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Tutorials 1

Simple least squares for estimating the
parameters of time-series and static

models

Data needed for the tutorial

• Download the zipped file Tutorial1_SYSID.zip from the course website and save it in
your Matlab working directory.

• Start Matlab.

• By clicking on the browse for folder icon , change the current folder of Matlab
so that it becomes your Tutorial1_SYSID folder that contains the files needed for
this lab.

• It is recommended to use the Matlab Live Editor. In the Live Editor, you can create live
scripts that show output together with the code that produced it.
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Tutorials 1 – Simple least squares for estimating the parameters of time-series and static
models

Exercise 1.1 - Modeling the thrust of the Crazyflie nano-quadcopter

The file thrustdata.mat contains the thrust (in N) for different values of the rotor speed (in
rpm) generated by a Crazyflie nano-quadcopter as shown is Figure 1.1.

Figure 1.1: Thrust versus rotor speed for the Crazyflie nano-quadcopter

The goal is to model the relationship between the rotor speed and the generated thrust

1. Load the dataset in Matlab.

2. Plot the data and observe the thrust increase in terms of the rotor speed.

3. We choose to postulate a polynomial model of order 1 between the two signals.

thrust = a× speed+ b

Determine by using simple least squares (LS) the parameters of the first order polynomial
model.

4. Plot the estimated and the measured thrust in the same figure.

5. Compute the residuals along with the RMSE performance indice.

6. We now choose to postulate a polynomial model to capture the thrust increase as a
parabola function of the motor speed

thrust = a× speed2 + b× speed+ c

Estimate by simple LS the parameters of the parabola model

7. Plot the estimated and the measured thrust in the same figure. Compute the RMSE.

8. Increase the order of the polynomial model up to 10 and estimate the parameters.

9. For every order, plot the estimated and the measured thrust in the same figure. Compute
the RMSE.

10. Select the best order of the polynomial model. Explain your choice.
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Tutorials 2

Simple least squares for estimating the
parameters of linear dynamical models

Data needed for the tutorial

• Download the zipped file Tutorial2_SYSID.zip from the course website and save it in
your Matlab working directory.

• Start Matlab.

• By clicking on the browse for folder icon , change the current folder of Matlab
so that it becomes your Tutorial2_SYSID folder that contains the files needed for
this lab.

• It is recommended to use the Matlab Live Editor. In the Live Editor, you can create live
scripts that show output together with the code that produced it.
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Tutorials 2 – Simple least squares for estimating the parameters of linear dynamical models

Exercise 2.1 - Use of least squares to estimate the continuous-time and discrete-
time model of a dynamical system from step response data

The goal is to fit continuous-time and discrete-time transfer function models from step response
data.

Figure 2.1: Noise-free step response of a first-order dynamical system.

The file step_response_data.mat includes 4 samples of the step response of a first-order
dynamical system as shown in Figure 2.1.

1. Load the dataset in Matlab.

2. Plot the noise-free input and output step response data. Observe the input u and output
samples stored in y. The output time-derivative samples are also stored in ydot.

3. We first choose to postulate a continuous-time first-order transfer function model to cap-
ture the system dynamics from the step response data.

G(s) =
b

s+ a

4. Look at the lecture slides and determine by using simple least squares the parameters a
and b of the continuous-time transfer function model.

5. Compare the estimated values with the true continuous-time model parameters.

6. We now choose to postulate a discrete-time first-order transfer function model to capture
the system dynamic from the step response data.

G(z) =
b1z

−1

1 + a1z−1

7. Look at the lecture slides and determine by using simple least squares the parameters of
the discrete-time transfer function model.

8. Compare the estimated values with the true discrete-time model parameters.

9. Repeat the continuous-time and discrete-time model identification by using the noisy
output ynoisy and noisy output time-derivative ydotnoisy.

10. Conclude about the use of simple least squares in presence of noisy output measurements.
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Tutorials 3

Iterative model learning workflow

Downloading of the data needed for the tutorial

• Download the zipped file Tutorial3_SYSID.zip from the course website and save it in
your Matlab working directory.

• Start Matlab.

• By clicking on the browse for folder icon , change the current folder of Matlab
so that it becomes your Tutorial3_SYSID folder that contains the files needed for
this lab.

• It is recommended to use the Matlab Live Editor. In the Live Editor, you can create live
scripts that show output together with the code that produced it.
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Tutorials 3 – Iterative model learning workflow

Exercise 3.1 - The iterative model learning workflow by examples
The iterative model learning workflow is represented in Figure 3.1.

Figure 3.1: Iterative model learning workflow.

1. Watch the video (18 mn) by Brian Douglas entitled Linear System Identification -
Part 2 available at:
www.youtube.com/watch?v=qC_C04SEV1E

2. Run the file linear_sys_example.mlx in the live editor and reproduce the results ob-
tained from the simulation example presented in the video.

3. Pay attention in particular to the selection of the model order (number of poles and zeros
for the transfer function model) of the iterative model identification workflow.

4. Run the file heat_transfer_sys_id.mlx in the live editor and reproduce the results
obtained from the heat exchanger presented in the video.
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Tutorials 4

Identification of continuous-time transfer
function models with the CONTSID

toolbox

• We will mainly use the CONTinuous-Time System IDentification (CONTSID) toolbox
which is a collection of m-files written in Matlab. The toolbox has been developed at
Polytech Nancy.

• It is freely available for academic researchers and students. It can be downloaded from:
www.cran.univ-lorraine.fr/contsid/

• The toolbox can be run in command-line mode or in a graphical user interface (GUI)
mode or in any combination of these. We will use the command-line mode only.

• The exercices are intended for the CONTSID toolbox 7.5 to be run with Matlab version
R2024a equipped with the System Identification toolbox and the Control toolbox.

Downloading of the data needed for the tutorial

• Download the zipped file of the CONTSID toolbox from its website and save it in your
Matlab working directory.

• Start Matlab.

• Change the current folder of Matlab so that it becomes your Tutorial4_SYSID folder.
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Tutorials 4 – Identification of continuous-time transfer function models with the CONTSID
toolbox

Exercise 4.1 - Tutorial introduction to the CONTSID toolbox

This first exercise is meant as an introduction to data-driven system identification with the
CONTSID toolbox. You will run an identification demonstration program available in the
toolbox.
Start Matlab and run the CONTSID main demonstration program through the command:

>> contsid_demo

Select Tutorials in the menu window.
In the new menu window, select Getting started and follow the demo displayed in the command
window.
When the demo is finished, select Quit to come back to the main menu window.

Run one or more other demos to get a feel for the different options available in the CONTSID
toolbox.

Exercise 4.2 - Parameter estimation of a simulated transfer function model

The basic problem in system identification is to find the dynamics from input/output measure-
ments. Of course, in practice the true system is unknown (otherwise there would be no need for
system identification) and only the measurements are available. We are here using a simulated
system for:

(i) generating data

(ii) evaluating the performance of various parameter estimation methods studied during the
lectures.

Data-generating system
We will consider estimation from data given by the following system:

S

x(t) =
Bo(s)

Fo(s)
u(t)

y(tk) = x(tk) + e(tk)
(4.1)

where s represents here the differentiation operator s = d
dt

which is the notation used in the
Matlab System Identification and CONTSID toolboxes.
u is the system input, x is the noise-free output and y the noisy output.
The disturbance e(tk) is a discrete-time white Gaussian noise, independent of the input u, and
of zero mean and variance σ2

e .
The polynomials Bo(s) and Fo(s) are defined by:{

Bo(s) = 2

Fo(s) = s2 + 4s+ 3
(4.2)

1. Determine from (4.1) and (4.2) the main features of the true system: order, steady-state
gain and time-constants
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Tutorials 4 – Identification of continuous-time transfer function models with the CONTSID
toolbox

For a PRBS input and white measurement noise with σe = 0.2, we compute now the noise-free
and noisy system responses.

To define the true system and generate the data, type (or copy and paste) the following com-
mands in a .m or .mlx script:

s = tf(’s’);
S = 2/(s^2 + 4*s + 3)% The true transfer function model of the system
Ts=0.01; % The sampling period
N=1500; % The number of data
t=(0:N-1)’*Ts; % The time vector
u=prbs(4,100); % The PRBS input
e=0.2*randn(N,1); % The Gaussian noise of standard deviation 0.2
x=lsim(S,u,t); % The noise-free output
y=x+e; % The noisy output

For later use with the CONTSID toolbox estimation routines (PROCSRIVC and TFSRIVC),
it is convenient to combine the input and output data into iddata structures

data0=iddata(x,u,Ts); % The noise-free data object
data=iddata(y,u,Ts); % The noisy output data object
figure(1)
idplot(data0)
figure(2)
idplot(data)

We assume that the "correct" model order is known and let us try to estimate the parameters
from the two sets of data by the different direct continuous-time methods available in the
CONTSID toolbox from the two simulated datasets.
Note that the PRBS input u is a deterministic signal. The noise signal e on the other hand is
stochastic, so each time you run the commands above, you will obtain a different realization
of the noise signal and hence also of the output. Your model estimate should therefore slightly
differ for each noise realization and also from your neighbor.

Low-order process model identification by PROCSRIVC

Consider first the identification of a low-order (2nd order here) PROCess model by the Simple
Refined IV method for Continuous-time models (PROCSRIVC):

Mprocsrivc : y(tk) =
Kp

(1 + Tp1s)(1 + Tp2s)
u(tk) + e(tk) (4.3)

1. The CONTSID procsrivc routine can be used as follows. Type the following commands:

Model_type = idproc("P2");
Mprocsrivc=procsrivc(data,Model_type);

The estimated model parameters along with their standard deviations can be displayed
by using the following command:
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Tutorials 4 – Identification of continuous-time transfer function models with the CONTSID
toolbox

present(Mprocsrivc);

2. Compare the PROCSRIVC estimates with the true system parameters

present(S);

3. Run several times your program to get a feel for the overall performance of the PROC-
SRIVC model estimate.

4. Set the standard deviation of the additive measurement noise to 0.4 instead of 0.2 and
investigate the robustness of the PROCSRIVC estimation methods against the measure-
ment noise. Run several times your program to get a feel for the overall performance of
the PROCSRIVC estimation routine.

Transfer function model identification by TFSRIVC

We now consider the identification of a 2nd order Transfer Function by the Simple Refined IV
method for Continuous-time models (TFSRIVC):

Mtfsrivc : y(tk) =
b0

s2 + a1s+ a2
u(tk) + e(tk) (4.4)

The CONTSID tfsrivc routine can be used as follows:

Mtfsrivc=tfsrivc(data,np,nz);

where np et nz represent the number of poles and zeros of the transfer function to be estimated
(a time-delay can also be estimated along with the transfer function coefficients but this is not
exploited here).
The estimated model parameters along with their standard deviations can be displayed by using
the following command:

present(Mtfsrivc);

1. Type the following commands:

IODelay=0;
Mtfsrivc=tfsrivc(data,2,0,’TdMax’,IODelay);
present(Mtfsrivc);

The upper time-delay boundary ’TdMax’ is set to 0 so that no time-delay is estimated.

2. Compare the TFSRIVC estimates with the true true system parameters.

present(S);

3. Run several times your program to get a feel for the overall performance of the TFSRIVC
model estimate.

4. Set the standard deviation of the additive measurement noise to 0.4 instead of 0.2 and
investigate the robustness of the TFSRIVC estimation methods against the measurement
noise. Run several times your program to get a feel for the overall performance of the
TFSRIVC estimation routine.
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