
H. Garnier1

Hugues GARNIER

hugues.garnier@univ-lorraine.fr

Identification of continuous-time linear models
------

Practical aspects and the CONTSID toolbox



H. Garnier2

System identification – Brief recap
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• System identification is an iterative process, where you identify models with 
different structures from sampled data and compare model performance

• Ultimately, choose the simplest model that best describes the dynamics of 
your system

• A priori physical knowledge about the system is often a key for success
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Linear System Identification – A introduction from Brian

www.youtube.com/watch?v=qC_C04SEV1E

16 mn
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Data-driven system identification 
An iterative procedure 

Data examination
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Experiment design for data collection 

• To obtain a good model of your system, you must have measured data that 

reflects the dynamic behavior of the system

• The accuracy of the model depends on the quality of the measurement data, 

which in turn depends on the experiment design 
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Preliminary test: step response experiment
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Preliminary test: square wave response experiment
Apply, when ever possible, periodic square wave input  

Give insights about non-linearity effects in the system
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Tests for verifying linearity
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Tests for detecting dry friction 

A simple linear model will not be able to capture the friction effects from these data
• Use a nonlinear model to better capture the friction effects
• Use amplitude of the steps >0.2 to cancel out the friction effects
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• Needs to be sufficiently “rich.” 
– Input signal is needed to excite the system
– The experiment should be carried out under conditions that are similar to 

those under which the model is going to be used

• Amplitude
– Trade-off is needed

• Large amplitude gives good signal-to-noise ratio, low parameter estimate variance
• But most systems enter into nonlinear regimes for large input amplitude

• Number of data points
– The larger, the better (…if data is informative)

Choice of inputs for informative data  
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Common choices of input for linear system identification

Step input/square wave PRBS 

Square chirp Sine chirp

Multisine are also common
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Data-driven system identification 
An iterative procedure 

Data examination
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Data collection

Model

Algorithm

Ts Ts

System
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Data-driven system identification 
An iterative procedure 

Data examination
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Examination of the collected data

ALWAYS plot FIRST the input/output data ! 

Examine carefully the measured data and identify possible problems

Ø Offset and drift (low-frequency disturbances)

Ø Occasional bursts and outliers

Ø High-frequency noise/disturbance

Select good/relevant segments of data for model estimation and validation
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Post processing of the collected data

• Input and output should be scaled to have approximately the same 
magnitude to avoid the numerical problems
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Examination of the collected data
What do you observed?

Transient
response

PRBS 
response

Operating
Point for y

Operating
Point for u
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Data-driven system identification 
An iterative procedure 

Data examination
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Family of linear model structures

§ A model structure is a mathematical relationship between input and 
output variables that contains unknown parameters

§ Common examples of linear model structures are:

Ø Input/output polynomial models

Ø Low-order process models plus delay 

Ø Transfer function models plus delay

Ø State-space models

§ Most of these model structures can be expressed in continuous-time 
(CT) and in discrete-time (DT)
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Discrete-time (DT) versus continuous-time (CT) model ?

ü For several decades, the general mainstream identification approach has 
been to identify DT models from sampled data

ü To obtain satisfying results, DT model identification

§ Often requires  the active participation of an experienced practitioner 

ü Direct CT model identification includes many advantages and is 
therefore recommended:
§ well adapted to the current sampling situations: fast or irregular

§ requires less participation from the user (inherent pre-filtering)

§ Easier to interpret in a physical sense
§ makes the application of the SYSID procedure much easier
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Models for measurement noise

t0

measurement noise
disturbance

Measurement noise modelled as a stochastic discrete-time signal

v 𝑘 = 𝐻 𝑞 𝑒 𝑘 = ! "!"

# "!"
𝑒 𝑘 e(𝑘) is a white Gaussian noise
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Data-driven system identification 
An iterative procedure 

Data examination
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Optimization methods for parameter model estimation

§ Common optimization algorithms for estimating the parameters of the 
models are:

Ø Least-squares (LS) method

Ø Instrumental variable (IV) method

Ø Prediction error method (PEM)

Ø Subspace method
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Least squares (LS) method
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Instrumental variable (IV) methods 

ü Amongst the different IV versions, one is particularly recommended:
§ SRIVC: Simple Refined Instrumental Variable algorithm for Continuous models

• robust to noise assumptions and algorithmic aspects 
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Prediction error methods (PEM)

ü The parameters are often estimated by iterative optimization methods like the 
gradient descent method
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§ Use linear algebra to estimate state-space models

Ø Well adapted to multivariable-input multivariable-output (MIMO) 

systems

Subspace methods

�̇� 𝑡 = 𝐴𝑥 𝑡 + 𝐵𝑢 𝑡
y 𝑡 = 𝐶𝑥 𝑡 + 𝐷𝑢 𝑡
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Main estimation routines 
in the SID and CONTSID toolboxes

procsrivc

tfsrivc (/tfrivc/tfcoe)

CONTSID toolbox

lssvf (CARX)

srivc (COE)
rivc (CBJ)

coe (COE)

sidgpmf

Ø The majority of these optimization algorithms are iterative 

Matlab SID toolbox

ssivgpmf
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Data-driven system identification 
An iterative procedure 

Data examination
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Recommended workflow of model validation

1. Compare simulated model output with estimation data
Ø use a model fit criterion: e.g. the FIT value or the coefficient of determination RT

2

2. Compare simulated model output with validation data

3. Interpret in a physical sense the main features of the identified model
- Steady-state gain, time-constants, time-delay, damping coefficient, natural frequencies

4. When ever possible, perform statistical tests on prediction errors
Ø Plot the autocorrelation of the residuals and the cross-correlation between the input 

and the residuals

This statistical test is often difficult to pass for real-life data

Ø Non-linear effects, parameter varying effects, non stationary noise effects, …

30
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Estimation data versus validation data
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Common model accuracy measures

Let 1𝑦! be the model prediction. Calculate the residuals/prediction errors as
𝜀! = 𝑦! − 1𝑦!

Common model accuracy measures are:

– the FIT percentage

   FIT = 100× 1 − "##$"#
"##%"#

  (expressed in %)

Ø indicates the agreement between the model and measured output

• 100% means a perfect fit, and 0 indicates a poor fit 

– the coefficient of determination

	 𝑅&' = 1 − ($%

(&%

Ø indicates the agreement between the model and measured output

• the closer 𝑅'( to 1, the better the fit 



H. Garnier33

Comparison of model response to measured response
with the estimation data 

• Typically, you evaluate first the quality of models by comparing their model 
responses to the measured output with the estimation data 

Ø model2 above is better than model1 because model2 better fits the data (83% vs. 65%)

33
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Comparison of model response to measured response
with the estimation data: Warning message

• Do not be impressed by a good fit to data on a simulation test with the 
estimation data

• The real test is to see how well the model can reproduce the validation 
data: cross-validation data test

34
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Comparison of model response to measured response
with the validation data 
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Choice of the model order
 Example: LS polynomial model fit

• Model fit using estimation data of 100 noisy points
• Plots below show simulation results on validation data of 100 points 

36
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RMS error versus polynomial degree 
for both estimation and validation data

• Too few parameters: model fails to capture the function
• Too many parameters, the model captures the noise
• If validation RMS errors are larger than estimation RMS errors, model is over-fit 
• Methods for avoiding overfit:

• Keep the model simple
• Use regularization

37

Interpreting results:
• With a 6-th degree polynomial, the 

relative RMS test error for both 
estimation and validation data is 
around 0.3. It is a good sign, in terms 
of generalization ability, that the 
estimation and validation errors are 
similar

• RMS error plot suggest polynomial 
degree 4, 5, or 6 as reasonable 
choices 

Est
Val  
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Traditional criteria for model order selection

If fresh validation data is not available (=no cross-validation) 

• A loss function J(np,ZN) is formulated from two functions:

– one term measuring the model fit based on the loss function

– one term penalizing the model complexity

–  b(np,ZN) is a function which should increase with the model order 
but decrease to zero when N⟶ ∞

J(np ,Z
N ) = logV(θ̂np ,Z

N )+ β(np ,Z
N )
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Traditional criteria for model order selection

• Usual approach: pick the model that minimizes 
– AIC (Akaike’s Information Criterion)

– FPE (Final Prediction Error)

– YIC (Young’s Information Criterion)

FPE(np ,Z
N ) =

1+
np
N

1−
np
N

V(θ̂np ,Z
N )

AIC(np ,Z
N ) = logV(θ̂np ,Z

N )+
2np
N

YIC = log
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Choosing among different model orders

• One approach is to fit multiple models to the same data
Which is the best model among these ?

• Assuming the goal is to make good predictions on the validation data
Ø Select the model order that has the best YIC, AIC, FPE with the highest 

associated FIT/ 𝑅!" on the validation data

Ø If several model candidates achieve similar performance, you should choose 
the simplest (lowest-order) one among these candidates

40

np  m  n    nk     RT2      YIC     Niter   FPE     AIC  
___________________________________________

5  2     3     0      0.83     -8.33      10      2.35      0.85
6  2     4     0      0.92     -8.19       5       1.13      0.12 
7  1     5     0      0.53     -7.51      10      6.90      1.93
4     1       3     0      0.51     -3.72      10      8.40      2.12
5     1       4     0      0.03     -0.89      10     13.9       2.63
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Choice of the model order
Take-home message

• Choosing the model order is difficult 

• Start with low-order candidate models, and so on. You can compare higher 
order models against these

• Compare candidate models using validation data 

• Increasing the model order will always increase the FIT/ 𝑅!"  on the estimation 
data, but the important question is whether or not it substantially increases the 
FIT/ 𝑅!"  on the validation data sets

• Increasing the model order can easily lead to over-fit. To avoid the over-fit:
• keep the model simple (low-order)
• use information criteria
• use regularization 

41
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Sotfware available

Most of the theory covered in the course for continuous-time model 
identification is implemented in:

• the CONtinuous-Time System IDentification (CONTSID) toolbox for 
Matlab

• A lot can be learned from the demos available
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ü Supports direct CT model identification approaches
– Basic linear CT models 

• Transfer function and state-space models
• regularly and irregularly sampled data
• Time-domain or frequency domain data

– More advanced black-box models
• On-line, errors-in-variables and closed-loop situations
• Nonlinear systems: block-structured, LPV or LTV models 

 
• May be seen as an add-on to the Matlab System Identification toolbox

– Uses the same syntax, data and model objects 
 M=procsrivc(data,’P1’)
 M=tfsrivc(data,np,nz)

• P-coded version freely available from: 
www.cran.univ-lorraine.fr/contsid

CONtinuous-Time System Identification
Key features

43

http://www.cran.univ-lorraine.fr/contsid
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ü Core of the routines mainly based on refined optimal IV: SRIVC
– CONTSID includes also a few PEM and subspace-based methods

• SRIVC-based parameter estimation schemes for more advanced 
identification
§ Polynomial models with known delay : SRIVC
§ Simple process models with known/unknow delay: PROCSRIVC

§ Transfer function + known/unknow delay models: TFSRIVC
§ Transfer function + delay + noise models: TFRIVC
§ Time Varying Parameter models: recursive RSRIVC

§ Closed-loop identification: CLSRIVC
§ LPV models: LPVSRIVC

§ Hammerstein models: HSRIVC, …

• Includes a flexible GUI and many demos to illustrate its use and the recent 
developments

Main features of the latest version 7.5

44
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CONTSID graphical user interface

§ Allows the user to easily apply the iterative process of system identification 
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CONTSID toolbox – Demonstration programs

>>contsid_demo 
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CONTSID toolbox – Demonstration programs

>>contsid_demo 
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CONTSID toolbox – Demonstration programs

>>contsid_demo 
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CONTSID toolbox – Demonstration programs

>>contsid_demo 
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The simulated Rao-Garnier benchmark
See contsid_tutorial1.m

•  4th order simulated system

Go( p) =
K(1−Tp)
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ü 1 unstable zero
ü 2 pseudo-oscillatory modes

K =1
ωn,1 = 2 rad / s ; ωn,2 = 20 rad / s
ζ1 = 0.1; ζ2 = 0.25

p=d/dt
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The simulated Rao-Garnier benchmark

• The step response

51
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The Rao-Garnier benchmark

• The Bode diagram
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Simulation setup

– u(tk): PRBS (respects the ZOH assumption)

– Ts=10 ms 
• fs ≈ 10 times the system bandwidth, an often given rule

– e(tk) : DT white noise, SNR=10 dB

x(t)u(tk)

Ts

e(tk)++

y(tk)

Go(p)hold
u(t)
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I/O data – Rao-Garnier benchmark
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Model order determination

Different model structures in the range [m n nk] = [1 3 0] to [2 5 0] have been 
computed for the given data set 

 5 best models sorted according to YIC

The second model with [m n nk]= [2 4 0] seems to be quite clear cut
It has the second most negative YIC=−8.19, with the highest R2

T = 0.92

 See tfsrivcstruc and selcstruc in the CONTSID toolbox

np  m  n    nk     RT2      YIC     Niter   FPE     AIC  
___________________________________________
5  2     3     0      0.83     -8.33      10      2.35      0.85
6  2     4     0      0.92     -8.19       5       1.13      0.12 
7  1     5     0      0.53     -7.51      10      6.90      1.93
4     1     3    0       0.51     -3.72      10      8.40      2.12
5     1     4    0       0.03     -0.89      10     13.9       2.63

G(s) =
bi

i=0

m

∑ si

ai
i=0

n

∑ si
e−nkTs s
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Estimated model parameters and their uncertainties
via TFSRIVC
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Comparison of model and measured output
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Statistical tests on residuals
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Data-driven linear model identification/learning  
Takehome message

• Several choices by the practitioners have to be made and often 
revised
Ø Many of these choices have to be taken with the intended model use 

in mind and thus have a subjective flavour
Ø The more a priori knowledge from physics you can exploit in the 

SYSID workflow, the better 
Ø Interpretability of the identified models in meaningful physical terms 

is essential

• Always keep in mind

Ø Good models cannot be obtained from bad data !

Ø All models are approximation of the real system !

Ø Good models are simple !


