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Aim of this lecture
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—1 |dentification j«—
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v' To provide an introduction

= theory of direct time-domain methods for continuous-time
parametric linear black-box model identification

v The key computational method, we refer to, is
= Optimal Instrumental Variable (IV) method
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The system identification procedure

» System ldentification: an iterative procedure

-

-

Should the data
be filtered ?

~

&

Data
not OK

Green rectangles: computer’s main responsability
Blue ovals: practionner’s main responsability

Choice of the
model structure
and estimation

methods

Model structure

not OK

Adapted from Ljung 1999

no

Construct the
experiment and
collect data

Data

Polish and present
data

Data

Fit the model to the
data

Model

Validate the model

Can the model be
accepted ?

|

yes

The practionner has to make many choices:

v well-planned data acquisition
v' Sampling period, type of input, ...
v’ data-preprocessing

v’ Filtering, detrending ...

v'type of models to be estimated:
v’ linear or non linear
v’ continuous or discrete-time
v estimation methods
v PEM or IV

These choices will impact the SYSID

procedure and require active participation of a

specifically trained practitioner !
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Contmuous t|me (CT) models of ||near systems

v A model that descrlbes the reIatlonshlp between time continuous I/O
signals is called a continuous-time model

= Differential equation / polynomial / transfer function model

dy(t)  , d"y(t)

d™u(t) d™u(t)
at”

1 dtm—1

+---+a y(t)=b,

+---+b_u(t)
dt"-1 dt™ m

A(p)y(t) = B(P)U(t) pu(t)= dL(;gt) differentiation operator A(p)=p" + a1p”‘7 +ova

B(p)=byp" +b,p™ "+t b

G(S) = Y(S) = B(S) S: Laplace variable

U(s) A(s)

= State-space model

G(s)=C(sl-A) B+D

{)’((t)=Ax(t)+Bu(t)
y(t)=Cx(t)+Du(t)

4 H. Garnier



mgglﬂgﬂﬁf Main approaches to identify a black-box CT linear models Q ey 5o
from time-domain sampled data ?

|

\

|

|

hold

\ 4

|

u(ty

|

|

CT system

Sampled data

Indirect
approach

»

G(z) » SID toolbox, ...

Delicate conversion

S u(ty), y(t

TY(tk) T
S

Direct

approach

NS

CT black-box linear
model G(s)

v'presents many advantages
v'CONTSID toolbox

H. Garnier
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The myth of the true data generatmg system

v The mathematical model that will be identitied from finite sampled
data will be an approximation to the real system

v' It is inexact and the data is never generated in practice from a system
which “belongs to the model class”

v Nevertheless we shall find it convenient to assume such a true data-
generating system to assist in deriving theoretical results

v But we do not believe that it truly captures the behavior of the physical
system

6 H. Garnier
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True data generatmg ||near system

v Assumptlons about the true system S = {G (p) H (p)}

e(t)

H,(p)

— G,(p)
u(t)

v(ty)

X(t) y(t)

y(t)=G,(pu(t,)+H,(p)e(t,)

p = — differentiation operator

v The measured output y(t,) is assumed to be made up of two distinct

contributions:

= G,(p)u(ty): dependent of the choice of the input signal u(t)

= the measurement noise v(t)=H,(p)e(ty): independent of the input signal u(t)

H. Garnier



QO e The chosen model structure O sorvreen
to capture the dynamlcs of the Imear system

v Assumptlons about the model class M = {(G(p,g) H(p, g)) oy= Rne}
’ e(t
H (p) y(t,)=G (plu(t,)+H (p)e(t,)
V(tk) p=% differentiation operator
— G(p) ——)—
u(t,) X(t) y(t)

v The model structure is assumed a priori known. 2 cases can be distinguished

S = M ¢+ Model form and order for G and H identical to G, and H,

_ ¢+ Model form and order for G identical to G, but H different to H,

8 H. Garnier
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Black-box continuous-time model structures

v' Model structure: M = {(G(p,@) ; H(p,g)), Y= Rne}

v General parametrization

600005 ripr- Lo

/ Time-delay assumed known in the beginning

H. Garnier
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Main black-box CT model structures

CARX G(p,0) = ZP:9) o-tp
A(p,6)
COE G(p,O) = B(p,0) o~ 7P
A(p.0)
CBJ G(p,6) = BP:0) gt
A(p,0)

hybrid CBJ  G(p,0) = SP:0) g-p

10

H(p,H) =

1

A(p,B)

H(p,0)=1

H(p,@) =

C(p.0)

D(p,6)

H(qu) =

C(q.0)
D(q,0)

v Main model structures used in practice: M = {(G(p,g) : H(p,H)), = Rne}

H. Garnier
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D|st|nct|on between model structures

v' CARX model can be written in ||near regression form

A(p,0)y(t,)=B(p,6)u(t, )+e(t,)
y™M(t ) =9 (1 )0+e(t,)

= ® The model is not very realistic in practice
= There are common denominators in G and H

= © The model is a linear function in 6
= Important computational advantages

v' COE and CBJ models have an independent parametrization of G(p,8) and H(p,6)

5(p. H)u(t )+e(t, ) y(t,)=BP:O) ey ) CPO) oy

V() =20, A(p.6) D(p.6)

= ® Models are no longer linear-in-the-parameters
» © There are no common parameters in G and H

= Advantages for independent identification of G and H and models more realistic in
practice

11 H. Garnier
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Parameter estimation objec’uve and assump’uons

v Objectlve
* Find the best parametric models G(p,08) and H(p,6) M {(G(p 0) ; H(p, 8)) A= R”e}
for the unknown transfer functions G,(p) and H,(p)
using a set of measured data u(t,) and y(t,)

v" In the beginning, we will make the following assumption:
3 6, suchthat G(p,0,) = Gy(p) and H(p,0,) = H(p)

I.e.

SeM

v The objective can therefore be restated as follows:

= Find an estimate of the unknown parameter vector 6, using a set of N samples of
the input and output data:

ZN={u), yt)l k=1.N}
generated by the true system, i.e. y(t.)=G,(p)u(t,)+H_(p)e(t,)

12 H. Garnier
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lllustration of bias-variance trade-off for estimators

Estimator A Estimator B Estimator C

Center of the dartboard target (in red) represents 0,
= Estimator A: biased (average value of the estimates are not in the center of the target)
= Estimator B: unbiased but quite large fluctuations around the mean value - large variance

=  Estimator C: unbiased and small variance

13 H. Garnier



QO e Issue in CT model identification: 1@ JIBA
time-derivative measurement problem

v DT model identification - difference equatlon model

y(k)+a1y(k—1)+---+anay(k—na)=b1u(k—1)+---+bnbu(k—nb—1)

v CT model identification - differential equation model

Unlike the DT model, where only sampled input and output data appear, the CT
differential equation (DE) model contains I/O_time-derivatives

Not measured in most
practical cases

Well-known approach to handle the time-derivative problem:

Apply a linear transform to both I/O data can be seen as a data prefiltering strategy

14 H. Garnier



@

UNIVERSITE

DE

________________________________________________________________________________________

LORRAINE

Two stage approach for dlrect CT model |dent|f|cat|on

LT : Linear Transforms

) ’ primary
I o4

________________________________________________________________________________________

secondary
stage

Estimation Loss function
algorithm J

15

Inherent data prefiltering

Arises out of the non-
measurable I/O time-
derivatives problem

/I\/Iost of the standard h
DT parametric model
estimation methods

\_can be used )

H. Garnier
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I\/Iam Imear transforms developed for the pnmary stage

Integral —» Num. Int. Methods:
methods BPF, TPF, Simpson
G
1 function methods:
» Laguerre, Legendre, Hermite,
Chebychev polynomials, Walsh,
2 Fourier functions
. £
0 B > LIF (Sagara)
O & |
5 2 > RPM (Trigeassou)
© 4 )
= Linear " SVF (Young) <ii
—— ;
g Filters ) »  GPMF (Rao)
~—— 4 . ) >
Modu|at|ng FMF (Pearson)
— | Functi
L unctions ) >  HMF (Unbehauen)

H. Garnier, M. Mensler, A. Richard, Continuous-time model identification from sampled data:
implementation issues and performance evaluation. 1JC, 76(13), 2003

16 H. Garnier
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Trad|t|ona| State Varlable F|Iter|ng (SVF) method

y™M(t)ray " (t)+va y(t)=bu™(t)+---+b_u(t)

Apply a stable SVF filter L(p)=1/E(p) on both sides, the prefiltered DE model obeys exactly

(except for a possible transient)

yt(t)+ay™ )+ va y (8) = byut™ (t) -+ b_u. (t)

1 Xf (t) >
E(p) | - ] How to choose L(p)=1/E(p) ?
x(t)] 5 |-
E(p) ” i
o xtM(t) E(p)=(p+1)
E(p) >

Bank of SVF filters

The filtered time-derivatives can then be exploited to estimate the
parameters of the differential equation model

17
17 H. Garnier
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Bode plot of SVF filters
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e,

v' The outputs of the SVF ﬂlter bank W|I| prowde a smoothed estimate of the I/O time-

derivatives in the frequency band of interest

i /

Li(s)- >

E(S) (S+)L)n

1

L,(S)=——
T (s+a) n
L(s)=—S 5
" (s+a)’
L2(3)=i3
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18

1
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10
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S|mp|e Ieast squares- based SVF estlmator

v At t=t,, the preﬂltered DE model can be rewritten in Imear regression form
yi" () = of (8,)0+e(t,)
oF(t)=| ") o wyp(te) ufT(b) ()

0=[a1 .- a b, - b_ ]T

n

v' From N samples observed at ty, ...ty, the LS-based SVF parameter estimates are
computed as

N
n |1 2
Bissur = argmin| - > (" (t,) -] (t,)0) )
k=1
N . -1 g N
Orssv = Z ()] (4| |5 2 ety (4 )

19
19 H. Garnier
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Simple LS-based SVF estimator

W T N samples
Yi(ti) R l

\ v/

vt aéﬁ =P
pl

E(p)
u(ty) t : .
1 v b

E
n — ¢ algorithm

E(p)=(p+)t) 7 Ur(ty)

E(p)

u(t) 7

P
E(.p) ISSVf

o |Uf™ (t)
E(p)
SVF filter
Bank
This simple LS-based SVF estimator represents the simplest archetype of CT
model identification from sampled data

Qs

Issvf

LS —>

N -1

E (Lot (1)

N

%E%WWWW4

20
20 H. Garnier
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LSSVF method Example

v Conslder a second order system
y @ (t)ray(t)+a,y(t)=byu(t)+e(t)
(p2 +a1p+az)y(t) =byu(t)+e(t)
v Apply a second-order SVF filter L(p)=1/(p+1)?

2 1
[<pfa>2+a’ oo <p+a>2]””=

1

T _et)
(p+2)

(p+2)

by

2]u(t)+

yta(t)+a vl (t)+a,y, (t) = byu, (t) +e.(t)

v At =1
2y
y;gZ)(tk)=[ _yf1)(tk) -Ye(t) uf(tk)] a, |+e((t,)
bO

21

H. Garnier
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LSSVF method Example

v At t=t,
2y
Y,gz)(tk)= _yf1)(tk) ~Ye(t,) ug(t, ) a, |+es(t,)
by
v Fort ty,...tn, We have
yi?(ty) Vi) —y(t) () |, er (t;)
(2)(t2) -| YiU(t) yilte) un(ty) || e, 4| er(t)
5 5 b 5
yf2)(tN) | _.Vf1)(t/\/) —-Ye(ty) Ue(ty) | 0 i er (ty) |

Y=CDNH+EN

1
2 T T
6 [cb @ ] Dy Yy,

Issvf —

22 H. Garnier
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LS based SVF estlmator — Implementa’uon aspects

. 1 N N
Ojssvf = [QD @ ] TYN= Eqpf(tk)%z—(tk) Eq)f(tk)y;gn)(tk)]

v Do not compute the normal equation solution above, but use instead

numerically stable and computationally efficient algorlthms for computing the
LS-based SVF estimates :

= SVD - Singular Value Decomposition (pinv in Matlab)
* O=pinv(®)*Y computes the solution to Y=@ @
» QR factorization (matrix division \ in Matlab)

« @@= @\Y computes also the solution to Y=@ @

v" Recommended implementation of the LSSVF solution in Matlab

8/3

svf — ¢N \YN

23 H. Garnier
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SVF-based estimators — Implementation aspects

v Roleé of thé SVF filters

» Reconstruct the time-derivatives in the bandwidth of interest
= |mprove the statistical efficiency of the estimates (filter out the high-frequency noise)

7

+ n > uf(t)
ut) | O
— P’ > (i)
(p +‘A)n uf (t)

o
(o |——ut"(t)

v' User parameters of the SVF filter

* Filter order: should be chosen larger or equal than the system order n
 Simplest choice: minimal-order SVF, L(s)=1/(s+ A)"

* Note that so called minimal-order GPMF where L(s)=1/(s+ 1)"*! is often more robust
against the noise than basic SVF (see Isgpmf in CONTSID)

= Cut-off frequency A of the SVF filter L(s)=1/(s+ 1), chosen in order to emphasize the
frequency band of interest

24 H. Garnier
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SVF based est|mators — Implementa’uon aspec:ts

v D|g|ta| |mp|ementat|on of the CT SVF f||ter|ng operatlons

= The computation of the LSSVF parameter estimates requires the value of

prefiltered signals at the time-instants t, , k=1, ...,

(2)(1‘2)

y@) | | oy,

yf2)(tN) |

Yelty) unlt) |,
Vi) yilty) up(ty) |

—yf”(tN) —yf(tN) uf(tN)

N

i o (t) i

ef(tz)

_ ef(.tN) _

YN = CDN6?+EN

O = Py \ Yy

Issvf =

= The digital implementation method has to be selected carefully according to the
assumption about the filter input intersample behavior: choice of the hold block

u(t) u(y
L Mt ”
b (p+2)"
— %1 hold? bi
u(t) (p +E/’L)”

H. Garnier
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D|g|ta| |mp|ementat|on of the CT SVF fllterlng operatlons

= |f the ﬂlter iInput mtersample behavior is known (e.g. piecewise constant or piecewise
linear) or if the mput takes a partlcular form (e.g. a sine or sum of sines):

* an exact solution to the filtering operation at specitfied time-instants can be
obtained

= |f the filter input intersample behavior is not known:

* approximate solution to the filtering operation can be obtained only

* approximation errors depend on T and fast sampling is often preferred in CT model
identification

* Fast sampling is however not required for all CT methods, e.g. SRIVC (see later on)

= One efficient approach is implemented in the Matlab Isim routine
 where the state-space representation of the SVF filter bank is discretized assuming
the best zoh or foh assumption for the input intersample behavior

x(t)=Ax(t)+Bu(t) 1o 3 {x(tk+7)=Fdx(tk)+Gdu(tk)
{y(t)=Cx(t) .V(tk)=CX(tk)

26 H. Garnier
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LSSVF implementation in Matlab — 2"9-order example

v Simple second-order COE model

(dB)

Magnitude

X(t)=G,(p)u(t)
Y(tk) =X(tk)+e(tk)

Phase (deg)

2 2 \
G,(p)= = |
0 (p+3)(p+1) p2 +4p+3 ) . |
v" Simulations conditions
= u(t): PRBS
= T.=10ms u(ty) u(t) X(t)

= N=1500 ZOH —— Go(p)
TS

= 2 output measurement situations .\
* Noise-free g@f— e(ty)
 e(ty): white Gaussian noise, 6,=0.2 ly(tk)

27 H. Garnier
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LSSVF estimator - Matlab implementation — Noise-free case

POLYTECH’
NANCY

—_——ff = e e — e — e e — e e = e — e e — e — e — — e — — e — — - —
—<, % B(p)=2 Input-Output Data

A=[14 3]; % A(p)=p?+4p+3 — True system "

Ts=0.01;

u=prbs(4,1 00); % PRBS input from the CONTSID

N=1500;

t=(0:N-1)"*Ts; .

x=Isim(B,A,u,t); % simulation of the noise-free output

dataO=iddata(x,u,Ts);idplot(data0);

% Primary stage - SVF filtering
lambda=3;

den_L=[1 2*lambda lambda”2]; % denominator of the SVF filter

num_LO=1;

num_L1=[1 O];

num_L2=[1 0 O];
xfO=Isim(num_LO,den_L,x,1t);
xf1=lsim(num_L1,den_L,x,1t);
xf2=Isim(num_L2,den_L,x,1t);
ufO=Isim(num_LO,den_L,u,t);

Amplitude

ui

05

% |: SVF filter cut-off frequency ol

% numerator of LO(p)=1/(p+A)?

% numerator of L1(p) =p/(p+1)? h 2 E 6 imo (sacShds) 10 12
% numerator of L2(p) =p?/(p+A)f

% Computation of the SVF filter bank outputs

% Secondary stage - LS estimates

Phi_N=[-xf1 -xfO ufQ];
Y N=xf2:
theta_lssvf=Phi_N\Y_N
theta_lssvf’

3.9997 2.9998 1.9999

% Regression matrix

% Output vector

% LSSVF estimates

% see also the LSSVF routine in the CONTSID toolbox
% Mlssvf=Issvf(data0,[2 1 0],lambda)

28
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LSSVF estimator - Matlab implementation — Noisy case

B=2;
A=[14 3];
u=prbs(4,100);

% B(p)=2

% A(p)=p?+4p+3 — True system
% PRBS input from the CONTSID

Input-Output Data

N=1500; Ts=0.01;
t=(0:N-1)"*Ts;
x=Isim(B,A,u,t);

data=iddata(y,u,Ts);idplot(data);
% Primary stage - SVF filtering
lambda=3;

den_L=[1 2*lambda lambda”2];
num_LO=1;

num_L1=[1 O];

num_L2=[1 0 O];
yfO=Isim(num_LO,den_L,y,1);
yf1=Isim(num_L1,den_L,y,1);
yf2=Isim(num_L2,den_L,y,1);
ufO=Isim(num_LO,den_L,u,t);

% simulation of the noise-free output
y=x+0.2*randn(N,1); % white noise added to the noise free output

Amplitude

ul

SEMGEG,

% |: SVF filter cut-off frequency
% denominator of the SVF filter
% numerator of LO(p)=1/(p+A)?

" Time (seconds)

% numerator of L1(p) =p/(p+1)?
% numerator of L2(p) =p?/(p+A)f
% Computation of the SVF filter bank outputs

% Secondary stage - LS estimates

Phi_N=[-yf1 -yfO uf0];
Y_N=yf2;
theta_lssvf=Phi_N\Y_N
theta_lssvf’

3.2542 2.6889 1.6865

% Regression matrix

% Output vector

% LSSVF estimates

% see also the LSSVF routine in the CONTSID toolbox
% Mlssvf=lIssvf(data,[2 1 0],lambda)

29
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Basu: LSSVF est|mator — Stat|st|ca| ana|y5|s

v Assume the data generatlng system is descnbed as

S: y"™t )=¢"(t, )0, +v(t,)

where 6, is the true parameter vector

v' Assume that v(t}) is a stationary stochastic process independent of u(ty). After
the SVF filtering, the data-generating system can be rewritten as

vyt ) =l ()6, +ve(t,)

-1

N N
Gssur = 2 70t )77 (1) %Ecpf(tk)yﬁ”)(tk)]
i g N . -1 1 N
Ossvr = E Pr(ti)er ()| |y D> et ve(ty)
k=7 k=1

30 H. Garnier
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Basic LSSVF estimator — Statistical analysis

) ;N . "1'1 N
Ossvr =00 +| 7 2 @ (e )or () ~ E Pe(E )ity )
N N

v Under weak conditions, the normalized sums tend to the corresponding
expected values as N tends to infinity. Hence
— T : :
é .0 i E_{qof(tk)cpf (tk)} is nonsingular
Elgs(t Jve(t, )} =0

Issvf  N—-owo o)
e The first condition is satisfied in most cases

 The second condition is never satisfied

v’ LSSVF estimates are always biased because of the correlation between the
regression vector ¢x(t) and the noise v¢(t;)

= even if v(t) is white noise, v{t,) becomes colored due to the SVF filtering

31 H. Garnier
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S|mp|e LSSVF estimator — Conclusmns

v Slmple LSSVF method has some attractive proper’ues
= Simple, analytical solution easy to compute, low computational complexity

v" Main shortcomings
= always biased in noisy output measurement situations

E{é,ssvf} =0,  since E{qof (t, )V, (tk)} =0

= quite sensitive to the SVF filter cut-off frequency | (p)=—_1

n

(p+2)

» Motivation for studying more advanced methods

We can do better !

32 H. Garnier
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Trad|t|ona| solut|ons to get opt|ma| estimates

v Maximum Likelihood Method (ML)

= |f the disturbances on the system are Gaussian, the ML method
coincides with the Prediction Error Method (PEM)

v Instrumental Variable Method (V)

33 H. Garnier
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Prediction Error Method (PEM)

v Main idea: model the noise !
v' General approach applicable to a wide range of model structures: OE, B/, ...
v Conditions to obtain optimal PEM estimates are well-established

N N
0 pom = arg méin > e°(t,,0)=arg mein > Hy(tk) — )7(1‘,(,6)”2
k=1 k=1

v' It assumptions about the noise valid: delivers optimal estimates
v" Involves often solving a non-convex optimization problem

= relies on iterative nonlinear optimization (computationally quite demanding)

* Examples: gradient descent, Levenberg-Marquardt, ... See TFEST in the SID toolbox
= special care required for the initialization of the iterative search

* may be trapped in false solutions that correspond to local minima

34 H. Garnier
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Instrumental Varlable (IV) method

v" Main idea: model the noise !

AN

General approach applicable to a wide range of model structures: OE, BJ, ...
v Conditions to obtain optimal IV estimates are well-established

N
Hﬁ/pt = arg m| E

2

20! (8 )L (p) ¥ (t )~ 9T ( ’k)g)Ho

= Need to specify the instrument z;and the prefilter L(p)
v' It the assumptions about the noise are valid: delivers optimal estimates
v' It the assumptions about the noise are not valid: delivers unbiased estimates

v’ Based on (pseudo) linear regression
= do not rely on nonlinear optimization : less risk to be trapped in false solutions

= |ow computational complexity (comparable to the LS method)

35 H. Garnier



Solutlon of the Instrumental Varlable (IV) method

v" Recap: LSSVF estimates always b|aseo| because of the correlatlon between the
regression vector ¢ (t) and the noise v¢(t;)

v' Main idea of IV: introduce a vector z{(t,) called instrument or instrumental variable
which components are uncorrelated with v (t)

E{zy(t, )v(t,)} =0

N
u E Ze(t )ve(t)=0 with v, (t, ) = yzgn)(tk)_mlz-(tk)e

. = sol _Ezf(t )(y it ) -l (t, )9)

N

_1
N=%Ewwdm4

;N
N > Zf(tk)y;n)(tk)]
ket

= How should the instrument z{t,) be chosen ?
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Basu: two step V- based SVF estimator

v The instrument must be chosen SO that itis:
= not correlated with the measurement noise E{zp(t v (1)} =0

= sufficiently correlated with the filtered regression vector E{Zf(tk)(p;_(tk)};éO
‘P,z_(tk)=L(p)[ _y(n—1)(tk) e =y(t) u(m)(tk) ou(t,) ] L(p)=( 1A)n
p +

v" In the basic two-step IVSVF estimator, the instrument is built as

z,?(tk)=L(p)[ %) e Zx(t) u(™(t) - u(tk)]

X(t ) = G(P, Oy Ju(ty)

is the estimated noise-free output calculated from an a priori LSSVF estimate

v The basic IV-based SVF estimator can then be computed from

N

2 ze(t, )of (1)

N

=z (6 yE ()

/vsvf
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Two step V- based SVF estimator - Summary

e,

POLYTECH’
NANCY

Second step
ﬁ ﬁ

X(t)

Yi(ti)

_—

_

Y£ (t)

 —

Ur(ty)

_
—

ud™ (t)

—_—

Xg (i)

First step
u(t) B(p) x(t)
A(p) N salmples
L Yi(ti)
7 +——>
t v(t E(p)
u(ty) W =0 | ‘
E(p) g é
A )
El;p) yi” () > LS ISS>Vf
E(p)=(p+4)" : udtd algorithm
E(p) ’
U(tk) p,
> EE(;)) >
p™ ufm (t,)
E(p) >
Bank of
SVF filter !
ut) é/ssvf (p)
Assvr(P)
Auxiliary
model

38

E(p)

| E(p)

E(p)

>

N samples

l

»
»

%Mt )

\Y
algorithm

s

ivsvf
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IVSVF estimator - I\/Iatlab |mp|ementat|on - N0|sy case

B= 2,

A=[14 3];
u=prbs(4,100);
N=1500; Ts=0.01;
t=(0:N-1)"*Ts;
x=Isim(B,A,u,t);
y=x+0.2*randn(N,1);

' % B(p)=2'

% A(p)=p?+4p+3 — True system
% PRBS input from the CONTSID

% simulation of the noise-free output
% white Gaussian noise added

Amplitude

Input Output Data

data=iddata(y,u,Ts);idplot(data);

% First step — LSSVF estimation

lambda=3;

den_L=[1 2*lambda lambda”2];

num_LO=1;

num_L1=[1 O];

num_L2=[1 0 O];
yfO=Isim(num_LO,den_L,y,1);
yf1=Isim(num_L1,den_L,y,1);
yf2=Isim(num_L2,den_L,y,1);
ufO=Isim(num_LO,den_L,u,t);
Phi_N=[-yf1 -yfO uf0];
Y_N=yf2;
theta_lssvf=Phi_N\Y_N
theta_lssvf’

3.2542 2.6889 1.6865

% |: SVF filter cut-off frequency
% denominator of the SVF filter

" Time (seconds)

% numerator of LO(p)=1/(p+A)?

% numerator of L1(p) =p/(p+1)?

% numerator of L2(p) =p?/(p+A)?

% Computation of the SVF filter bank outputs

% Regression matrix

% Output vector

% LSSVF estimates

% see also the LSSVF routine in the CONTSID toolbox
% Mlssvf=lIssvf(data,[2 1 0],lambda)

39
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IVSVF estimator - Matlab implementation — Noisy case
—_——a—-— ———-— — —-— — —f-— — —f—-— — —f-— — - — — = — — - — — —f— — — = — — —— —
% Second step — IVSVF estimation
% Construction of the auxiliary model
Blssvf=theta_lssvf(3)"; % Auxiliary model
Alssvf=[1 theta_lssvf(1:2)'];
% Simulation of the auxiliary model output
xest=Isim(Blssvf,Alssvf,u,t);
% Computation of the SVF filter bank outputs for the auxiliary model

xestfO=Isim(num_LO,den_L,xest,t); % filtered auxiliary model output
xestf1=lsim(num_L1,den_L,xest,t); % 1st-order time-derivative of the filtered auxiliary model output
% Construction of the IV matrix

Z_ N=[-xestf1 -xestfO uf0]; % Instrumental variable matrix

% IVSVF estimates

theta_ivsvf=(Z_N"*Phi_N)\Z_N"*Y_N; % IVSVF solution

theta_ivsvf’

3.9454 2.9977 1.9685 % see also the ivsvf routine in the CONTSID toolbox

% Mivsvi=ivsvi(data,[2 1 O],lambda)

% The estimation error has clearly been reduced

% Run several times your program to get a feel for the bias reduction (which can vary depending on
the noise realization) or even better run a Monte Carlo simulation
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Basic IVSVF estimator — Conclusions

v Some attractive properties
= simple
= analytical solution
= |ow computational complexity

= unbiased estimates in output measurement noise situations _

v" But IVSVF estimates
= the method is not iterative, it has two steps only
= quite sensitive to the choice of the SVF filter

" not mMinimum variance

v Motivation for studying more advanced IV methods

We can still do better !
How to choose the instrument to get optimal estimates ?
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Extended Instrumental Varlable

v Toi |mprove the basic IV estimate accuracy, some extensions are introduced

= operate a prefiltering by L(p) on both I/O data
» enlarge the instrument vector z(t,) such that n,= n, p=q or p=p

v The so-called extended IV estimate is then given (Séderstrém & Stoica 1983)
2

0,; =arg m@m

N N
T L(p)z(t )L(p)p" (t,)|6- z > L(p)z(t, )L(p)y(t,)
N N

Vo 2 & Vo
Ry I'n Q

= [(p)is a stable prefilter, Q a positive definite weighting matrixqug - xTQx

v' It is the weighted LS solution of an overdetermined system of linear equations

O, = (RAT,QRN)_7 (Rlary |

= This solution is then well suited for the consistency analysis of the IV estimators
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Optlmal IV - General results

v Data generatlng system (p—p orp—q) et
V(te) =222 u(ty )+ Ho(p)et) Ho(p)
t )=grT (t t u(t X(t)
Yt )=0T (4 )6,+v(t,) W e é vt

v |V estimates are consistent if

E{L(p)z(t, )L(p)v(t,)}=0
E{L(p)z(tk)L(p)qu(tk)} is nonsingular

v' IV estimates are optimal if v' |V estimates are asymptotically
(Soderstrébm and Stoica 1983) Gaussian distributed
Q=1 n_=n n
= =g ‘9,\/ 30 — 5t Neo,P,)
1 N
L' (p) = T
H_(p)A(p) P, = o2 EJ(L(p)z(t,))(L(p)z(t,))
ZOPt (t,) =@, (t, ) : noise-free version of ¢(t, )
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Optlmal IV - General results
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e( tk)

v Data generatlng system (p'p or p=q)

B,(p)
y(t,)= O(p)U(tk)+Ho(p)e(tk) Ut

H,(p)

y(t )=¢T (1, )0_+v(t, ) | G

X(t) %

y(t)

v Optimal accuracy if (Séderstrém & Stoica 1983. See also Young 1976. Optimal IV derives from the ML

equations. See the following recent paper

P.C. Young, Refined instrumental variable estimation: ML optimization of a unified BJ model, Automatica, 2015)

1

Lopt _
(P = o)A (p)

zPl(t, ) = %P (p)o (L) @, (1, ):noise-free version of ¢(t, )

v' Inherent filtering: a distinguishing feature of optimal IV

» |nteresting for CT model identification, the filtering
* ensures minimum variance estimates

* provides a convenient way for generating the time-derivatives

» can be automatically (and optimally) chosen

44
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Implementa’uon of the opt|mal IV solution

v Usual dllemma met w:th accuracy optlmlzatlon r
= requires the knowledge of Z2Pt(t, ) =LP (p)p (L, )
the true plant and noise models !! | 1oPt(p)- 1
= ¢, (t, ) noise-free version of g(t, ) ! Ho(p)As(P)

requires the knowledge of the noise-free output x(t)

v Two different main implementations have been suggested

= Multistep procedure (Séderstrém & Stoica 1983)

* Example: IV4 (4 steps) routine in the SID toolbox
* assumes a (rather peculiar) ARARX model structure
* may be quite unreliable in practice (see later on)

= |terative (or refined) procedure (Young 1976, 1984)
« Example: TFSRIVC routine in the CONTSID toolbox

* assumes a COE model structure
* is particularly reliable in practice
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lterative implementation of optimal V: O
| TFSRIVC for COE models |

Data generatmg system a CT output error (COE) model

_B,(p) e(t,)
= a0 ot [ AW l PATR
y(t,)=x(t,)+e(t,) P /

Optimal choice for the instrument and filter

zZ2Pt(t, ) =LP (p)p,(t, ) cpg(tk)=[ XDt ) o —x(t) u(™t) - u(t,)
1Pt (p) -
A,(p)

Requires the knowledge of the true plant model and noise-free output

Solution (P.C. Young)

= use of an iterative procedure where the instrument and prefilter are iteratively
adapted until they converge on their optimal value

N .
Ezf(tk,e Dy (t,.6')

N
i+1 Aiy, T Ai
HS-I"-IVC E Zf(tk’g )qpf (tk’g )
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Opt|mal TFSRIVC method for COE models

T T T T T e T T T T T e
e(tk) N samples l
u(t [B,(p) |x(t l !
— >
A (p) y(t)
e
Any CT
algo. plant AI.
Model HSI’IVC
u(ty) > estki)malw\t/ion
y
algorithm
u(ty) X(tt) | o
Alp) o %(n)
N
I/ A(p)

The learning rate is usual very fast
47  Convergence occurs in about 4 to 5 iterationsH. Garnier
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TFSRIVC parametnc error covariance matr|x est|mate

v Good empmcal estimates of the uncertalnty in the TFSRIVC parameter
estimates

= Provided by the parametric error covariance matrix estimate

) 5 v 1 . _
Pésr,-vc - E{(esrivc - Ho)(gsrivc - Ho) } =J J ! Fischer Inf. Matrix
. 2 1
srive ~ N E Zf (tk’QSI’IVC)Zf (tk’gsrlvc)

where é = y(t) y(tk,H

SrIVC)
 even for small sample size N

* can be used in the procedure to select the best model structure

(see YIC criterion later)
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To sump up

LSSVF IVSVF TFSRIVC

= Simple LSSVF: always biased
= Two-step IVSVF: unbiased but not minimum variance

= [terative TFSRIVC: optimal (unbiased & minimum variance) for COE models
unbiased with low (but not minimum) variance when the additive noise is colored

The TFSRIVC algorithm provides a reliable and robust approach to CT model identification

It is ecommended for day-to-day use
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Instrumental vanable take home messages

v" Include inherent (possibly optimal) data preﬂltering

AN

Conditions to obtain optimal IV estimates are well-established

AN

Provide consistent estimates even for an imperfect noise structure s¢M,Geg,

= Choice of the instrument and prefilters influences the variance only, while the
consistency properties are secured

v Implementation of the optimal IV solution
= [terative algorithms: much more preferable than multistep algorithms

v' Ofter similar good performance as PEM methods in general

v Iterative IV implementations present one major advantage over PEM
= are much less sensitive to the initialization stage
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Software aspects

v' Several actively maintained toolboxes are available
Comprehensive Mathworks SID toolbox (L. Ljung)
FDIDENT toolbox (I. Kollar, J. Schoukens)

UNIT toolbox (B. Ninness)

CAPTAIN toolbox (P. Young)

MATLAB’
SSIMULINK

4\ MathWorks

v No software entirely dedicated to direct CT approaches

TOOLBOX

= first released in 1999
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CONtlnuous Tlme System IDent|f|cat|on

Key features

v' Supports direct CT identification approaches

= Basic linear black-box models
* Transfer function and state-space models
* regularly and irregularly sampled data
* Time-domain or frequency domain data
= More advanced black-box models
* On-line, errors-in-variables and closed-loop situations
« Nonlinear systems: block-structured, LPV or LTV models

v" May be seen as an add-on to the Matlab System |dentification toolbox
» Uses the same syntax, data and model objects
M=tfsrivc(data,np,nz)

v P-coded version freely available from: www.cran.univ-lorraine.fr/contsid

52
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I\/Iam features of the Iatest version 7. 4

v" Core of the routines mainly based on iterative optimal IV: SRIVC
= CONTSID includes also a few PEM and subspace-based methods

v SRIVC-based parameter estimation schemes for more advanced identification

simple process models: PROCSRIVC

Transfer function + delay models: TFSRIVC
Transfer function + delay + noise models: TFRIVC
Time Varying Parameter models: recursive RSRIVC
Closed-loop identification: CLSRIVC

LPV models: LPVSRIVC

Hammerstein models: HSRIVC, ...

v" Includes a new flexible GUI and many demos to illustrate its use and the
recent developments

53
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CONTSID graphical user interface
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@ CONTSID Toolbox

More

(ANTSLD

TOOLBOX

# Welcome to the CONTSID Toolbox GUI

Iterative model training procedure

£

Manage data

Access data

Analyze data

1

Train model

Select model type

Estimate model

Validate model

Model output

Cross-validation

Deploy results

Export model

1

Get started !

Want to train a new model ? Or already have one ?
In both cases click on Next to begin !

Next o

Cancel ©

Allows the user to easily apply the iterative process of system identification
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CONTSID toolbox Demonstratlon programs

>>contsid_demo ® 00 MENU
Demonstration programs for case studies with the CONTSID toolbox

8 00 MENU Estimating Simple Models for an Aero-thermal Channel
CONTSID demonstration prggrams

Estimating Transfer Function Models for a Flexible Robot Arm

Case Studies

Estimating Transfer Function Models for a Resonant Beam

Tutorials

Estimating Transfer Function Models for a Rainfall Flow Process
What has the CONTSID to offer ? : :

Estimating State-space Models for a SIMO Pilot Crane

More Advanced ldentification

Estimating State-space Models for a MIMO Winding Process
Quit . )
Quit
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CONTSID toolbox Demonstratlon programs

>>contsid_demo e 00 MENU

Tutorials for the CONTSID toolbox

8 OO MENU
Getting Started

CONTSID demonstration programs .

Case Studies Estimating Models from Time-domain Data

Tutorials Estimating Models from Frequency-domain Data
What has the CONTSID to offer ? Estimating Models from Frequency Response Data

More Advanced ldentification | Estimating Simple Process Models from Step Response Data \

Quit Determining Model Order and Input Delay

Quit
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CONTSID toolbox — Demonstration programs

s —a—-———a—-——a—-——a-——-a-—--———a-——-f-— ——-a-— — —f—-— — - —
>>contsid_demo ® 00 MENU
Advantages of the CONTSID toolbox methods
8 OO MENU
Identified Parameters Are Closer to the Physical Coefficients
CONTSID demonstration programs ‘
Case Studies Can Cope with Non-uniformly Sampled Data |
Tutorials Are Ideally Suited for Stiff Dynamic Systems
~ What has the CONTSID to offer 7 Can Cope Easily with Fast Sampled Data \
| More Advanced Identification Include Inherent Data Filtering |
Sal ) ' Make the Identification Procedure Easier for the User |
Are Robust Against Measurement Setup Assumption |
Quit
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CONTSID toolbox — Demonstration programs

>>contsid demo More Advanced System Identification with the CONTSID

Identification of Box-Jenkins Models for Colored Measurement Noise

8 00O MENU

Identification of Transfer Function Models plus Time-delay

CONTSID demonstration progr

Identification of Multivariable Systems

Case Studies

Identification of Systems Operating in Closed Loop

Tutorials

.

Identification of Errors-in-Variable (EIV) Models

Recursive Identification of Linear Time-Invariant (LTI) Models

More Advanced ldentification

Recursive Identification of Linear Time-Varying (LTV) Models
Quit - n
Identification of Nonlinear Linear Parameter Varying (LPV) Models

Identification of Nonlinear Block-structured Models

Identification of Partial Differential Equation (PDE) Models

Quit
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