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Model identification of linear time-invariant systems

• For control design and analysis, Linear Time-Invariant (LTI) models 
have been hugely important, mainly motivated by 
– their simplicity
– their performance and robustness properties are well understood

• Classical SYSID methods of linear models 
– share these properties in many regards
– have a relatively low computational complexity
– have strong systems-theoretical background, with well developed 

concepts such as identifiability, input design, informative data selection

Ø Always try FIRST data-driven methods for identifying 
      linear time-invariant models

Ø If the fit is not good, try to estimate nonlinear or time-varying models
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System identification – Brief recap

y(tk)

tk

u(tk)

tk

• System identification is an iterative process, where you identify models with 
different structures from sampled data and compare model performance

• Ultimately, choose the simplest model that best describes the dynamics of 
your system

• A priori physical knowledge about the system is often a key for success
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A palette of color for the models (structure + parameters)

White-box model 
Ø Structure built 

from Physics
Ø Parameters a priori 

known

Grey-box model 
Ø Structure built 

from Physics
Ø Some parameters 

are estimated from 
data

Black-box model 
Ø Structure built 

mainly from data
Ø Parameters 

estimated from 
data
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The iterative system identification workflow

Physics-based knowledge 
about the system

Purpose
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Linear System Identification – A introduction from Brian

https://www.youtube.com/watch?v=qC_C04SEV1E

16 mn
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Data-driven system identification 
An iterative procedure 

Data examination
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Experiment design for data collection 

• To obtain a good model of your system, you must have measured data that 

reflects the dynamic behavior of the system

• The accuracy of the model depends on the quality of the measurement data, 

which in turn depends on the experiment design 
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Preliminary test: step response experiment
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Tests for verifying linearity

• A linear system has the same response to periodic square wave input

• Test square wave response around a given operating point
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Tests for verifying linearity
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Tests for detecting dry friction 

A simple linear model will not be able to capture the friction effects from these data
• Use a nonlinear model to better capture the friction effects
• Increase the amplitude of the steps to cancel out the friction effects
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Tests for detecting dry friction

• A linear system has the same response to periodic triangular wave input

• Test triangular wave response around a given operating point

A simple linear model will not be able to capture the friction effects from these data
• Use a nonlinear dead zone model to better capture the friction effects
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• Needs to be sufficiently “rich.” 
– Input signal is needed to excite the system
– The experiment should be carried out under conditions that are similar to 

those under which the model is going to be used

• Amplitude
– Trade-off is needed

• Large amplitude gives good signal-to-noise ratio, low parameter estimate variance
• But most systems enter into nonlinear regimes for large input amplitude

• Number of data points
– The larger, the better (…if data is informative)

Choice of inputs for informative data  
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Common choice of inputs for system identification

• Square wave (or basic step) input (not ideal)

Ø is often OK but can be insufficient to get accurate results for complex
systems

• Pseudo-random Binary Sequence (PRBS) 

• Chirp signal
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Input design in Matlab

• In the Matlab SYSID toolbox, idinput function can generate various types of input 
Ø u = idinput(N, type, band, levels) 

where
- N: number of data points
- type:

• RGS: generates a Random, Gaussian Signal
• RBS: generates a Random, Binary Signal
• PRBS: generates a Pseudo-random Binary Signal (PRBS)
• SINE: generates a sum-of-sinusoid signal

• In CONTSID toolbox, prbs function can generate a maximum-length PRBS input
Ø u = prbs(n,p,levels) 

• n: order (number of stages) of the shift register. n must be between 6 and 18
• p: coefficient such that the prbs signal remains constant over intervals of length p

n pTs > tsettling_time
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Data collection

Model

Algorithm

Ts Ts

System
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Data-driven system identification 
An iterative procedure 

Data examination
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Examination of the collected data

ALWAYS plot FIRST the input/output data ! 

Examine carefully the measured data and identify possible problems

Ø Offset and drift (low-frequency disturbances)

Ø Occasional bursts and outliers

Ø High-frequency noise/disturbance

Select meaningful data segments for model estimation and validation ONLY

If, from visual inspection, you cannot explain the output response you observe 
from the input, do not expect the identification algorithm will do !
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Examination of collected data
What can you observe?

?

?

Discard the first and last 5s from your data
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Examination of the collected data
What do you observe?

Transient
response

PRBS 
response

Operating
point for y

Operating
point for u

Discard the transient response and then mean values from your data
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Data-driven system identification 
An iterative procedure 

Data examination
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Family of linear model structures

§ A model structure is a mathematical relationship between input and 
output variables that contains unknown parameters

§ Common examples of linear model structures are:

Ø Input/output polynomial models

Ø Low-order process models plus delay 

Ø Transfer function models plus delay

Ø State-space models

§ Most of these model structures can be expressed in continuous-time 
(CT) and in discrete-time (DT)

DuCxy
BuAxx

+=
+=

𝐴𝑦 =
𝐵
𝐹 𝑢 +

𝐶
𝐷𝑒 CT/DT

CT

CT/DT

CT/DT
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Models for measurement noise

t0

measurement noise
disturbance

Measurement noise modelled as a stochastic discrete-time signal

v 𝑘 = 𝐻 𝑞 𝑒 𝑘 = ! "!"

# "!"
𝑒 𝑘 e(𝑘) is a white Gaussian noise

v(k)

v(k)

𝑞!": delay operator

System
y(k)u(k)

y(k)

u(k)
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Data-driven system identification 
An iterative procedure 

Data examination
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Optimization methods for parameter model estimation

§ Common optimization algorithms for estimating the parameters of the 
models are:

Ø Least-squares (LS) method

Ø Instrumental variable (IV) method

Ø Prediction error method (PEM)

Ø Subspace method
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Least squares (LS) method
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Instrumental variable (IV) methods 

ü Amongst the different IV versions, one is particularly recommended:
§ SRIVC: Simple Refined Instrumental Variable algorithm for COE models

• robust to noise assumptions and algorithmic aspects 
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Prediction error methods (PEM)



H. Garnier30

§ Use linear algebra to estimate state-space models

Ø Well adapted to multivariable-input multivariable-output (MIMO) 

systems

Ø More to come next year

Subspace methods
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Main estimation routines 
in the SID and CONTSID toolboxes

procsrivc

tfsrivc/tfrivc

CONTSID toolbox

lssvf (CARX)

srivc (COE)
rivc (CBJ)

coe (COE)

sidgpmf

Ø The majority of these estimation algorithms are iterative 
Ø As these routines can estimate different models quickly, you should try as many 

different structures as possible to see which one produces the best results
Ø Let us investigate the case of a simulated system known as the Rao-Garnier 

benchmark 

Matlab SID toolbox
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The simulated Rao-Garnier benchmark

•  4th-order simulated system

Go( p) =
K(1−Tp)
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ü 1 “unstable” zero
ü 2 pseudo-oscillatory modes

K =1
ωn,1 = 2 rad / s ; ωn,2 = 20 rad / s
ζ1 = 0.1; ζ2 = 0.25

p=d/dt
Step response

Bode diagram
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Simulation setup

Ø u(tk): PRBS (respects the ZOH assumption)

Ø Ts=10 ms (quite fast sampling scenario)
• fs ≈ 10 times the system bandwidth

     an often given rule for DT identification 

Ø e(tk) : DT white noise, SNR=10 dB

Ø Model order of 4 is assumed known

x(t)u(tk)

Ts
e(tk)++

y(tk)

Go(p)hold
u(t)
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Estimation results - Rao-Garnier benchmark (Garnier EJC 2015) 

DT methods suffer from 
numerical issues when 
the data are fast 
sampled and do not 
work well

CT methods from 
CONTSID are free of 
these difficulties
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Discrete-time (DT) versus continuous-time (CT) 
model estimation methods

• This example illustrates some of the difficulties that may appear in DT 
model estimation methods

– sensitivity to the initialization of the iterative search (via ARX/IV4 or N4SID)
– numerical issues in the case of fast sampling
– non inherent data prefiltering
These difficulties require extra care from the practitioners in DT modelling

• The CT model estimation methods are free from these difficulties
– they make the application of the SYSID procedure much easier
– they are recommended as a first choice

• Use preferably the following CT model estimation routines

In the SID toolbox
procest

tfest

ssest

In the CONTSID toolbox
procsrivc

tfsrivc

srivc
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Data-driven system identification 
An iterative procedure 

Data examination
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Recommended workflow of model validation

1. Compare simulated model output with estimation data
Ø use a model fit criterion: e.g. the FIT value or the coefficient of determination RT

2

2. Compare simulated model output with validation data

1. Perform statistical tests on prediction errors
Ø Plot the autocorrelation of the residuals and the cross-correlation between the input 

and the residuals
Ø This statistical test is often difficult to pass for real-life data

Ø Non-linear effects, time-varying effects, noise heteroskedasticity, …

2. Interpret the main features of the identified model in a physical sense
- Steady-state gain, time-constants, time-delay, damping coefficient, natural frequencies

37
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Estimation data versus validation data



H. Garnier39

Common model accuracy measures

Let 2𝑦$ be the model prediction. Calculate the residuals/prediction errors as
𝜀$ = 𝑦$ − 2𝑦$

Common model accuracy measures are:

– the FIT percentage

   FIT = 100× 1 − %!&'%!
%!&(%!

  (expressed in %)

Ø indicates the agreement between the model and measured output

• 100% means a perfect fit, and 0 indicates a poor fit 

– the coefficient of determination

	 𝑅)* = 1 − +"#

+$#

Ø indicates the agreement between the model and measured output

• the closer 𝑅%& to 1, the better the fit 
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Comparison of model response to measured response
with the estimation data 

• Typically, you evaluate first the quality of models by comparing their model 
responses to the measured output with the estimation data 

Ø model2 above is better than model1 because model2 better fits the data (83% vs. 65%)

40
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Comparison of model response to measured response
with the estimation data: Warning message

• Do not be impressed by a good fit to data on a simulation test with the 
estimation data

• The real test is to see how well the model can reproduce the validation 
data: cross-validation data test

41
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Comparison of model response to measured response
with the validation data 
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Choice of the model order
 Example: LS polynomial model fit

• Model fit using estimation data of 100 noisy points
• Plots below show simulation results on validation data of 100 points 

43



H. Garnier44

RMS error versus polynomial degree 
for both estimation and validation data

• Too few parameters: model fails to capture the function
• Too many parameters, the model captures the noise
• If validation RMS errors are larger than estimation RMS errors, model is over-fit 
• Methods for avoiding overfit:

• Keep the model simple
• Use regularization

44

Interpreting results:
• With a 6-th degree polynomial, the 

relative RMS test error for both 
estimation and validation data is 
around 0.3. It is a good sign, in terms 
of generalization ability, that the 
estimation and validation errors are 
similar

• RMS error plot suggest polynomial 
degree 4, 5, or 6 as reasonable 
choices 

Est
Val  
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Traditional criteria for model order selection

If fresh validation data is not available (=no cross-validation) 

• A loss function J(np,ZN) is formulated from two functions:

– one term measuring the model fit based on the loss function

– one term penalizing the model complexity

–  b(np,ZN) is a function which should increase with the model order 
but decrease to zero when N⟶ ∞

J(np ,Z
N ) = logV(θ̂np ,Z

N )+ β(np ,Z
N )
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Traditional criteria for model order selection

• Usual approach: pick the model that minimizes 
– AIC (Akaike’s Information Criterion)

– FPE (Final Prediction Error)

– YIC (Young’s Information Criterion)

FPE(np ,Z
N ) =

1+
np
N

1−
np
N

V(θ̂np ,Z
N )

AIC(np ,Z
N ) = logV(θ̂np ,Z

N )+
2np
N

YIC = log
σε
2

σ y
2

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
+ log 1

np

σε
2p̂ jj
θ̂ j
2

j=1

np
∑



H. Garnier47

Choosing among different model orders

• One approach is to fit multiple models to the same data
Which is the best model among these ?

• Assuming the goal is to make good predictions on the validation data
Ø Select the model order that has the best YIC, AIC, FPE with the highest 

associated FIT/ 𝑅!" on the validation data

Ø If several model candidates achieve similar performance, you should choose 
the simplest (lowest-order) one among these candidates

47

np  m  n    nk     RT2      YIC     Niter   FPE     AIC  
___________________________________________

5  2     3     0      0.83     -8.33      10      2.35      0.85
6  2     4     0      0.92     -8.19       5       1.13      0.12 
7  1     5     0      0.53     -7.51      10      6.90      1.93
4     1       3     0      0.51     -3.72      10      8.40      2.12
5     1       4     0      0.03     -0.89      10     13.9       2.63
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Model order selection from 
subspace state-space model estimation

A pragmatic and interesting way to choose the model order is to use the susbpace-
based estimation method n4sid directly, as an alternative to ssest

The algorithm automatically estimates a discrete-time state-space model of the 
best order in the 1:10 range with the estimation data
>>M = n4sid(data)
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Choice of the model order
Take-home message

• Choosing the model order is most of the time difficult

• Start with low-order candidate models, and so on. You can compare higher 
order models against these

• Compare candidate models using validation data 

• Increasing the model order will always increase the FIT/ 𝑅!"  on the estimation 
data, but the important question is whether or not it substantially increases the 
FIT/ 𝑅!"  on the validation data sets

• Increasing the model order can easily lead to over-fit. To avoid the over-fit:
• keep the model simple (low-order)
• use information criteria
• use regularization 

49
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Model assumption verification 
via residual statistical tests 

• When you choose a model structure (ARX, ARMAX, OE, BJ, …), you make the implicit 
assumption that the input/output has been generated by the chosen model 
(assumption about the noise model in particular)

• With this assumption, residual tests coming from probability/statistics can be used 

50
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Autocovariance of the residuals

• Large components indicate unmodelled dynamics for the noise model
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Cross-covariance between the residuals and the input

• Large components indicate unmodelled dynamics for the plant model
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Statistical tests on the residuals

53

0 5 10 15 20 25
lag

-0.2

0

0.2

0.4

0.6

0.8

1
Correlation function of residuals. Output # 1

-30 -20 -10 0 10 20 30
lag

-0.1

-0.05

0

0.05

0.1
Cross corr. function between input 1 and residuals from output 1



H. Garnier54

Data-driven linear System identification  
Takehome message

• Several choices by the practitioners have to be made and often revised
Ø Many of these choices have to be taken with the intended model use in mind 

and thus have a subjective flavour
Ø The more a priori knowledge from physics you can exploit in the SYSID 

workflow, the better 
Ø Interpretability of the identified models in meaningful physical terms is 

essential

• Always keep in mind

Ø Good models cannot be obtained from bad data !

Ø All models are approximation of the real system !

Ø Good models are simple !


