulum Energy

(c) Motor Voltage
Figure 1.19: Pendulum response when changing reference energy
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11. Fix Er to 20.0mJ and vary the swing-up control gain mu between 20 and 60m/s/J .

You should observe that, as the mu gain increases, the amplitude of the pendulum swings
become larger. Recall from swing-up controller given in (1.37) that mu is the proportional
gain.

12. Stop the QUARC controller.

1.6.3 Hybrid swing-up control

1. Open the q_qube_swing_up.mdl Simulink model.

2. Run the setup_qube_rotpen.m Matlab script. This loads the pendulum parameters that
is used by the Simulink model.

3. Set the swing-up control parameters to the following:

• mu = 20m/s/J

• u_max = 6m/s2

4. Based on your observations in the previous subsection 1.6.2.1, what should the reference
energy Er be set to? Set it to this value.

5. Make sure the pendulum is hanging down motionless and the encoder cable is not inter-
fering with the pendulum.

6. Click on Monitor & tune to build and run the QUARC controller.

7. The pendulum should begin going back and forth. If not, manually perturb the pendu-
lum with your hand. Click on the Stop button in the Simulink tool bar if the
pendulum goes unstable.

8. Gradually increase the swing-up gain, µ, denoted as the mu Slider Gain block, until
the pendulum swings up to the vertical position. Capture a response of the swing-up
and record the swing-up gain that was required. Show the pendulum angle, pendulum
energy, and motor voltage.

The responses shown in Figure 1.20 are using hybrid swing-up control detailed in section
1.6.1 using mu = 38m/s/J,Er = 30mJ , and u_max = 6m/s2. The pendulum catch
angle is set to ±20◦.
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(a) Pendulum angle (b) Pendulum energy

(c) Motor voltage
Figure 1.20: Sample hybrid swing-up control response

9. Stop the QUARC controller.

10. Power OFF the QUBE Servo 2.

1.7 Final note
The techniques used to model, balance, and swing up an inverted pendulum have tremendous
carry-over to other applications. State-space modelling is a mainstay to modeling complex
MIMO systems. State-feedback control is sometimes used in multi degree-of-freedom robot
manipulators, quadrotor systems, aerospace devices.
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