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Exploit a model-based approach for control design

Model identification for control
What is it all about?
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Model-based control design
Case study: Rotary speed control of the QUBE servo 2
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Basic system identification method
Step response-based model identification

• Send a step (or a serie of steps) to the system and record its response 
– Model the response as a « simple » 1st or 2nd transfer function plus time-

dealys from the step response
• Advantages

– Very easy to make the experiment in general

System
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Start with a simple step response
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Input voltage-to-angular velocity transfer function
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Choose an excitation signal (square wave, …)
Measure the open-loop response of the speed via the 

tachometer
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Apply a richer excitation signal: a square wave for example
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Example: Model identification of the QUBE servo 2
by using the PROCSRIVC routine from the CONTSID toolbox

load data_step_Qube_speed
t=speed_data(1,:)'; % time-instants
y=speed_data(2,:)'; % rotary speed in rad/sec
u=speed_data(3,:)'; % motor input voltage in V
Ts=t(2)-t(1);       % Sampling period in sec

data=iddata(y,u,Ts);
idplot(data)

Model_type=idproc('P1'); % Simple first-order model
M=procsrivc(data,Model_type)
Process model with transfer function:
             Kp                      
  G(s) = ----------                  

          1+Tp1*s                    
                                     
        Kp = 22. 598                   
       Tp1 = 0.13845
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PI SPEED CONTROL

PID overview
Tuning PI speed controller
PI control design
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PID Control

• Common control used in feedback loop for single-input single 
output systems

• PID = Proportional-Integral-Derivative
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Why PI control when G(s) is a simple first order transfer function ?
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Why no D?

• Derivative term does not provide much benefit when performing 
speed tracking control

• Makes designing for control specifications more difficult



H. Garnier15

+

-
C(s)

e(s)
G(s)

U(s)Yr(s) Y(s)

PID tuning by the reference model 
method

FCL (s)
Yr(s) Y(s)

We want to select and tune C(s) such that FCL(s) behaves like a reference
model Fref(s)  which takes, usually, the form of a standard second-order
transfer function model

Fref (s)
Yr(s) Y(s)

=
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Standard 2nd Order System
for the reference model

• Recall the 2nd-order transfer function 
of the reference model:

Ø wn is the natural frequency 

Ø z is the damping ratio

Step response of 2nd order system

Fref (s) =
𝜔!"

𝑠" + 2𝜁𝜔! + 𝜔!"
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• From desired percent overshoot PO and settling time 𝑡#&% given 
in the specification requirements, determine:

– Percent overshoot

– Natural frequency

𝜁= ()(*+/-..) "

/"0 ()(*+/-..) "

𝜔1 	=
2

3#
$% 𝑤ℎ𝑒𝑛 𝜁=0,707

Finding natural frequency and damping coefficient 
from desired percent overshoot and settling time 
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Peak time/settling time and percent overshoot

Peak time

Percent 
Overshoot
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Effect on the step response?

Natural frequency effects the 
response speed

Damping ratio effects the 
response shape

ωn =10 
ζ = 0.7

ωn =20
ζ = 0.5

System is known as being critically damped 
when z =1 ; there is no overshoot 

Increasing the natural frequency makes the 
response faster
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𝑦 = Ω

+
-

𝑟 = Ω!
𝐾

𝑇𝑠 + 1

𝑢 = 𝑉"1
𝑠

𝑘#

𝑘$ +
+

PI Control for DC Servo Motor
Both P and I terms applied to the error

P and I terms on the error 𝜖

𝜖
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Closed-loop transfer function
with standard PI controller

• Plant model

• PI controller

• Find closed-loop transfer function

𝐺 𝑠 =
Ω 𝑠
𝑈(𝑠)

=
𝐾

𝑇𝑠 + 1

𝐶 𝑠 =
𝑈 𝑠
𝜖 𝑠

= 𝑘! +
𝑘"
𝑠

𝐹#$ 𝑠 =
𝐾(𝑘%𝑠 + 𝑘&)/𝑇

𝑠" +
1 + 𝐾𝑘% 𝑠

𝑇 + 𝐾𝑘&
𝑇



H. Garnier22

Closed-loop transfer function
with standard PI controller

Closed-loop transfer function
with standard PI controller 2nd-order transfer function 

of the reference model

𝐹#$ 𝑠 =
𝐾(𝑘%𝑠 + 𝑘&)/𝑇

𝑠" +
1 + 𝐾𝑘% 𝑠

𝑇 + 𝐾𝑘&
𝑇

𝐹'() 𝑠 =
𝜔!"

𝑠" + 2𝜁𝜔!𝑠 + 𝜔!"

Numerators does 
not match !

Denominator match
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𝑦 = Ω
+
-

𝑟 = Ω! 𝐾
𝑇𝑠 + 1

𝑢 = 𝑉"1
𝑠

𝑘#

𝑘$ +
-

PI Control with P term on the output

P term on the output
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𝐹#$ 𝑠 =
𝐾𝑘&/𝑇

𝑠" +
1 + 𝐾𝑘% 𝑠

𝑇 + 𝐾𝑘&
𝑇

𝐹'() 𝑠 =
𝜔!"

𝑠" + 2𝜁𝜔!𝑠 + 𝜔!"

𝜔!" =
𝐾𝑘&
𝑇

2𝜁𝜔! =
1 + 𝐾𝑘%

𝑇

𝑘& =
𝜔!"𝑇
𝐾

𝑘% =
2𝜁𝜔!𝑇 − 1

𝐾

PI Control with P on the output

Both numerator and denominator match. Transient response of the closed-loop 
PI control should be close to the desired response of the reference model

Closed-loop transfer function
with PI controller (P term on the output) 2nd-order transfer function 

of the reference model
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Summary 
PI tuning for a given (z	,	wn)
when P term on the output

1. Based on required settling time and overshoot à get 
z and wn

2. Given wn and z, what the PI gains kp and ki should be 
set as

𝑘& =
𝜔!"𝑇
𝐾

𝑘% =
2𝜁𝜔!𝑇 − 1

𝐾
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Closed-loop response 
of the two possible PI controller implementation

Standard PI 
P and I on the error

Recommended PI 
with P on the output

Effects of the numerator 
mismatch ! Closed-loop response 

behaves as expected


