

Choose an excitation signal (square wave, ...) Measure the open-loop response of the speed via the tachometer

HIL Initialize HIL-1 (qube_servo2_usb-0)

Example: Model identification of the QUBE servo 2 by using the PROCSRIVC routine from the CONTSID toolbox

```
load data_step_Qube_speed
t=speed_data(1,:)'; % time-instants
y=speed_data(2,:)'; % rotary speed in rad/sec
u=speed_data(3,:)'; % motor input voltage in V
Ts=t(2)-t(1); % Sampling period in sec
```

```
data=iddata(y,u,Ts);
idplot(data)
```


(a) QUBE-Servo 2 with Inertia Disc Module

PI SPEED CONTROL

PID overview Tuning PI speed controller PI control design

PID tuning by the reference model method

We want to select and tune C(s) such that $F_{CL}(s)$ behaves like a reference model $F_{ref}(s)$ which takes, usually, the form of a standard second-order transfer function model

Finding natural frequency and damping coefficient from desired percent overshoot and settling time

- From desired percent overshoot PO and settling time $t_s^{5\%}$ given in the specification requirements, determine:
 - Percent overshoot

$$\zeta = \sqrt{\frac{(\ln(PO/100))^2}{\pi^2 + (\ln(PO/100))^2}}$$

– Natural frequency

$$\omega_n = \frac{3}{t_s^{5\%}} \quad when \quad \zeta = 0,707$$

Effect on the step response?

Natural frequency effects the response speed

Increasing the natural frequency makes the response faster

Closed-loop transfer function with standard PI controller

• Plant model

$$G(s) = \frac{\Omega(s)}{U(s)} = \frac{K}{Ts+1}$$

• PI controller

$$C(s) = \frac{U(s)}{\epsilon(s)} = k_p + \frac{k_i}{s}$$

• Find closed-loop transfer function

$$F_{CL}(s) = \frac{K(k_p s + k_i)/T}{s^2 + \frac{(1 + Kk_p)s}{T} + \frac{Kk_i}{T}}$$

Summary PI tuning for a given (ζ , ω_n) when P term on the output

- 1. Based on required settling time and overshoot get ζ and $\omega_{\rm n}$
- 2. Given ω_n and ζ , what the PI gains k_p and k_i should be set as

$$k_p = \frac{2\zeta \omega_n T - 1}{K}$$
$$k_i = \frac{\omega_n^2 T}{K}$$

