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« System identification is an iterative process, where you identify models with
different structures from sampled data and compare model performance

« Ultimately, choose the simplest model that best describes the dynamics of

your system

A priori physical knowledge about the system is often a key for success

System identification — Brief recap
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Linear System Identification — A introduction from Brian

MATLAB

Tech Talks

4 » Pl o) 019/1813 - Introduction >

Linear System Identification | System Identification, Part 2 16 mn
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Data-driven system identification
An iterative procedure

Experiment design «

Y

Y

Data collection

Y

Data examination

Y

Y

» Model structure selection

Y

Parameter estimation

Y

Model validation

Y

No —= Model OK? >

Yes
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Experiment design for data collection

* To obtain a good model of your system, you must have measured data that

reflects the dynamic behavior of the system

* The accuracy of the model depends on the quality of the measurement data,

which in turn depends on the experiment design

Often good to use a two-stage approach

1. Preliminary experiments
— step/impulse response tests to get basic understanding of system dynamics
— linearity, stationary gains, time delays, time constants, sampling interval

2. Data collection for model estimation
— carefully designed experiment to enable good model fit
— operating point, input signal type, number of data points to collect, etc.

H. Garnier
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Preliminary test: step response experiment

Resonance frequency

Staticgain 1F-------F-----==

0

I
|
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I
I

Dead-time

Rise time
Useful for obtaining qualitative information about system

e indicates dead-times, static gain, time constants and resonances

6 H. Garnier
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Preliminary test: square wave response experiment
Apply, when ever possible, periodic square wave input

Drone altitude in cm

300 A T T T T T T
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100
0
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Vertical velocity in cm/s
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0
-100 I I I | I |
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Motor speed in %
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-100 | | | L | |
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Time (s)

Give insights about non-linearity effects in the system

H. Garnier
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Tests for veritying linearity

e a linear system has the same response independent of the operative
point

e test step response in different operating points

Staircase response
120 . : .

Temperature in °C
Heating power %
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Tests for detecting dry friction

T
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X 0.49
_o0 | | Y0.384584

X 5.518
Y -0.0585167

X 0.494
Y 0.1976

A simple linear model will not be able to capture the friction effects from these data

4 6 8 10 12 14 16 18
Time (seconds)

* Use a nonlinear model to better capture the friction effects

* Use amplitude of the steps >0.2 to cancel out the friction effects

9
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Choice of inputs for informative data

Needs to be sufficiently “rich.”

— Input signal is needed to excite the system
— The experiment should be carried out under conditions that are similar to

those under which the model is going to be used
Amplitude
— Trade-off is needed

e |arge amplitude gives good signal-to-noise ratio, low parameter estimate variance
e But most systems enter into nonlinear regimes for large input amplitude

Number of data points

— The larger, the better (...if data is informative)

10 H. Garnier
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Common choices of input for linear system identification

Step input/square wave PRBS
| [ |
Square chirp Sine chirp
— O M A
EERRRRRR I

Multisine are also common

11 H. Garnier
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Data-driven system identification
iterative procedure
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Data-driven system identification

An
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Examination of the collected data

ALWAYS plot FIRST the input/output data !

Examine carefully the measured data and identify possible problems

> Offset and drift (low-frequency disturbances)
> QOccasional bursts and outliers

> High-frequency noise/disturbance

Select good/relevant segments of data for model estimation and validation

15 H. Garnier
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Post processing of the collected data

Input and output should be scaled to have approximately the same
magnitude to avoid the numerical problems

e Look at the data:

e Proper signal levels, frequencies, disturbance. . .
e Remove

‘ e transients before reaching the correct operating point (for nonlinear

signal mean (if not a physical model)
drift and slow trends (detrend in MATLAB)

high frequency noise should have been removed by antialiasing filter. In

case apply a low-pass filter (keeping the breakpoints of the Bode plot)
e "Outliers" (manifestly erroneous measurements): check plot of residuals

y(t) — y(t|6)

16 H. Garnier
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Operating
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Examination of the collected data
What do you observed?

Temperature °C
Heating power (%) | |
1000 2000 3000 4000 5000 6000 7000
Time (s)
Transient PRBS
response response

17
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Data-driven system identification
An iterative procedure

Experiment design
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Data collection
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Family of linear model structures

= A model structure is a mathematical relationship between input and
output variables that contains unknown parameters

= Common examples of linear model structures are:

B C

= Most of these model structures can be expressed in continuous-time
(CT) and in discrete-time (DT)

19

» Input/output polynomial models Ay =zutse CT/DT
K
» Low-order process models plus delay G(s) = ﬁe{rds cT
. _ (b0+b18+b232+ ) —Tys
» Transfer function models plus delay a6 = Py CT/DT
» State-space models X = Ax+Bu
y=Cx+Du CT/DT

H. Garnier
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Discrete-time (DT) versus continuous-time (CT) model ?

For several decades, the general mainstream identification approach has
been to identify DT models from sampled data

To obtain satisfying results, DT model identification

= Often requires the active participation of an experienced practitioner

Direct CT model identification includes many advantages and is
therefore recommended:

= well adapted to the current sampling situations: fast or irregular
= requires less participation from the user (inherent pre-filtering)

= Easier to interpret in a physical sense

= makes the application of the SYSID procedure much easier

20 H. Garnier
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Models for measurement noise

So far: only deterministic models

V(k)l Mt utk) — input

u(k) y(k)
— 1 System —EH— v(k) = measurement noise

y(k) = output

e Measurement noise modelled as a stochastic discrete-time signal
e Stochastic models:

e means, covariances
e spectra (energy or power)

v(k) = H(q)e(k) = C(q_l) e(k) e(k) is a white Gaussian noise

q~1: delay operator

21 H. Garnier
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Data-driven system identification
iterative procedure

An

Y

Experiment design

Y

Data collection

\

4

Y

Data examination

\

y

No —=

Model structure selection

\

4

Parameter

estimation

\

4

Model validation

\

4

Model OK? >

f

Yes

-

22

H. Garnier



UNIVERSITE POLYTECH
DE LORRAINE Naney

Optimization methods for parameter model estimation

= Common optimization algorithms for estimating the parameters of the
models are:

» Least-squares (LS) method

> Instrumental variable (IV) method

> Prediction error method (PEM)

» Subspace method

23 H. Garnier
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System:

Least squares (LS) method

y(t) =" ()6 +v(t),

Y =®6 +v

t=1,..

. N

where v(t) is a disturbance and Ev = 0, Evv! = R.

Estimate:

24
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Instrumental variable (IV) methods

System:
y(t) =t ()0 +v(t), t=1,...,N

where v(t) is a disturbance with Fv = 0.

Estimate: Modify the least squares solution. We get:

6= [ﬁjzuwm}l [iz(tw)}

where z(t) is the vector of instruments.

v" Amongst the different IV versions, one is particularly recommended:

= SRIVC: Simple Refined Instrumental Variable algorithm for Continuous models
* robust to noise assumptions and algorithmic aspects

25 H. Garnier
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Prediction error methods (PEM)

Idea: Model the noise as well. General methodology applicable to a

broad range of models.

The following choices have to be made:

e Choice of model structure. Ex: ARMAX, OE.
e Choice of predictor g(t|t —1,8).

e Choice of criterion function. Ex: V(6) = & > (¢, 6).

Estimate:

A

6 = arg mein V(6)

v The parameters are often estimated by iterative optimization methods like the
gradient descent method

26
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Subspace methods

» Use linear algebra to estimate state-space models

» Well adapted to multivariable-input multivariable-output (MIMO)

systems
x(t) = Ax(t) + Bu(t)
y(t) = Cx(t) + Du(t)
u(?) () x(?) ¥
B >9—> j > C —»(B—»

27
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Main estimation routines

in the SID and CONTSID toolboxes

¥

Commands for Offline Estimation Matlab SID toolbox

9

CONTSID toolbox

Model Type Estimation Commands

Transfer function models tfest

tfsrive (/tfrive/tfcoe)

Process models (low-order transfer procest
functions expressed in time-constant
form)

procsrivc

Linear input-output polynomial models |armax (ARMAX and ARIMAX models)

arx (ARX and ARIX models) Issvf (CARX)

bj (BJ only) 9 rive (CBJ)
iv4 (ARX only .
ivx (ARX only) e (HOE
oe (OE only) coe (COE)
polyest (for all models)

State-space models n4sid sidgpmf
ssest : f
ssregest ssivapm

» The majority of these optimization algorithms are iterative

28
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Data-driven system identification
An iterative procedure

Experiment design
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Y

Data collection

Y

Data examination
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Y

» Model structure selection

Y

Parameter estimation

Y

Model validation «
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No —= Model OK? >

Yes
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Recommended workflow of model validation

1. Compare simulated model output with estimation data
» use a model fit criterion: e.g. the FIT value or the coefficient of determination R;?

2. Compare simulated model output with validation data

3. Interpret in a physical sense the main features of the identified model
- Steady-state gain, time-constants, time-delay, damping coefficient, natural frequencies

4. When ever possible, perform statistical tests on prediction errors
> Plot the autocorrelation of the residuals and the cross-correlation between the input
and the residuals

This statistical test is often difficult to pass for real-life data

» Non-linear effects, parameter varying effects, non stationary noise effects, ...

30 H. Garnier
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Estimation data versus validation data

Split your data:

Estimation data Validation data

data use fOI’ parameter estimation data not used for Computing éN

use them to evaluate the quality of

the fit
Y Y
compute Oy Cross-validation

31 H. Garnier
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Common model accuracy measures

Let $, be the model prediction. Calculate the residuals/prediction errors as
& = Yk — Yk

Common model accuracy measures are:

— the FIT percentage
FIT =100x (1 — ”yk—ﬂ_]k”) (expressed in %)
lyk=kll
> indicates the agreement between the model and measured output

* 100% means a perfect fit, and O indicates a poor fit

— the coefficient of determination

2
RZ=1-2

2
Ty
> indicates the agreement between the model and measured output
 the closer R% to 1, the better the fit

32 H. Garnier
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Comparison of model response to measured response
with the estimation data

e Typically, you evaluate first the quality of models by comparing their model
responses to the measured output with the estimation data

z; measured
model1; fit: 64.67% []
model2; fit: 83.07%

Zul 1 1 1 1 1 1
0.2 04 0.6 0.8 1 1.2 1.4
Time (sec)

> model2 above is better than model1 because model2 better fits the data (83% vs. 65%)

33 H. Garnier
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Comparison of model response to measured response
with the estimation data: Warning message

* Do not be impressed by a good fit to data on a simulation test with the
estimation data

z (y2)
—m: 84.43%

\.’ !

4 - 1 1 1 1 1 1 1 =
5 10 15 20 25 30 35 40
Time (seconds)

e The real test is to see how well the model can reproduce the validation
data: cross-validation data test

34 H. Garnier
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Comparison of model response to measured response
with the validation data

Apply input signal in validation data set to estimated model

Compare simulated output with output stored in validation data set.

Measured and simulated output

i ; £

It A

o} 5 10 15 20 25 30 35 40

Time [s]

35
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Choice of the model order
Example: LS polynomial model fit

f(@) =01+ 6z + -+ 0,2P7?

Model fit using estimation data of 100 noisy points

Plots below show simulation results on validation data of 100 points

20) degree 2 76 degree 6
\\/
X
20) degree 10 70 degree 15

i ‘/\ﬂ«ﬁ

36
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RMS error versus polynomial degree
for both estimation and validation data

1
—®— [t
—m— Val
5 0.8
@
2
o 0.6
oy
=
<
T 0.4
0.2
0 5 10 15 20

Degree

Interpreting results:

With a 6-th degree polynomial, the
relative RMS test error for both
estimation and validation data is
around 0.3. It is a good sign, in terms
of generalization ability, that the
estimation and validation errors are
similar

RMS error plot suggest polynomial
degree 4, 5, or 6 as reasonable
choices

Too few parameters: model fails to capture the function

Too many parameters, the model captures the noise

If validation RMS errors are larger than estimation RMS errors, model is over-fit

Methods for avoiding overfit:
« Keep the model simple
« Use regularization

37
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Traditional criteria for model order selection

If fresh validation data is not available (=no cross-validation)

* Aloss function J(n,,ZN) is formulated from two functions:

— one term measuring the model fit based on the loss function

— one term penalizing the model complexity

J(np,ZN) = logV/(6, ,ZN)+/3(np,ZN)
p

—  f(n,,ZN) is a function which should increase with the model order

but decrease to zero when N— ®

3838 H. Garnier
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Traditional criteria for model order selection

* Usual approach: pick the model that minimizes

— AIC (Akaike's Information Criterion)

2n
Ny _ : N p
AIC(np,Z )—logV(an,Z )+T

— FPE (Final Prediction Error)

n
1+ P

FPE(n_,zZN)-— N v zN)
P n n,
1__P
N

— YIC (Young's Information Criterion)

2 n, 0-2 D ..

YIC = log| Z£ |+ log ! E ePj
o? n “~ 42
y pj=1 7j

3RB9
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Choosing among different model orders

One approach is to fit multiple models to the same data
Which is the best model among these ?

Assuming the goal is to make good predictions on the validation data
» Select the model order that has the best YIC, AIC, FPE with the highest

associated FIT/ RZ on the validation data

np mn nk RT2

YIC Niter FPE AIC

|

5 2 3 0 08 -833 10 235 085
[ 6 2 4 0 092 -819 5 113 012
7 1 5 0 053 751 10 690 1.93
4 1 3 0 051 -372 10 840 212
5 1 4 0 003 -08 10 139 263

> It several model candidates achieve similar performance, you should choose
the simplest (lowest-order) one among these candidates

40
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Choice of the model order
Take-home message

« Choosing the model order is difficult

 Start with low-order candidate models, and so on. You can compare higher
order models against these

« Compare candidate models using validation data

* Increasing the model order will always increase the FIT/ R% on the estimation
data, but the important question is whether or not it substantially increases the
FIT/ RZ on the validation data sets

* Increasing the model order can easily lead to over-fit. To avoid the over-fit:
* keep the model simple (low-order)
* use information criteria

* use regularization

41 H. Garnier
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Sotfware available

Most of the theory covered in the course for continuous-time model
identification is implemented in:

« the CONtinuous-Time System IDentification (CONTSID) toolbox for

Matlab

A lot can be learned from the demos available

42 H. Garnier
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CONtinuous-Time System ldentification
Key features

v' Supports direct CT model identification approaches

— Basic linear CT models
e Transfer function and state-space models
* regularly and irregularly sampled data
* Time-domain or frequency domain data
— More advanced black-box models

* On-line, errors-in-variables and closed-loop situations
e Nonlinear systems: block-structured, LPV or LTV models

e May be seen as an add-on to the Matlab System Identification toolbox
— Uses the same syntax, data and model objects
M=procsrivc(data,’P1’)
M=tfsrivc(data,np,nz)

e P-coded version freely available from:
www.cran.univ-lorraine.fr/contsid

43
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Main features of the latest version 7.5

v' Core of the routines mainly based on refined optimal IV: SRIVC
— CONTSID includes also a few PEM and subspace-based methods

SRIVC-based parameter estimation schemes for more advanced
identification

Polynomial models with known delay : SRIVC

Simple process models with known/unknow delay: PROCSRIVC
Transfer function + known/unknow delay models: TFSRIVC

Includes a flexible GUI and many demos to illustrate its use and the recent

Transfer function + delay + noise models: TFRIVC
Time Varying Parameter models: recursive RSRIVC
Closed-loop identification: CLSRIVC

LPV models: LPVSRIVC

Hammerstein models: HSRIVC, ...

developments

44
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CONTSID graphical user interface

@ CONTSID Toolbox

More

A Welcome to the CONTSID Toolbox GUI CMNTSLD

TOOLBOX

Iterative model training procedure

Manage data Train model Validate model Deploy results
I:> Access data — Select model type 4 Model output = I:»
Export model
Analyze data Estimate model Cross-validation

1 1

Get started !

Want to train a new model ? Or already have one ?
In both cases click on Next to begin !

Next © Cancel ©

Allows the user to easily apply the iterative process of system identification

45
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CONTSID toolbox — Demonstration programs

>>contsid_demo ©00 MENU

Demonstration programs for case studies with the CONTSID toolbox

8 090 MENU ' Estimating Simple Models for an Aero-thermal Channel

CONTSID demonstration prggrams : : : :
f Estimating Transfer Function Models for a Flexible Robot Arm

Case Studies

Estimating Transfer Function Models for a Resonant Beam

Tutorials

- >

} _ Estimating Transfer Function Models for a Rainfall Flow Process |
What has the CONTSID to offer ?

Estimating State-space Models for a SIMO Pilot Crane

More Advanced ldentification

. Estimating State-space Models for a MIMO Winding Process
Quit : /
Quit

46 H. Garnier
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CONTSID toolbox — Demonstration programs

>>contsid_demo e 0 O MENU

Tutorials for the CONTSID toolbox

e OO MENU :
Getting Started J

CONTSID demonstration programs
i Case Studies : Estimating Models from Time-domain Data J
‘ Tutorials | | Estimating Models from Frequency-domain Data J
" What has the CONTSID to offer ? | Estimating Models from Frequency Response Data J
More Advanced ldentification |  Estimating Simple Process Models from Step Response Data J
Quit | " Determining Model Order and Input Delay J
| Quit J

47 H. Garnier
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CONTSID toolbox — Demonstration programs

>>contsid_demo e 0O MENU

Advantages of the CONTSID toolbox methods

e O O MENU

Identified Parameters Are Closer to the Physical Coefficients |

CONTSID demonstration programs

Case Studies i Can Cope with Non-uniformly Sampled Data |
| Tutorials Are Ideally Suited for Stiff Dynamic Systems |
- What has the CONTSID to offer 7 " Can Cope Easily with Fast Sampled Data

More Advanced Identification | " Include Inherent Data Filtering |
Quit | , ~-

J " Make the Identification Procedure Easier for the User

Are Robust Against Measurement Setup Assumption

_/

48 H. Garnier

Quit




UNIVERSITE POLYTECH®
DE LORRAINE NANCY

CONTSID toolbox — Demonstration programs

e O O MENU

>>contsid demo More Advanced System ldentification with the CONTSID

" Identification of Box-Jenkins Models for Colored Measurement Noise |

- o

&)
e O MENU Identification of Transfer Function Models plus Time-delay

CONTSID demonstration prograg/s

Identification of Multivariable Systems

Case Studies J \ .
) i Identification of Systems Operating in Closed Loop
Tutorials | 1 |
.\ ,. Identification of Errors-in-Variable (EIV) Models
What has the CONTAID to offer ? J ‘
- ,_ Recursive Identification of Linear Time-Invariant (LTI) Models
More Advanced ldentification J
A_ Recursive Identification of Linear Time-Varying (LTV) Models
Quit J - )

Identification of Nonlinear Linear Parameter Varying (LPV) Models

- >

Identification of Nonlinear Block-structured Models

Identification of Partial Differential Equation (PDE) Models

Quit

>

49 H. Garnier
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The simulated Rao-Garnier benchmark
See contsid tutorial1.m

4th order simulated system p=d/dt

K(1-T
6,(P)= — o
p2 +2§1p+1 p2 +2§2p+1
Dn 1 “n1 Dp 2 “n2

-6400p +1600

~ p* 4503 +408p2 + 416 +1600

v' 1 unstable zero

v’ 2 pseudo-oscillatory modes

K=1

W, 1= 2rad/s; W, 5 = 20rad /s

¢, =0.1;

¢, =0.25

50
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The simulated Rao-Garnier benchmark

* The step response

Step Response
T

Amplitude

1
a

Time (seconds]

51
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The Rao-Garnier benchmark

e The Bode diagram

Bode Diagram

Magnitude (dB;

T T T T T T T T T

Phase (deg)

10 ’

1l 1 Ll
¢
10 10 10

Frequency (radis)

52
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Simulation setup

ufty u(t) x(t

hold G.(p) ___T:
TS

ety
Lyt

— u(t): PRBS (respects the ZOH assumption)

— T,=10 ms

« fy 10 times the system bandwidth, an often given rule

— e(t) : DT white noise, SNR=10 dB

53
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/O data — Rao-Garnier benchmark

Input-Output Data
y1
15 | I | | I | I
10} 4
5 -
ul. 4
5 - .
10 B
§ -15 1 | 1 1 || 1 |
E
g u1
< 1 i T T
05} 1
0 1
05F :
-1 ’ 1
2 + 6 8 10 12 14

Time (seconds)
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Model order determination

Different model structures in the range [m n nk] = [1 3 0] to [2 5 O] have been
computed for the given data set
@bi s’
5 best models sorted according to YIC G(s) = 120 @S
npmn nk RT2 YIC Niter FPE AIC  2&7°
5 2 3 0 083 -833 10 235 0.85
(6 2 4 0 092 819 5 113 012 ]
7 1 5 0 053 -751 10 690 1.93
4 1 3 0 051 -372 10 840 212
5 1 4 0 003 -08 10 139 263
The second model with [m n nk]= [2 4 O] seems to be quite clear cut
It has the second most negative YIC=-8.19, with the highest R?; = 0.92

See tfsrivestruc and selcstruc in the CONTSID toolbox
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Estimated model parameters and their uncertainties
via TFSRIVC

>> present(Mtfsrivc)
Mtfsrivc =

From input "ul" to output "yl":
-6480 (+/- 131.8) s + 1880 (+/- 251.4)

s™4 + 5.382 (+/- 0.2094) s~3 + 407.6 (+/- 3.565) s™2 + 424.2 (+/- 11.53) s + 1566 (+/- 26.24)
Continuous-time identified transfer function.

Parameterization:
Number of poles: 4 Number of zeros: 1
Number of free coefficients: 6
Use "tfdata", "getpvec", "getcov" for parameters and their uncertainties.

Status:

Estimated using Contsid TFSRIVC method on time domain data.
Fit to estimation data: 71.91

FPE: 1.140e+00, MSE 1.124e+00

56 H. Garnier



WL

UNIVERSITE
DE LORRAINE

o,

Comparison of model and measured output

10

Coefficient of determination R

2_
1=0.921

£ i
: . i 2 =
8 S A 3 210
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O } ; o ‘I :.
: :
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40 k
95% confidence bounds
—— Model output
~~~~~~~~ Measured output
_15 1 1 | 1 1

0 2 4 6 8
Times (sec)

10

S7

POLYTECH’
NANCY

H. Garnier



UNIVERSITE POLYTECH®
DE LORRAINE NANCY

Statistical tests on residuals

1 Correlation function of residuals. Output # 1
T T T T

25

0 (1:ross corr. function between input 1 and residuals from output 1

e ]

oL |

0.05} |
130 20 10 0 10 20 30
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Data-driven linear model identification/learning
Takehome message

Several choices by the practitioners have to be made and often
revised

» Many of these choices have to be taken with the intended model use
in mind and thus have a subjective flavour

» The more a priori knowledge from physics you can exploit in the
SYSID workflow, the better

> Interpretability of the identified models in meaningful physical terms
is essential

Always keep in mind

> Good models cannot be obtained from bad data !

> All models are approximation of the real system !

» Good models are simple !
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