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Abstract— The study of lateral dynamics is of great im-

portance for the vehicle behavior analysis during turning

maneuvers, and it is fundamental to stability or path control

systems used in autonomous vehicles. This case study focuses

on the identification of a continuous-time linear model of a 6x6

military vehicle for different speeds. Field data of the vehicle

during a North Atlantic Treaty Organization (NATO) double

lane change maneuvers were used, and transfer functions

between the yaw rate (output) and the steering wheel angle

(input) were identified using the CONTSID toolbox. Based on

the estimated models, the results show a good agreement with

the experimental measurements and it is possible to analyze

the system’s poles and zeros behavior, as well as the frequency

response of the system with speed variation. As conclusions, an

increase in the vehicle’s speed implies a higher magnitude gain,

and the poles of the system present the tendency to move from

an underdamped to an overdamped system.

I. INTRODUCTION

Models and simulations are essential for vehicles’ devel-
opment and improvement since they allow, for instance, per-
formance prediction, parameter adjustments, and advances in
integrated control systems. There are several approaches in
the literature to model a vehicle dynamics behavior, chosen
usually based on its complexity; the specific motion eval-
uated; and the available information, such as experimental
measurements, which may lead to a data-based approach
for model estimation. Regarding the latter, the estimation
of parameters, states, and models using system identification
methods is a relevant alternative, especially due to under-
modeling and parameter uncertainties that may affect the
mathematical formulation [1].

Lateral dynamics analysis is of great importance to pre-
dict the vehicle’s behavior during steering maneuvers. This
knowledge allows the project of more efficient and precise
stability and path control systems, which are essential not
only for vehicle safety improvement but also for autonomous
vehicle development. In the military field, the application
of a stabilization control system assists the driver in the
maneuvering of the vehicle, especially Armored Personnel
Carrier (APC) vehicles due to their size and weight [2], [3].
In this context, one of the main applications of dynamic
models is in the synthesis of the vehicle’s control systems.
A review of the most used models and control strategies
for path control systems is presented in [4], being the well-
known two degrees-of-freedom (DOF) bicycle model (single-
track model) the most commonly applied [5].

In [6] a modified Denavit-Hartenberg convention is used
with Newton-Euler equations to derive a multi-body dy-
namic model of the vehicle. The model was validated using
SCANeR-studio™ simulator and presented good results for a

large marge of driving conditions. Even though multibodies
models are more representative of a system’s dynamics
when compared to classical closed-form models, it is more
complex, since the number of DOF is usually higher and
a better knowledge of the system topology to describe the
connections between each body is needed.

One of the strategies to obtain a model is through system
identification and for this purpose several toolboxes were
developed, including MATLAB® System Identification and
the CONtinuous-Time System IDentification (CONTSID)
toolboxes. According to [7], CONTSID provides MATLAB®

functions to estimate linear system mathematical models,
such as transfer functions and state-space models, using
input/output measurements of the dynamical system through
parameters’ identification. This toolbox has already been
used in [8] for estimation of a second-order system to
simulate drivability relevant vibrations in passenger cars.

Regarding the identification of models for a dynamic sys-
tem, [1] applies three subspace identification methods for ve-
hicle lateral dynamics modeling using the input/output data:
Multivariable Output Error State Space (MOESP), Numerical
Algorithms for Subspace State Space System Identification
(N4SID), and Canonical Variate Analysis (CVA). The model
structure is based on a single-track model with two DOF;
and a pulse input, a step input, and a double lane change
test maneuvers at a constant vehicle speed were carried out
for data acquisition. Results show that the proposed data-
driven modeling approaches present a good agreement with
the measured data. However, experiments were conducted
for a single speed value.

An estimator based on an Extended Kalman-Filter (EKF)
and the bicycle model is used in [9] to identify the vehicle’s
states and the cornering stiffness of the tires. A similar
methodology is applied in [10] to identify the model’s states
and changes in the vehicle mass. Although the simulation
results show that the proposed approach outperforms the
standard implementation with constant mass, the EFK ob-
server may have poor performance under low excitation
conditions. In order to estimate tire side-slip angle and
lateral forces, [11] combines an adaptive-sliding-mode ob-
server with an adaptive compensation algorithm, using the
bicycle model and a four-wheel three DOF vehicle model.
Nevertheless, uncertainties in vehicle parameters and noise
in the measurements could affect the estimator performance.

A three DOF four-wheel vehicle model is used in [12] to
estimate the longitudinal force, lateral speed, and yaw rate,
combining a longitudinal force observer and a tracking filter
algorithm, demanding extensive mathematical development.

2021 29th Mediterranean Conference on Control and Automation (MED)
June 22-25, 2021. Bari, Puglia, Italy

978-1-6654-2258-1/21/$31.00 ©2021 IEEE 910

20
21

 2
9t

h 
M

ed
ite

rr
an

ea
n 

C
on

fe
re

nc
e 

on
 C

on
tro

l a
nd

 A
ut

om
at

io
n 

(M
ED

) |
 9

78
-1

-6
65

4-
22

58
-1

/2
0/

$3
1.

00
 ©

20
21

 IE
EE

 | 
D

O
I: 

10
.1

10
9/

M
ED

51
44

0.
20

21
.9

48
03

00

Authorized licensed use limited to: Hugues Garnier. Downloaded on November 21,2024 at 08:08:59 UTC from IEEE Xplore.  Restrictions apply. 



Ref. [13] applies an Artificial Neural Network (ANN) to
estimate the side-slip angle during maneuvers at different
speeds using CarSim™. However, it is focused on the esti-
mation of a single parameter model, and a comparison with
field measurements is not presented. As can be noted, most
of the papers are based on modeling a common four-wheel
single-steering axle vehicle, which poses a lack of research
on vehicles with more than two and multiple-steering axles.

In this context, this work aims to present a case study
regarding the identification of a continuous-time linear model
of a 6x6 APC military vehicle using the CONTSID toolbox
and data of the test vehicle during a double lane change
maneuver. The model structure selection and parameters
estimation were based on system identification methods
implemented in this toolbox and the single-track model
formulation for a three-axle vehicle. The estimated transfer
function between the yaw rate (output) and the wheel steering
angle (input) for different speeds is evaluated, and the
influence of the velocity on the frequency response and the
poles and zeros behavior is analyzed. These models give
an insight into the lateral dynamics response and configure
the first step to further research regarding stability and path
control. Therefore, the main contributions of this paper are
the application of data-driven identification techniques to
estimate continuous-time models for a 6x6 military vehicle
lateral dynamics, and an analysis of the influence of speed
on the estimated models response.

The paper is structured as follows. Section II presents
the proposed case study, while Section III addresses the
mathematical formulation of a single-track model of the
vehicle as an approach for a model structure definition. The
methodology for the continuous-time linear model identifi-
cation is developed in Section IV. The resultant models and
the effects of the speed variation are discussed in Section V.
Conclusive remarks are drawn in Section VI.

II. CASE STUDY

The identification problem case study consists of using
experimental data acquired during double lane change ma-
neuvers of a 6x6 military vehicle at different speeds to
select a model structure; estimate the parameters of the
transfer functions between the yaw rate (output) and the
wheel steering angle (input) for different velocities, and;
compare the resultant model to the field data for acceptance.

A. Experiment description

The experimental measurements used are from a three-
axle APC military vehicle with the front and middle axles
steerable. The data were acquired during double lane change
maneuvers performed according to the North Atlantic Treaty
Organization (NATO) Allied Vehicle Testing Publications
(AVTP) 03-160W standard [14]. This test is usually consid-
ered to assess the lateral stability of a vehicle, and it is also
one of the most used for state and parameters identification
related to lateral dynamics. The maneuver consists of the
transition from a right lane to a left lane, and then return
to the initial right lane afterward. A test track was set up

according to the layout provided in [14], based on the vehicle
dimensions given in Table I. The vehicle selected for data
acquisition is presented in Fig. 1.

TABLE I
VEHICLE’S INFORMATION

Parameter Symbol Value
Mass m 15,770 kg

Length L 7.10 m
Height H 2.60 m
Width wv 3.30 m

Distance from CG to front axle a1 1.77 m
Distance from CG to middle axle a2 0.07 m

Distance from CG to rear axle a3 1.93 m

Fig. 1. Vehicle used for experimental measurements

Measurement data were collected using the following
equipment: a data logger VBOX 3i from Racelogic®; an
inertial measurement unit (IMU) model RLVBIMU04 from
Racelogic® fixed on the floor of the troop compartment for
pitch, roll, and yaw rates, as well as x, y, z acceleration;
a global positioning system (GPS) antenna positioned on
the external top of the vehicle for velocity and traveled
distance acquisition; and a draw-wire displacement sensor
from MICRO-EPSILON® mounted in the auxiliary steering
cylinder of the front left wheel to obtain the wheel steering
angle using an experimental linear relation between the
transducer’s displacement and the wheel steering angle.

An unladen vehicle performed double lane change ma-
neuvers at 10 km/h, 20 km/h, 30 km/h, 40 km/h, 50 km/h,
60 km/h, 70 km/h and 80 km/h. Data were recorded at 100
Hz and saved for subsequent analysis. An example of the
measurements acquired is presented in Fig. 2. The yaw rate
and the wheel steering angle are the variables of interest
in this study given that the measured output values of the
yaw rate are more reliable in comparison to the lateral
acceleration, while the wheel steering angle was selected as
the input of the transfer function model.

Data preprocessing on the measured data is crucial to com-
pensate disturbances caused mainly by the vibration resultant
of the running engine and sensors’ offset. Therefore, a 12-
order Butterworth filter with a normalized cutoff frequency
of 2.5 Hz-3.5 Hz was applied to the yaw rate and steering
wheel angle based on those signals’ spectrograms. This filter
removed high-frequency content from other sources, such as
noise and vehicle vibration. Also, zero-phase digital filtering
was applied to remove the phase delay of the filtered signal.
The sensor offset had to be compensated since it was signifi-
cant in the measurements of the wheel steering angle and the
lateral acceleration, as can be seen in Fig. 2. It is important
to highlight that the driver was responsible to maintain the
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vehicle’s speed during each maneuver. Consequently, besides
the data filtering, trends and outliers were removed to select
useful portions of the original data.
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Fig. 2. Raw data of the vehicle during a double lane change maneuver
performed at, approximately, 10 km/h

Another aspect that can be evaluated is the frequency
domain spectrum of the wheel steering angle and the yaw
rate since it allows the evaluation of the measurements over
a range of frequencies. According to Fig. 3 and Fig. 4, it is
possible to conclude that the signals are concentrated in low
frequencies, which is significant for the estimated models
application.
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Fig. 3. Wheel steering angle spectrum in the frequency domain
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Fig. 4. Yaw rate spectrum in the frequency domain

III. VEHICLE MODEL

The mathematical formulation based on a physical model
is one of the main approaches to represent a dynamic system.
In order to define a linear structure, the single-track model
was considered to represent the lateral dynamics, writing the
linearized Newton-Euler equation of motion on the xy plane
of the forces acting on each axle, assuming that both wheels
per axle are expressed by a single equivalent wheel. Fig. 5
shows a schematic representation of the model, where v is

the velocity vector of the vehicle, r is the yaw rate, while �f
and �m are the front and middle steering angles of the front
ad middle wheel.

Fig. 5. Single-track model of a three-axle vehicle

For small steer angles and under the linear handling regime
of the tires, the lateral forces Fy acting on the tires can be
considered as a linear function of the slip angle ↵, such
that Fy = �C↵↵, where C↵ is the tire’s cornering stiffness
[15]. Based on the linearized single-track model for a two-
axle vehicle presented in [15], assuming a constant forward
speed and no roll motion, an analogous two DOF model for
a three-axle vehicle was obtained as a function of the lateral
velocity, vy , the yaw rate r, the vehicle mass m, the tires’
cornering stiffness, the axles’ distances to the vehicle’s CG,
the moment of inertia Iz and the equivalent steer angle �f

v̇y
ṙ

�
= A


vy
r

�
+B�f , (1)

where:

A =


A11 A12

A21 A22

�
=

2

64
�

C↵f
+C↵m+C↵r

mvx

�a1C↵f
�a2C↵m+a3C↵r

mvx
� vx

�
a1C↵f

+a2C↵m�a3C↵r

Izvx
�

a2
1C↵f

+a2
2C↵m+a2

3C↵r

Izvx

3

75,

(2)

B =


B1

B2

�
=

2

664

C↵f

m +
⇣

a2+a3
a1+a3

⌘
C↵m
m

a1C↵f

Iz
+
⇣

a2+a3
a1+a3

⌘
a2C↵m

Iz

3

775 , (3)

considering a linear relation between the middle and front
wheel steer angles obtained using the Ackermann geometry:

�m = tan�1

✓
a3 + a2
a3 + a1

tan (�f )

◆
⇡ a2 + a3

a1 + a3
�f . (4)

Therefore, from the Laplace domain equations of motion
expressed by (1), the structure of the transfer function Gr

�(s)
for the yaw rate, considering the steering angle of the front
wheel as the input, presents two poles and one zero, which
vary with the elements of the matrix A and the vector B,
given by:

Gr
�(s) =

r(s)

�f (s)

=
(A21B1B2)s� (A11A21B1B2)

s2 � (A11 +A22)s+ (A22A11 �A12A21)
.

(5)

Assuming that there is a linear relationship between the
front wheel steer angle and the wheel steering angle, such
as a steering ratio, this structure is still valid for a transfer
function considering the wheel steering angle as the input.
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IV. CONTINUOUS-TIME SYSTEM IDENTIFICATION
APPLIED TO LATERAL DYNAMICS MODELING

In this section, we give the details of the identification
procedure adopted to estimate linear models of the lateral
dynamics for different speeds using experimental data of the
vehicle obtained according to Sec. II.

A. Algorithmic Procedure

In order to estimate a continuous-time transfer function
model between the sampled data of the yaw rate and the
wheel steering angle, a system identification procedure using
the CONTSID toolbox was applied. The process consisted
of the following steps based on the recommended sequence
workflow for system identification presented in [7]:

1) acquisition of the time-domain input/output data from
the double lane change maneuvers;

2) selection and preprocessing of useful portions of the
data for each speed. This step includes the spectrogram
analysis of the input/output signals, noise reduction
with filtering and offset removal;

3) definition and selection of a model structure (a set of
candidate system descriptions) ;

4) estimation of the transfer function parameters of the
model structure using post-processing input/output
data, the selected model structure, and the CONTSID
toolbox; and

5) evaluation of the estimated model fit to the experimen-
tal data based on the multiple correlation coefficient
R2 between the estimated model response ŷ and the
measurements y(t). As a guideline, R2 > 0.9 is
considered satisfactory for many applications [16].

B. Identification problem formulation

A description of steps 1 and 2 of the previous algorithm
procedure was already presented in Sec. II-A. Regarding the
definition of the model structure (step 3), two approaches
were used. The first was the linear transfer function between
the yaw rate and steering wheel angle obtained through
the single-track model, explained in Sec. III. The second
was a model order selection function based on the Refined
Instrumental Variable for Continuous-time (RIVC) method,
available in CONTSID, to automatically search over a whole
range of different model orders, providing a set of best
structures according to the Young Information Criterion
(YIC) and the associated coefficient of determination R2

T
criteria. The selection of the final model structure was based
on the common set of values for different speeds.

As for the approach using the CONTSID toolbox, it was
considered the range of one to two numerator parameters and
two to five denominator parameters as inputs for the model
selection function. Then, the method returned the selected
model structures for each set of input/output measured data
for each speed. The common structures for all the speeds
evaluated were two poles and a zero, in agreement with
the first approach in Sec. III; and three poles and a zero.
Consequently, both structures candidates were analyzed to
verify the influence of the vehicle’s speed on the yaw rate

frequency response and the poles and zeros behavior of the
system. Given the post-processed input/output measurements
and the selected structure of the transfer function (number
of poles and zeros), the CONTSID toolbox was applied
to estimate the parameters of continuous-time output-error
models using the Simple Refined Instrumental Variable (IV)
for Continuous-time models (SRIVC) estimation method.

V. RESULTS AND DISCUSSION

Following the methodology presented in Sec. IV and using
the double lane change test data for different velocities,
transfer functions considering the yaw rate as the output and
the wheel steering angle as the input were estimated. Thus,
the influence of the speed on the identified models can be
verified, such as its frequency response and the poles and
zeros behavior.

The estimated poles and zeros of the transfer functions and
the respective R2 coefficients are presented in Table II, while
Fig. 6 exhibits the comparison between raw data, filtered
measurements, and the model’s response for each velocity.
It can be noticed that the resultant models satisfactorily
match the measured data, with R2 > 0.94. Since both wheel
steering angle and yaw rate measurements are concentrated
in low frequencies, the estimated models are valid for this
range.

TABLE II
ESTIMATED MODEL’S PARAMETERS FOR DIFFERENT VELOCITIES

Velocity Poles Zeros R
2

10 km/h �2.3265 + 7.4728i
�2.3265� 7.4728i

11.3127 0.9917

20 km/h �5.1831 + 6.8630i
�5.1831� 6.8630i

11.1322 0.9884

30 km/h �3.1019
�0.3773

�0.3218 0.9823

40 km/h �9.3074 + 3.2495i
�9.3074� 3.2495i

11.0330 0.9910

50 km/h �6.8074 + 3.7529i
�6.8074� 3.7529i

15.7413 0.9915

60 km/h �2.9798
�0.0799

0.0877 0.9426

70 km/h �4.2729 + 3.6978i
�4.2729� 3.6978i

24.5142 0.9825

80 km/h �11.2494
�3.8269

16.9710 0.9820

Besides that, the frequency response analysis may provide
information regarding the vehicle’s performance during a
maneuver. The influence of the speed on the frequency re-
sponse of the second-order model structure can be examined
in the Bode plot in Fig. 7. It is verified that an increase
in the speed implies a positive increase in the steady-state
magnitude and the phase lag after 1 Hz, in agreement with
the conclusions of the theoretical studies presented in [17]
and [18]. One important characteristic to be evaluated is
the yaw rate response gain related to its static value since
minimum increments are desirable for better handling and
stability [19]. From the magnitude plot in Fig. 7, the highest
peaks correspond to the lowest velocities.
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Fig. 6. Raw, filtered and estimated model’s yaw rate response

According to the analysis presented in [18], it is possible
to observe that the vehicle changes its handling characteristic
from understeer, at lower speeds, to a neutral steer behavior
at higher speeds, which may affect the vehicle’s lateral
stability. An understeer tendency implies that the steering
angles are higher with increasing speed to keep the same
curve radius, while the opposite is true for the oversteer
conditions. For a neutral steer vehicle, the same steering
angle is maintained to keep the same turning circle. It
is important to highlight that an understeer behavior is
considered stable, while oversteer is unstable since it is more
difficult for the driver to regain control over the vehicle.

From Fig. 7, it is also possible to notice that at low
frequencies (lower than 0.1 Hz), the phase graphic has an
initial phase lag of approximately 180� (input-output out of
phase), which diverges from the value of 0� predicted in
the analysis done in [18]. This divergence was caused by
the phase lag on the measurement data of steering angle
and yaw rate. At intermediate frequencies, between 0.1 Hz
and 1 Hz, there is a growing negative phase lag, while for
higher frequencies, the phase for most velocity values tends
to converge to �80�. The exceptions are the models for 30
km/h and 60 km/h, which were the only ones with a negative
zero, whose phases tend to 100�.

The influence of the speed variation on the poles and zeros
behavior can be visualized in Fig. 8. The poles are located
at the left half of the s-plane (negative real components),
which is an indication of the system’s stability. Additionally,
they tend to move from an underdamped system (imaginary
poles) at lower speeds to an overdamped system (real poles)
at higher speeds. According to the obtained models, most
of the zeros are located in the right half of the s-plane, i.e.,
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Fig. 7. Bode plots of the magnitude and phase change of the yaw rate
with respect to the speed variation of the vehicle

non-minimum phase zeros, which implies that the system
has non-minimum phase characteristics. According to [20],
this can cause the response to initially start in the opposite
direction.

Fig. 8. Poles and zeros behavior with vehicle’s speed variation

The same procedure applied to the third-order model
structure resulted in poles canceling zeros for most velocities,
which could imply that some of the parameters added are not
relevant, i.e., with the increase in the complexity of the model
structure, the identification algorithm cancels the influence of
additional poles with zeros to obtain the best fitting response.
According to [7], higher-order models are not always more
accurate and they also contribute to increase the uncertainties
of the parameters. It is highlighted, though, that significant
variations in the estimated CONTSID models were verified
with modifications on the data preprocessing process, partic-
ularly regarding the offset removal and window selection.

Another issue is that, as already mentioned, the input-
output data is concentrated at low frequencies. Therefore, the
identified models are considered representations of the sys-
tem in that range. In order to obtain a model that completely
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describes the system, more information is required. For
instance, [13] applied a swept sine type signal in simulations
to generate enough data of a system to train an ANN. For
the case study in focus, the data are acquired during double
lane change maneuvers performed following NATO AVTP
03-160W standard, and due to the vehicle’s dimensions and
safety measures, it is not possible to generate input-output
signals of higher frequencies, bearing in mind that the input
is the steering wheel angle and the output is the yaw rate.

VI. CONCLUSIONS

This work presented a case study regarding a 6x6 military
vehicle using the CONTSID toolbox for the identification
of a continuous-time linear model of the lateral dynamics
using measurements of the vehicle during NATO double
lane change maneuvers performed at different speeds. This
approach relies on the input-output measured data and it does
not require knowledge of the vehicle’s parameters, which
could be unknown and difficult to measure. The transfer
function parameters between the wheel steering angle (input)
and the yaw rate (output) were estimated through the Simple
Refined Instrumental Variable for Continuous-time models
estimation method implemented in CONTSID.

According to the results, the estimated models presented
a good agreement with the experimental data. Given the
frequency response of the identified models, it was concluded
that an increase in the vehicle’s speed implies a higher mag-
nitude gain, and the poles of the system present the tendency
to move from an underdamped system (imaginary poles) at
lower speeds to an overdamped system (real poles) at higher
speeds. Based on the input/output signals, it is possible to
conclude that they are concentrated at low frequencies, where
the obtained models would be valid. Further research will
focus on the following aspects:

• closed-loop system identification to improve the spec-
trums of the input-output signals and the estimated
models, using experiment design such as in [21];

• identifiability of physical parameters in the frequency
domain, as performed in [22];

• adaptive identifiability for friction properties and corner-
ing stiffness estimation, similar to the study developed
in [23]; and

• model predictive control (MPC) and adaptive identifia-
bility for path-following purpose, which are relevant for
complex environments, as can be seen in [24].
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