
Lab 1
Classical PID

control experiences
with the QUBE-Servo 2

Hugues Garnier

September 2023

Contents

Steps in the design of a control system 2

1 QUBE-Servo 2 software and hardware interfacing 4
1.1 The QUBE-Servo 2 from Quanser . 4
1.2 Hardware and software interfacing . 5

1.2.1 Background . 5
1.2.2 First experiments with the QUBE-Servo 2 7

1.3 Estimating angular velocity by high-pass filtering 10
1.3.1 Low-pass and high-pass filtering . 10
1.3.2 Second experiment with the QUBE-Servo 2 11

2 PID-based control of the DC motor angular position 14
2.1 Download of the files required for the lab . 14
2.2 Pre-lab questions . 15
2.3 Control performance requirements . 15
2.4 Transfer function model identification from step response experiment 15

2.4.1 Recording of the step response experiment 16
2.4.2 Transfer function model identification and validation 17

2.5 Servo-motor control using PD feedback in simulation 18
2.6 PD control implementation to the QUBE-Servo 2 18
2.7 Robustness test of the servo-motor PD control 19

i

CONTENTS

Acknowledgements

The contents of this lab has been largely inspired and adapted from initial versions of the
different chapters provided by Quanser Inc1. This is fully acknowledged.

1www.quanser.com

1

Steps in the design of a control system
The various stages that lead to the design of a feedback control are detailed in Figure 1.

Figure 1: Steps in the design of a control system (From S. Burns, Advanced Control Engineering,
Butterworth-Heinemann, 2001)

2

CONTENTS

The methodology will be used throughout the different labs and you should always come back
to it if your design is not successful. The determination of a model and the simulation of
the behaviour of the closed-loop system are crucial steps for the design of a feedback control
system. You will use the Matlab/Simulink environment to design, develop, and validate a
variety of feedback control strategies before their implementation on the physical systems.

3

Part 1

QUBE-Servo 2 software and hardware
interfacing

1.1 The QUBE-Servo 2 from Quanser

The Quanser QUBE-Servo 2, pictured in Figure 1.1, is a compact rotary servo system that can
be used to perform a variety of classic servo control and inverted pendulum based experiments.
The QUBE can be controlled by a computer via USB connection.
The system is driven using a direct-drive 18V brushed DC motor. The motor is powered by a
built-in Pulse Width Modulation (PWM) amplifier with integrated current sense. Two add-on
modules are supplied with the system:

• an inertia disc;

• a rotary pendulum.

The two modules can be easily attached or interchanged using magnets mounted on the QUBE-
Servo 2 module connector.
Single-ended rotary encoders are used to measure the angular position of the DC motor and
pendulum, while the angular velocity of the motor can be either estimated form the angular
position encoder-based measurement or directly measured using an integrated software-based
tachometer.

Figure 1.1: QUBE-Servo 2 with the two different modules

Download of the QUBE-Servo 2 user manual and quick start guides
Download the zipped file QUBE-Servo2_pdf_guides.zip from the course website and unzip it
in the local disk folder C:/temp/.

4

Part 1 – QUBE-Servo 2 software and hardware interfacing

1.2 Hardware and software interfacing

Topics covered

• Getting familiarized with the Quanser QUBE-Servo 2 hardware (sensor and actuator).

• Using Quanser QUARC software to interact with the QUBE-Servo 2 system.

• Sensor calibration.

Prerequisites

• Inertia disc load is on the QUBE-Servo 2.

• The QUBE-Servo 2 has been setup. See the QUBE-Servo 2 Quick Start Guide for details.

• You have the QUBE-Servo 2 User Manual. It can be useful for some of the experiments.

• You are familiar with the basics of Matlab and Simulink.

1.2.1 Background

1.2.1.1 QUARC software

The QUARC software is used to interact with the hardware of the QUBE-Servo 2 system.
QUARC will be used to drive the DC motor and read the angular position of the inertia disc.
The basic steps to create a Simulink model with QUARC in order to interact with the QUBE-
Servo 2 hardware are:

1. Make a Simulink model that interacts with the data acquisition board installed in QUBE-
Servo 2 using blocks from the QUARC Targets library.

2. Build the real-time code.

3. Execute the code.

If you want to know more about QUARC:

• type doc quarc in Matlab to access QUARC documentation and demos.

• watch a 18 mn video Getting Started with QUARC from Quanser (follow the link given
below) that demonstrates how to interface with hardware, build a simple Simulink model
and implement it on an actual system:
www.quanser.com/tutorial/quarc-essentials-hardware-interfacing/

1.2.1.2 The actuator: the DC motor

Direct-current motors are used in a variety of applications. As discussed in the QUBE-Servo 2
User Manual, the QUBE-Servo 2 has a brushed DC motor that is connected to a Pulse-Width
Modulation (PWM) amplifier. See the QUBE-Servo 2 User Manual for details.

5

Part 1 – QUBE-Servo 2 software and hardware interfacing

1.2.1.3 The sensors: the encoders

Similar to rotary potentiometers, encoders can also be used to measure angular position. There
are many types of encoders but one of the most common is the rotary incremental optical
encoder, shown in Figure 1.2. Unlike potentiometers, encoders are relative. The encoder count
is reset to 0 every time it is powered. The angle they measure depends on the last position and
when it was last powered. It should be noted, however, that absolute encoders are available.

Figure 1.2: Digital incremental rotary optical shaft encoder

The encoder has a coded disc that is marked with a radial pattern. This disc is connected to
the shaft of the DC motor. As the shaft rotates, a light from a LED shines through the pattern
and is picked up by a photo sensor. This effectively generates the A and B signals shown in
Figure 1.3. An index pulse is triggered once for every full rotation of the disc, which can be
used for calibration or homing a system.

Figure 1.3: Optical incremental encoder signals

The A and B signals that are generated as the shaft rotates are used in a decoder algorithm
to generate a count. The resolution of the encoder depends on the coding of the disc and the
decoder. For example, a single encoder with 512 lines on the disc can generate a total of 512
counts for every rotation of the encoder shaft. However, in a quadrature decoder as depicted in
Figure 1.3, the number of counts (and thus its resolution) quadruples for the same line patterns
and generates 2048 counts per revolution. This can be explained by the offset between the A
and B patterns: instead of a single strip being either on or off, now there are two strips that
can go through a variety of on/off states before the cycle repeats. This offset also allows the
encoder to detect the directionality of the rotation, as the sequence of on/off states differs for
a clockwise and counter-clockwise rotation.

6

Part 1 – QUBE-Servo 2 software and hardware interfacing

1.2.2 First experiments with the QUBE-Servo 2

The objective here is to build a Simulink model using QUARC blocks to drive the DC motor
and then measure its corresponding angle, as shown in Figure 1.4.

Figure 1.4: Simulink model used with QUARC to drive the DC motor and read angle on
QUBE-Servo 2

1.2.2.1 Configuring a Simulink model for the QUBE-Servo 2

Follow the steps below to build a Simulink model that will interface to the QUBE-Servo 2
hardware using QUARC:

1. Open the the Quick Start Guide and follows the instruction to set up and connect the
QUBE-Servo 2 to your PC USB port.

2. Open Matlab and then start Simulink by typing Simulink in the Command window or
by clicking on its icon in the menu bar.

3. Make sure the QUBE-Servo 2 is connected to your PC USB port and the Power LED at
the back of the QUBE-Servo 2 is lit green.

4. Create a new blank Simulink model (do not create a new blank QUARC model!) model
by clicking on the icon in the Simulink Start page window or by going to File | New |
Simulink Model item in the menu bar.

5. Go to SIMULATION item in the menu bar | Open the Library Browser window by clicking
on its icon.

6. Expand the QUARC Targets item and go to the Data Acquisition | Generic |
Configuration folder, as shown in Figure 1.5.

7

Part 1 – QUBE-Servo 2 software and hardware interfacing

Figure 1.5: QUARC Targets in the Library Browser

7. Click-and-drag the HIL Initialize block from the library window into the blank model.
This block is used to configure the data acquisition board.

8. Double-click on the HIL Initialize block.

9. In the Board type field, select qube_servo2_usb. Apply and close the window.

10. Go to QUARC item in the menu bar | Set default options item to set the correct Real-
Time Workshop parameters and setup the model for external use (as opposed to the
simulation mode).

11. Go to QUARC item in the menu bar | QUARC targets item to set the correct
quarc_win64.tlc for targets runing on 64-bits Windows.

12. Save the file as QUBE_iotest.slx in the following folder C:/temp/Lab_QUBE_Test.

13. Important ! Go to the Matlab window. By clicking on the browse for folder
icon , change the current folder of Matlab so that it becomes your
C:/temp/Lab_QUBE_Test folder that contains the file you have just saved.

14. Go back to Simulink. Select the HARDWARE | Monitor & Build item to build the code.
Various lines in the Diagnosis Viewer Window (open the window) should be displayed as
the model is being compiled. This creates a QUARC executable (.exe) file which we will
commonly refer to as the QUARC controller.
If the experimental procedure was followed correctly, no errors should be obtained in
when running the QUARC controller. Time should flow in Simulink and the LED strip at
the top of the QUBE-Servo 2 should turn from red to green.

8

Part 1 – QUBE-Servo 2 software and hardware interfacing

Great, you have successfully set up the connection to the QUBE-Servo 2. Congratulations
!

15. If you successfully ran the QUARC controller without any errors, then you can stop the
code by clicking on the Stop button in the tool bar (or go to QUARC | Stop).

1.2.2.2 Reading the Encoder

Follow the steps below to read the encoder:

1. Using the Simulink model you configured in the previous section, add the HIL Read
Encoder block by double clicking in the Simulink model and search for HIL Read Encoder.
This block can also be found in the Library Browser from the QUARC Targets | Data
Acquisition | Generic | Immediate I/O category.

2. Connect the HIL Read Encoder to a Gain and Display block similar to Figure 1.4 (with-
out the HIL Write Analog block. It will added later). Double click in the Simulink model
and search for the Gain and Display blocks. In the Library Browser, you can find the
Display block from the Simulink | Sinks and the Gain block from Simulink | Math
Operations.

3. Select the HARDWARE | Monitor & Build item to build the code. The code needs to be
re-generated again because you have modified the Simulink model. No errors should be
obtained and the QUARC controller should be running.

4. Rotate the disc by hand, back and forth. The Display block should show the number
of counts measured by the encoder. Remind that the encoder counts are proportional to
the angle (angular position) of disc.

5. Stop the controller, rotate the disc by 90 degrees clockwise, and re-start the controller.
What do you notice about the encoder measurement when the controller is re-started?
As the encoder is relative, the encoder count is reset to 0 every time the controller is ran.

6. Measure how many counts the encoder outputs for a full rotation. To do so, stop the
controller and move the disc to the 0 degree position marked on the QUBE-Servo 2.
Start the controller and rotate the disc one full rotation. The encoder count should
read approximately 2048, which is in-line with the specifications given in the background
section.

7. Now we want to display the disc angle in degrees, not in counts. Given that there is 2048
counts per revolution, to get a measurement in degrees we need a gain of 360/2048 =
0.1748 deg/count. Set the Gain block to the value that converts counts to degrees. This
is called the sensor gain. To confirm that the sensor gain is correct, start the controller
with the disc at the 0 degree position marked on the QUBE-Servo 2. Rotate it one full
rotation, and verify that the Display block reads 360.

8. Ultimately we want to display the disc angle in degrees, not in counts. Given that
there is 2048 counts per revolution, to get a measurement in radians we need a gain of
2π/2048 = 0.0031 rad/count. Set the Gain block to the value that converts counts to
radians. To confirm that the new sensor gain is correct, start the controller with the disc
at the 0 position marked on the QUBE-Servo 2. Rotate it one full rotation, and verify
that the Display block reads 2π ≈ 6.28.

9

Part 1 – QUBE-Servo 2 software and hardware interfacing

1.2.2.3 Driving the DC motor

1. Add the HIL Write Analog block. This block is used to output a signal from analog
output channel #0 on the data acquisition device. This is connected to the on-board
PWM amplifier which drives the DC motor.

2. Add a Constant block. Connect the Constant and HIL Write Analog blocks together,
as shown in Figure 1.4.

3. Set the Constant block to 0.5. This applies 0.5 V to the DC motor of the QUBE-Servo
2.

4. Click on Monitor & tune to build and run the QUARC controller.

5. Confirm that you are obtaining a positive measurement when a positive signal is applied.
This convention is important, especially in control systems when the design assumes
the measurement goes up positively when a positive input is applied. Finally, in what
direction does the disc rotate (clockwise or counter-clockwise) when a positive input is
applied?

6. Keep the Controller running and modify the Constant block to −0.5. Verify that the
disc rotates in the counter-clockwise direction.

7. Stop the QUARC controller.

1.3 Estimating angular velocity by high-pass filtering
Topics covered

• Using an encoder to measure angular velocity.

• Low-pass and high-pass filters.

1.3.1 Low-pass and high-pass filtering

A low-pass filter can be used to block out the high-frequency components of a signal. The
Laplace transfer function of a first-order low-pass analog filter has the form

HLP (s) =
ωf

s+ ωf

(1.1)

where s is the Laplace transform and ωf is the cut-off frequency of the filter in (rad/s).
All higher frequency components of the signal will be attenuated by at least −3 dB (≈ 70% by
amplitude).
A high-pass filter can be used to approximate the time-derivative of a signal. The Laplace
transfer function of a first-order high-pass analog filter has the form

HHP (s) =
Ω̂(s)

Θ(s)
=

ωf s

s+ ωf

(1.2)

Note that the high-pass filter can be seen as the cascade of a low-pass filter and the pure
derivate as shown in Figure 1.6.

10

Part 1 – QUBE-Servo 2 software and hardware interfacing

ωf

s+ ωf
s

Θ(s) Θf (s) Ω̂(s)

Figure 1.6: High-pass filter seen as a cascaded low-pass and derivative blocks

This high-pass filter can be very useful to provide an estimate of the angular velocity ˆ̇θ(t) = ω̂(t)
from a measured angular position θ(t).

1.3.2 Second experiment with the QUBE-Servo 2

Based on the Simulink model developed in the previous section, the goal is now to build
a Simulink model that estimates the angular velocity of the motor shaft using the angular
position measure provided by the encoder as shown in Figure 1.7.

Figure 1.7: Estimating angular speed from the angular position measure provided by the encoder

1. Open the model you developed in the previous section. Change the encoder calibration
gain to measure the angular position in radians (instead of degrees). Change the HIL
Read Encoder by an HIL Read Encoder Timebase.

2. Build the Simulink model as shown in Figure 1.7. Add a Derivative block to the en-
coder calibration gain output to estimate the angular speed using the encoder (in rad/s).
Connect the output of the Derivative to a Scope. For now, do not include the low-pass
Transfer Fcn filter block 50

s+50
, it will be added later.

3. Setup the source blocks (Signal generator + Constant) to output a square wave volt-
age that goes from 1 V to 3 V at 0.4 Hz.

4. Run the QUARC controller. Examine the angular speed response. It should look similar
to Figure 1.8.

11

Part 1 – QUBE-Servo 2 software and hardware interfacing

(a) Motor Voltage (b) Encoder Speed
Figure 1.8: Measured servo speed using encoder

5. Explain why the encoder-based measurement is noisy. Plot the encoder angular position
measurement using a new Scope. Zoom up on the position response. Is the signal con-
tinuous or piecewise constant?
The angular position measurement is therefore not continuous. The signal is piecewise
constant that is, segmented into small steps. Remember that this later signal enters
derivative. Differentiating these small steps result in large values in the response, as
shown in Figure 1.9.

Figure 1.9: Encoder measurement

6. One way to remove some of the high-frequency components is adding a low-pass filter
(LPF) to the derivative output. Add a Transfer Fcn block after the Derivative output
and connect LPF to the Scope. Set the Transfer Fcn block to 50/(s+50), as illustrated
in Figure 1.7.

Note that the cascade of the derivative component
du

dt
and the low-pass filter

50

s+ 50
can

be implemented in one single high-pass transfer function block
50s

s+ 50
.

7. Run the QUARC controller. Look at the filtered encoder-based speed response and the
motor voltage.

If the filter was applied properly, the filtered encoder-based speed measurement should
be as shown in Figure 1.10. The filtered response in Figure 1.10b is a lot less noisy then

12

Part 1 – QUBE-Servo 2 software and hardware interfacing

in Figure 1.10a. Zoom up if you want to see better the noise level in Figure 1.10a.

(a) Encoder speed without
low-pass filter

(b) Encoder speed with
low-pass filter

Figure 1.10: Estimated servo speed from encoder with and without low-pass filter

8. What is the cutoff frequency of the low-pass filter 50/(s+ 50)? Give you answer in both
rad/s and Hz.

9. Vary the cutoff frequency, ωf , between 10 to 200 rad/s (or 1.6 to 32 Hz). What effect
does it have on the filtered response? Consider the benefit and the trade-off of lowering
and increasing this parameter.

Lowering the cutoff removes more noise from the signal but causes it to slow down. Having
a higher cutoff allows for more high-frequency components (noise), but the signal has less
delay.

10. Stop the QUARC controller.

13

Part 2

PID-based control of the DC motor
angular position

One of the most common tasks that control engineers are called upon to perform when creating
industrial systems is to control the angular position of a DC motor. From automation in
manufacturing to autonomous robots and even in aerospace, DC motors are used to actuate
systems, and their (angular) position needs to be controlled to perform within specific design
criteria.

During this part, we will mainly use the QUBE-Servo 2 with the inertia disk. The rotary
pendulum will serve as a possible load disturbance to test the robustness of the implemented
control only.

The objective is to illustrate the various stages of design that lead to the implementation of a
PD control of the DC motor angular position. they stages are mainly:

1. to identify a linear low-order model from real data coming from a step test;

2. to design and tune a PD controller based on the identified linear model and evaluate its
control performance in simulation by using Simulink;

3. to implement and refine the designed PD control on the physical servo-motor.

4. to test the robustness/sensitivity of the control to external load disturbance.

2.1 Download of the files required for the lab

1. Download the zipped file Lab_QUBE_DCmotor.zip from the course website. Save and
unzip it in the local disk folder C:/temp/.

2. Start Matlab.

3. In the Current Folder window of Matlab, click right on the folder
C:/temp/Lab_QUBE_DCmotor and select add to path the selected folder.

4. Double-click on the folder Lab_QUBE_DCmotor so that it becomes your current folder. You
should see the different .slx and m. files needed for this Lab.

14

Part 2 – PID-based control of the DC motor angular position

2.2 Pre-lab questions

The pre-lab questions of this part are related to the problem solving session. The solutions to
all questions will possibly require to be slightly adapted to the experimental conditions (mainly
due to a different identified model and/or the presence of non-linear dry friction effects in the
motor shaft).

It is assumed you have a full understanding of these solutions, and have a clear idea of the
tasks that will have to perform during the lab.

2.3 Control performance requirements

The performance requirements for the angular position control are described in Table 2.1.

Requirement Assessment criteria Level
Control the position Position setpoint tracking No steady-state error

Motor input voltage limited to [-10V ; +10 V]
Peak Overshoot D1 = 4.3 %
Settling time at 5 % T 5%

s = 0.05 s
Disturbance rejection Rejection of load effects

Table 2.1: Performance requirements for angular position control

2.4 Transfer function model identification from step re-
sponse experiment

The determination of a model is the first crucial step for the design of a feedback control system.

The input and output of the DC motor of the QUBE with the inertia disk are:

• input: voltage of the motor u(t) in V;

• output: inertia disk angular position θ(t) in rad.

The motor voltage-to-angular position transfer function takes the form of a first-order plus pure
integrator model

Θ(s)

U(s)
=

K

s(1 + Ts)
(2.1)

where Θ(s) = L [θ(t)] and U(s) = L [u(t)]. K in rad/(V-s) is the model steady-state gain, T
in s is the model time-constant.

As the angular velocity is the time-derivative of the angular position, both variables are linked
in the Laplace domain by an integrator (or derivator) so that (2.1) can be expressed as:

Θ(s)

U(s)
=

Θ(s)

Ω(s)
× Ω(s)

U(s)
=

1

s
× K

1 + Ts
(2.2)

15

Part 2 – PID-based control of the DC motor angular position

where Ω(s) = L [ω(t)] is the angular velocity (or speed) of the inertia disc.

Identifying a system having a pure integrator is tricky and it is better when the measure is
available to identify the response between the motor angular velocity and the input voltage
since the model takes the form of a simple first-order system.

The QUBE-Servo 2 motor voltage-to-angular velocity transfer function has therefore the well-
known first-order form which parameters can be easily estimated from a step response experi-
ment:

Ω(s)

U(s)
=

K

1 + Ts
, (2.3)

2.4.1 Recording of the step response experiment

1. Open the file Step_resp_Qube.mdl in Simulink.

2. Click onMonitor & Tune in the Hardware panel to run the step test that lasts 5 seconds
only. The red color of the Qube should turn green if the test succeeds.

3. Observe the angular velocity response for a positive step from 0 to 2 V sent after 1s
followed by a negative step from 2 V to 0 on the motor voltage after 3 seconds. The
amplitude of the steps can be modified according to your own reasoning and choice. To
do so, click on the two step blocks and modify the value.

The angular position (in rad) and velocity (in rad/s) responses to the positive and negative
step input sent to the motor voltage have been recorded and saved in the data_step_Qube.mat
file. They are plotted in Figure 2.1, which can be reproduced with Matlab by executing the
step_response_plot.m file.

16

Part 2 – PID-based control of the DC motor angular position

Figure 2.1: Angular position and velocity responses to a positive and negative step input sent to the
motor voltage

2.4.2 Transfer function model identification and validation

It is possible to use very basic methods to determine the parameters of a first-order Laplace
transfer function model from the positive step response for example. As we saw last year, there
now exist more advanced model learning/identification methods available in Matlab toolboxes
like the CONTSID toolbox developed by the research team of CRAN hosted at Polytech Nancy
which determine the parameters of a (continuous-time) Laplace transfer function model directly
from measured input/output data. We will make use of the CONTSID algorithms here.
To use these powerful data-driven high-fidelity model learning algorithms, follows the steps :

• Download the CONTSID toolbox from its website1 to the local folder of your PC.

• Add the CONTSID folder to the Matlab path. If this is not possible, add all the files of
CONTSID folder in your working directory.

• Run the file ident_via_contsid.m in Matlab (if you use your own laptop, the Matlab
System Identification and Control toolboxes must be installed for the CONTSID to work).

• Compare the measured and model angular velocity responses.

• Note the numerical values of the estimated model steady-state gain K and time-constant
T .

1www.cran.univ-lorraine.fr/contsid

17

Part 2 – PID-based control of the DC motor angular position

2.5 Servo-motor control using PD feedback in simulation

A variation of the classic PD control will be used as shown in Figure 2.2. Unlike the standard
PD where the derivative action is applied to the error, it is applied to the output and a low-
pass filter will be used in cascade with the derivative term to suppress measurement noise (the
low-pass filter is not represented below but is included in the Simulink file).

+
-

Θr(s)
Kp

ε(s)
+

-

Up(s) K
s(1+Ts)

Θ(s)

Kds

Figure 2.2: Block-diagram of the PD feedback configuration of the positional servo system with
derivative effect on the output.

1. Determine the natural frequency ωn and damping ratio z requirements that translate from
the percent overshoot and settling time specifications of 4.3 % and 0.05s respectively.

2. Determine the values for Kp and Kd that make the closed-loop transfer function step
response to have the required percent overshoot and settling time. Adapt the values
obtained in the problem solving session to your identified model.

3. Open the file simul_PD_control.mdl in Simulink.

4. Enter the parameter values of your first-order model by clicking on the blue Qube model
block.

5. Click on the proportional gain block and set your value for Kp.

6. Click on the derivative gain block and set your value for Kd.

7. Run the simulation and observe the angular position response in servo control as well as
the DC-motor input voltage. Determine the maximum and minimum values of the input
voltage.

8. Are the requirement specifications met?

9. If necessary, refine the value of Kp and Kd to get the best answer to the specification
requirements (overshoot, steady-state error, settling time à 5% and amplitude of the
motor voltage) with this PD feedback control.

10. By clicking on the icon, measure the peak-time from the response.

11. Close the file.

2.6 PD control implementation to the QUBE-Servo 2
We will now proceed with the implementation and test of the PD control on the QUBE-Servo
2.

1. Open the file PD_control_Qube.mdl in Simulink.

18

Part 2 – PID-based control of the DC motor angular position

2. Enter the numerical value of the two gains Kp and Kd of your best PD controller obtained
in simulation.

3. Click on Monitor & Tune in the Hardware panel to run the controller.

4. Observe the angular position response to a square reference along with the control signal.

5. Are the experimental response close to the simulation results?

6. Are the requirement specifications fullfilled ? If not, modify the PD controller gains Kp

and Kd to get the best answer to the specification requirements (overshoot, steady-state
error and amplitude of the motor voltage).

7. Determine the peak-time.

8. Set the setpoint to a sine wave instead of the square wave and repeat the previous exper-
iment. Can the PD controller track the sine wave reference?

9. Stop the QUARC controller.

2.7 Robustness test of the servo-motor PD control
1. Set back the setpoint to a square wave. Place an object (your smartphone for example) on

the inertia disk and repeat the experiment. Are the requirement specifications fullfilled
? If not, modify the PD controller gains Kp and Kd to get the best answer to the
specification requirements.

2. Replace the inertia disc by the rotary pendulum and repeat the previous experiment for
a square wave setpoint.

3. Observe the angular position response to the square reference along with the control
signal.

4. Stop the QUARC controller.

19

	Steps in the design of a control system
	QUBE-Servo 2 software and hardware interfacing
	The QUBE-Servo 2 from Quanser
	Hardware and software interfacing
	Background
	First experiments with the QUBE-Servo 2

	Estimating angular velocity by high-pass filtering
	Low-pass and high-pass filtering
	Second experiment with the QUBE-Servo 2

	PID-based control of the DC motor angular position
	Download of the files required for the lab
	Pre-lab questions
	Control performance requirements
	Transfer function model identification from step response experiment
	Recording of the step response experiment
	Transfer function model identification and validation

	Servo-motor control using PD feedback in simulation
	PD control implementation to the QUBE-Servo 2
	Robustness test of the servo-motor PD control

