

Apprentissage de modèles dynamiques

Learning flexible continuous-time models of linear dynamical systems

Hugues GARNIER

Aim of this lecture

- ✓ To provide an introduction
 - theory of direct time-domain methods for continuous-time parametric linear black-box model identification

2

- ✓ The key computational method, we refer to, is
 - Optimal Instrumental Variable (IV) method

The system identification procedure

System Identification: an iterative procedure

The practionner has to make many choices:

- √ well-planned data acquisition
 - ✓ Sampling period, type of input, ...
- ✓ data-preprocessing
 - ✓ Filtering, detrending ...
- √ type of models to be estimated:
 - ✓ linear or non linear
 - √ continuous or discrete-time
- ✓ estimation methods
 - ✓ PEM or IV

These choices will impact the SYSID procedure and require active participation of a specifically trained practitioner!

3 H. Garnier

Continuous-time (CT) models of linear systems

- ✓ A model that describes the relationship between time continuous I/O signals is called a continuous-time model
 - Differential equation / polynomial / transfer function model

$$\frac{d^{n}y(t)}{dt^{n}} + a_{1}\frac{d^{n-1}y(t)}{dt^{n-1}} + \dots + a_{n}y(t) = b_{0}\frac{d^{m}u(t)}{dt^{m}} + b_{1}\frac{d^{m-1}u(t)}{dt^{m-1}} + \dots + b_{m}u(t)$$

$$A(p)y(t) = B(p)u(t)$$
 $pu(t) = \frac{du(t)}{dt}$ differentiation operator

$$A(p) = p^{n} + a_{1}p^{n-1} + \dots + a_{n}$$

 $B(p) = b_{0}p^{m} + b_{1}p^{m-1} + \dots + b_{m}$

$$G(s) = \frac{Y(s)}{U(s)} = \frac{B(s)}{A(s)}$$
 s: Laplace variable

State-space model

$$\begin{cases} \dot{x}(t) = Ax(t) + Bu(t) \\ y(t) = Cx(t) + Du(t) \end{cases}$$

$$G(s) = C(sI - A)^{-1}B + D$$

Main approaches to identify a black-box CT linear models from time-domain sampled data?

5 H. Garnier

The myth of the true data-generating system

- ✓ The mathematical model that will be identified from finite sampled data will be an approximation to the real system
- ✓ It is inexact and the data is never generated in practice from a system which "belongs to the model class"
- ✓ Nevertheless we shall find it convenient to assume such a true datagenerating system to assist in deriving theoretical results
- ✓ But we do not believe that it truly captures the behavior of the physical system

6

True data-generating linear system

✓ Assumptions about the true system: $S = \{G_o(p); H_o(p)\}$

$$y(t_k) = G_o(p)u(t_k) + H_o(p)e(t_k)$$

$$p = \frac{d}{dt}$$
 differentiation operator

- ✓ The measured output $y(t_k)$ is assumed to be made up of two distinct contributions:
 - $G_o(p)u(t_k)$: dependent of the choice of the input signal u(t)
 - the measurement noise $v(t_k) = H_o(p)e(t_k)$: independent of the input signal u(t)

The chosen model structure to capture the dynamics of the linear system

Assumptions about the model class:

$$M = \left\{ \left(G(p,\theta) ; H(p,\theta) \right), \theta \in \mathbb{R}^{n_{\theta}} \right\}$$

$$y(t_k) = G(p)u(t_k) + H(p)e(t_k)$$

$$p = \frac{d}{dt}$$
 differentiation operator

✓ The model structure is assumed a priori known. 2 cases can be distinguished

8

• Model form and order for G and H identical to G_o and H_o

$$S \notin M, G \in G_o$$

 $S \notin M$, $G \in G$ • Model form and order for G identical to G_o but H different to H_o

Black-box continuous-time model structures

✓ Model structure:
$$M = \{(G(p,\theta) ; H(p,\theta)), \theta \in \mathbb{R}^{n_{\theta}}\}$$

✓ General parametrization

Time-delay assumed known in the beginning

$$G(p,\theta) = \frac{B(p,\theta)}{A(p,\theta)} e^{-\tau p}$$
 $H(p,\theta) = \frac{C(p,\theta)}{D(p,\theta)}$

9

$$\theta^{T} = \begin{bmatrix} a_1 & \dots & a_n & b_0 & \dots & d_1 & \dots \end{bmatrix}$$
$$A(p,\theta) = p^n + a_1 p^{n-1} + \dots + a_n$$

$$B(p,\theta) = b_0 p^m + b_1 p^{m-1} + ... + b_m$$

$$C(p,\theta) = p^{n_c} + c_1 p^{n_c-1} + \dots + c_{n_c}$$

$$D(p,\theta) = p^{n_d} + d_1 p^{n_d-1} + \dots + d_{n_d}$$

Main black-box CT model structures

✓ Main model structures used in practice: $M = \{(G(p,\theta) ; H(p,\theta)), \theta \in \mathbb{R}^{n_{\theta}}\}$

CARX
$$G(p,\theta) = \frac{B(p,\theta)}{A(p,\theta)} e^{-\tau p} \qquad H(p,\theta) = \frac{1}{A(p,\theta)}$$
COE
$$G(p,\theta) = \frac{B(p,\theta)}{A(p,\theta)} e^{-\tau p} \qquad H(p,\theta) = 1$$
CBJ
$$G(p,\theta) = \frac{B(p,\theta)}{A(p,\theta)} e^{-\tau p} \qquad H(p,\theta) = \frac{C(p,\theta)}{D(p,\theta)}$$
hybrid CBJ
$$G(p,\theta) = \frac{B(p,\theta)}{A(p,\theta)} e^{-\tau p} \qquad H(q,\theta) = \frac{C(q,\theta)}{D(q,\theta)}$$

Distinction between model structures

— - • - — - - • - — - • - — - - • - — - • - — - • - — - • - — - • - — - • - — - • - — - • - — - • - - • - - • -

✓ CARX model can be written in linear regression form

$$A(p,\theta)y(t_k) = B(p,\theta)u(t_k) + e(t_k)$$
$$y^{(n)}(t_k) = \varphi^T(t_k)\theta + e(t_k)$$

- The model is not very realistic in practice
 ⇒ There are common denominators in G and H
- ① The model is a linear function in θ ⇒ Important computational advantages
- ✓ COE and CBJ models have an independent parametrization of $G(p,\theta)$ and $H(p,\theta)$

$$y(t_k) = \frac{B(p,\theta)}{A(p,\theta)}u(t_k) + e(t_k)$$

$$y(t_k) = \frac{B(p,\theta)}{A(p,\theta)}u(t_k) + \frac{C(p,\theta)}{D(p,\theta)}e(t_k)$$

- ① There are no common parameters in G and H
 ⇒ Advantages for independent identification of G and H and models more realistic in practice

Parameter estimation objective and assumptions

✓ Objective:

- Find the best parametric models $G(p,\theta)$ and $H(p,\theta)$ $M = \left\{ \left(G(p,\theta) \; ; \; H(p,\theta) \right), \; \theta \in \mathbb{R}^{n_{\theta}} \right\}$ for the unknown transfer functions $G_o(p)$ and $H_o(p)$ using a set of measured data $u(t_k)$ and $y(t_k)$
- ✓ In the beginning, we will make the following assumption:

$$\exists \theta_o \text{ such that } G(p,\theta_o) = G_o(p) \text{ and } H(p,\theta_o) = H_o(p)$$
 i.e.

$$S \in M$$

- ✓ The objective can therefore be restated as follows:
 - Find an estimate of the unknown parameter vector θ_o using a set of N samples of the input and output data:

$$Z^{N} = \{ u(t_k), y(t_k) \mid k = 1...N \}$$

generated by the true system, i.e. $y(t_k) = G_o(p)u(t_k) + H_o(p)e(t_k)$

Illustration of bias-variance trade-off for estimators

Center of the dartboard target (in red) represents θ_o

- Estimator A: biased (average value of the estimates are not in the center of the target)
- Estimator B: unbiased but quite large fluctuations around the mean value large variance
- Estimator C: unbiased and small variance

Issue in CT model identification: time-derivative measurement problem

✓ DT model identification - difference equation model

$$y(k) + a_1 y(k-1) + \dots + a_{n_a} y(k-n_a) = b_1 u(k-1) + \dots + b_{n_b} u(k-n_b-1)$$

✓ CT model identification - differential equation model

Unlike the *DT* model, where only sampled input and output data appear, the CT differential equation (DE) model contains I/O time-derivatives

$$\frac{d^{n}y(t)}{dt^{n}} + a_{1}\frac{d^{n-1}y(t)}{dt^{n-1}} + \dots + a_{n}y(t) = b_{0}\frac{d^{m}u(t)}{dt^{m}} + b_{1}\frac{d^{m-1}u(t)}{dt^{m-1}} + \dots + b_{m}u(t)$$

Not measured in most practical cases

Well-known approach to handle the time-derivative problem:

Apply a linear transform to both I/O data can be seen as a data prefiltering strategy

Two-stage approach for direct CT model identification

Main linear transforms developed for the primary stage

H. Garnier, M. Mensler, A. Richard, Continuous-time model identification from sampled data: implementation issues and performance evaluation. IJC, 76(13), 2003

16

Traditional State Variable Filtering (SVF) method

 $y^{(n)}(t) + a_1 y^{(n-1)}(t) + \dots + a_n y(t) = b_0 u^{(m)}(t) + \dots + b_m u(t)$

Apply a stable SVF filter L(p)=1/E(p) on both sides, the prefiltered DE model obeys exactly (except for a possible transient)

$$y_f^{(n)}(t) + a_1 y_f^{(n-1)}(t) + \dots + a_n y_f(t) = b_0 u_f^{(m)}(t) + \dots + b_m u_f(t)$$

Bank of SVF filters

The filtered time-derivatives can then be exploited to estimate the parameters of the differential equation model

Bode plot of SVF filters

✓ The outputs of the SVF filter bank will provide a smoothed estimate of the I/O timederivatives in the frequency band of interest

$$L_{i}(s) = \frac{s^{i}}{E(s)} = \frac{s^{i}}{(s+\lambda)^{n}}$$

$$L_{0}(s) = \frac{1}{(s+\lambda)^{3}}$$

$$L_{1}(s) = \frac{s}{(s+\lambda)^{3}}$$

$$L_{2}(s) = \frac{s^{2}}{(s+\lambda)^{3}}$$

$$L_{3}(s) = \frac{s^{3}}{(s+\lambda)^{3}}$$

Simple least squares-based SVF estimator

 \checkmark At t=t_k, the prefiltered DE model can be rewritten in linear regression form

$$y_f^{(n)}(t_k) = \varphi_f^T(t_k)\theta + \varepsilon(t_k)$$

$$\varphi_f^T(t_k) = \begin{bmatrix} -y_f^{(n-1)}(t_k) & \cdots & -y_f(t_k) & u_f^{(m)}(t_k) & \cdots & u_f(t_k) \end{bmatrix}$$

$$\theta = \begin{bmatrix} a_1 & \cdots & a_n & b_0 & \cdots & b_m \end{bmatrix}^T$$

✓ From N samples observed at t_1 , ... t_N , the LS-based SVF parameter estimates are computed as

$$\hat{\theta}_{lssvf} = \arg\min_{\theta} \left(\frac{1}{N} \sum_{k=1}^{N} \left(y_f^{(n)}(t_k) - \varphi_f^T(t_k) \theta \right)^2 \right)$$

$$\hat{\theta}_{lssvf} = \left[\frac{1}{N} \sum_{k=1}^{N} \varphi_f(t_k) \varphi_f^T(t_k)\right]^{-1} \left[\frac{1}{N} \sum_{k=1}^{N} \varphi_f(t_k) y_f^{(n)}(t_k)\right]$$

Simple LS-based SVF estimator

This simple LS-based SVF estimator represents the simplest archetype of CT model identification from sampled data

LSSVF method - Example

✓ Consider a second-order system

$$y^{(2)}(t) + a_1 y^{(1)}(t) + a_2 y(t) = b_0 u(t) + e(t)$$

$$(p^2 + a_1p + a_2)y(t) = b_0 u(t) + e(t)$$

✓ Apply a second-order SVF filter $L(p)=1/(p+\lambda)^2$

$$\left(\frac{p^2}{\left(p+\lambda\right)^2} + a_1 \frac{p}{\left(p+\lambda\right)^2} + a_2 \frac{1}{\left(p+\lambda\right)^2}\right) y(t) = \left(b_0 \frac{1}{\left(p+\lambda\right)^2}\right) u(t) + \frac{1}{\left(p+\lambda\right)^2} e(t)$$

$$y_f^{(2)}(t) + a_1 y_f^{(1)}(t) + a_2 y_f(t) = b_0 u_f(t) + e_f(t)$$

 \checkmark At $t=t_k$

$$y_f^{(2)}(t_k) = \begin{bmatrix} -y_f^{(1)}(t_k) & -y_f(t_k) & u_f(t_k) \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \\ b_0 \end{bmatrix} + e_f(t_k)$$

LSSVF method - Example

 \checkmark At $t=t_k$

$$y_f^{(2)}(t_k) = \begin{bmatrix} -y_f^{(1)}(t_k) & -y_f(t_k) & u_f(t_k) \end{bmatrix} \begin{vmatrix} a_1 \\ a_2 \\ b_0 \end{vmatrix} + e_f(t_k)$$

✓ For $t=t_1,...t_N$, we have

$$\begin{bmatrix} y_f^{(2)}(t_1) \\ y_f^{(2)}(t_2) \\ \vdots \\ y_f^{(2)}(t_N) \end{bmatrix} = \begin{bmatrix} -y_f^{(1)}(t_1) & -y_f(t_1) & u_f(t_1) \\ -y_f^{(1)}(t_2) & -y_f(t_2) & u_f(t_2) \\ \vdots & \vdots & \vdots \\ -y_f^{(1)}(t_N) & -y_f(t_N) & u_f(t_N) \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \\ b_0 \end{bmatrix} + \begin{bmatrix} e_f(t_1) \\ e_f(t_2) \\ \vdots \\ e_f(t_N) \end{bmatrix}$$

$$Y_N = \Phi_N \quad \theta + E_N$$

$$\hat{\theta}_{lssvf} = \left[\Phi_{N}^{T} \Phi_{N} \right]^{-1} \Phi_{N}^{T} Y_{N}$$

LS-based SVF estimator – Implementation aspects

$$\hat{\theta}_{lssvf} = \left[\Phi_N^T \Phi_N \right]^{-1} \Phi_N^T Y_N = \left[\sum_{k=1}^N \varphi_f(t_k) \varphi_f^T(t_k) \right]^{-1} \left[\sum_{k=1}^N \varphi_f(t_k) y_f^{(n)}(t_k) \right]$$

- ✓ <u>Do not compute</u> the normal equation solution above, but use instead numerically stable and computationally efficient algorithms for computing the LS-based SVF estimates :
 - SVD Singular Value Decomposition (pinv in Matlab)
 - Θ =pinv(Φ)*Y computes the solution to Y= Φ Θ
 - QR factorization (matrix division \ in Matlab)
 - $\Theta = \Phi \setminus Y$ computes also the solution to $Y = \Phi \Theta$
- ✓ Recommended implementation of the LSSVF solution in Matlab

$$\hat{\theta}_{lssvf} = \Phi_N \setminus Y_N$$

SVF-based estimators – Implementation aspects

- ✓ Roles of the SVF filters
 - Reconstruct the time-derivatives in the bandwidth of interest
 - Improve the statistical efficiency of the estimates (filter out the high-frequency noise)

- ✓ User parameters of the SVF filter
 - Filter order: should be chosen larger or equal than the system order n
 - Simplest choice: minimal-order SVF, $L(s)=1/(s+\lambda)^n$
 - Note that so called minimal-order GPMF where $L(s)=1/(s+\lambda)^{n+1}$ is often more robust against the noise than basic SVF (see Isgpmf in CONTSID)
 - Cut-off frequency λ of the SVF filter $L(s)=1/(s+\lambda)^n$, chosen in order to emphasize the frequency band of interest

SVF-based estimators – Implementation aspects

- ✓ Digital implementation of the CT SVF filtering operations
 - The computation of the LSSVF parameter estimates requires the value of prefiltered signals at the time-instants t_k , k = 1, ..., N

$$\begin{bmatrix} y_{f}^{(2)}(t_{1}) \\ y_{f}^{(2)}(t_{2}) \\ \vdots \\ y_{f}^{(2)}(t_{N}) \end{bmatrix} = \begin{bmatrix} -y_{f}^{(1)}(t_{1}) & -y_{f}(t_{1}) & u_{f}(t_{1}) \\ -y_{f}^{(1)}(t_{2}) & -y_{f}(t_{2}) & u_{f}(t_{2}) \\ \vdots & \vdots & \vdots \\ -y_{f}^{(1)}(t_{N}) & -y_{f}(t_{N}) & u_{f}(t_{N}) \end{bmatrix} \begin{bmatrix} a_{1} \\ a_{2} \\ b_{0} \end{bmatrix} + \begin{bmatrix} e_{f}(t_{1}) \\ e_{f}(t_{2}) \\ \vdots \\ e_{f}(t_{N}) \end{bmatrix}$$

$$\hat{\theta}_{ISSVf} = \Phi_{N} \setminus Y_{N}$$

 The digital implementation method has to be selected carefully according to the assumption about the filter input intersample behavior: choice of the hold block

Digital implementation of the CT SVF filtering operations

- If the filter input intersample behavior is known (e.g. piecewise constant or piecewise linear) or if the input takes a particular form (e.g. a sine or sum of sines):
 - an exact solution to the filtering operation at specified time-instants can be obtained
- If the filter input intersample behavior is not known:
 - approximate solution to the filtering operation can be obtained only
 - approximation errors depend on T_s and fast sampling is often preferred in CT model identification
 - Fast sampling is however not required for all CT methods, e.g. SRIVC (see later on)
- One efficient approach is implemented in the Matlab Isim routine
 - where the state-space representation of the SVF filter bank is discretized assuming the best zoh or foh assumption for the input intersample behavior

$$\begin{cases} \dot{x}(t) = A_c x(t) + B_c u(t) \\ y(t) = C x(t) \end{cases} \xrightarrow{hold} \begin{cases} x(t_{k+1}) = F_d x(t_k) + G_d u(t_k) \\ y(t_k) = C x(t_k) \end{cases}$$

LSSVF implementation in Matlab – 2nd-order example

✓ Simple second-order COE model

$$\begin{cases} x(t) = G_o(p)u(t) \\ y(t_k) = x(t_k) + e(t_k) \end{cases}$$

$$G_o(p) = \frac{2}{(p+3)(p+1)} = \frac{2}{p^2 + 4p + 3}$$

- ✓ Simulations conditions
 - *u(t)*: PRBS
 - $T_s=10 \text{ ms}$
 - N=1500
 - 2 output measurement situations
 - Noise-free
 - $e(t_k)$: white Gaussian noise, $\sigma_e = 0.2$

LSSVF estimator - Matlab implementation - Noise-free case

```
B=2;
                        \% B(p) = 2
                                                                                           Input-Output Data
A=[1 4 3];
                        % A(p) = p^2 + 4p + 3 - True system
Ts=0.01;
                                                                         0.4
                                                                         0.2
u=prbs(4,100);
                        % PRBS input from the CONTSID
N=1500:
                                                                         -0.4
t=(0:N-1)'*Ts;
                                                                         -0.6
x=lsim(B,A,u,t);
                        % simulation of the noise-free output
data0=iddata(x,u,Ts);idplot(data0);
% Primary stage - SVF filtering
                                                                        0.5
lambda=3;
                                     % I: SVF filter cut-off frequency
den_L=[1 2*lambda lambda^2]; % denominator of the SVF filter
                                                                        -0.5
num L0=1;
                                     % numerator of L0(p)=1/(p+\lambda)^2
num L1=[1 0];
                                     % numerator of L1(p) = p/(p+\lambda)^2
                                                                                                      10
                                                                                                           12
                                                                                                                 14
num L2=[1 \ 0 \ 0];
                                     % numerator of L2(p) = p^2/(p+\lambda)^2
xf0=lsim(num L0,den L,x,t);
                                     % Computation of the SVF filter bank outputs
xf1=lsim(num L1,den L,x,t);
xf2=lsim(num_L2,den_L,x,t);
uf0=lsim(num_L0,den_L,u,t);
% Secondary stage - LS estimates
Phi N=[-xf1 - xf0 uf0];
                                     % Regression matrix
Y N=xf2;
                                     % Output vector
theta Issvf=Phi N\Y N
                                     % LSSVF estimates
theta Issvf'
                                     % see also the LSSVF routine in the CONTSID toolbox
3.9997
          2,9998
                     1.9999
                                     % Mlssvf=lssvf(data0,[2 1 0],lambda)
```

28 H. Garnier

LSSVF estimator - Matlab implementation - Noisy case

```
B=2;
                        \% B(p) = 2
A=[1 4 3];
                        % A(p) = p^2 + 4p + 3 - True system
u=prbs(4,100);
                        % PRBS input from the CONTSID
N=1500: Ts=0.01:
t=(0:N-1)'*Ts;
x=lsim(B,A,u,t);
                        % simulation of the noise-free output
y=x+0.2*randn(N,1); % white noise added to the noise free output
data=iddata(y,u,Ts);idplot(data);
                                          S \notin M, G \in G_0
% Primary stage - SVF filtering
lambda=3;
                                    % I: SVF filter cut-off frequency
den_L=[1 2*lambda lambda^2]; % denominator of the SVF filter
num L0=1;
                                    % numerator of L0(p)=1/(p+\lambda)^2
                                                                                                    10
                                                                                                         12
num L1=[1 0];
                                    % numerator of L1(p) = p/(p+\lambda)^2
                                                                                          Time (seconds)
num L2=[1 \ 0 \ 0];
                                    % numerator of L2(p) = p^2/(p+\lambda)^2
yf0=lsim(num_L0,den_L,y,t);
                                    % Computation of the SVF filter bank outputs
yf1=lsim(num L1,den L,y,t);
yf2=lsim(num_L2,den_L,y,t);
uf0=lsim(num_L0,den_L,u,t);
% Secondary stage - LS estimates
Phi_N=[-yf1 -yf0 uf0];
                                    % Regression matrix
Y_N=yf2;
                                    % Output vector
theta Issvf=Phi N\Y N
                                    % LSSVF estimates
theta Issvf'
                                    % see also the LSSVF routine in the CONTSID toolbox
3.2542 2.6889
                     1.6865
                                     % Mlssvf=lssvf(data,[2 1 0],lambda)
```

29 H. Garnier

Basic LSSVF estimator – Statistical analysis

✓ Assume the data-generating system is described as

S:
$$y^{(n)}(t_k) = \varphi^T(t_k)\theta_o + v(t_k)$$

where θ_o is the true parameter vector

Assume that $v(t_k)$ is a stationary stochastic process independent of $u(t_k)$. After the SVF filtering, the data-generating system can be rewritten as

$$y_f^{(n)}(t_k) = \varphi_f^T(t_k)\theta_o + v_f(t_k)$$

$$\hat{\theta}_{lssvf} = \left[\frac{1}{N} \sum_{k=1}^{N} \varphi_f(t_k) \varphi_f^T(t_k)\right]^{-1} \left[\frac{1}{N} \sum_{k=1}^{N} \varphi_f(t_k) y_f^{(n)}(t_k)\right]$$

$$\hat{\theta}_{lssvf} = \theta_o + \left[\frac{1}{N} \sum_{k=1}^{N} \varphi_f(t_k) \varphi_f^T(t_k) \right]^{-1} \left[\frac{1}{N} \sum_{k=1}^{N} \varphi_f(t_k) v_f(t_k) \right]$$

Basic LSSVF estimator – Statistical analysis

$$\hat{\theta}_{lssvf} = \theta_o + \left[\frac{1}{N} \sum_{k=1}^{N} \varphi_f(t_k) \varphi_f^T(t_k) \right]^{-1} \left[\frac{1}{N} \sum_{k=1}^{N} \varphi_f(t_k) v_f(t_k) \right]$$

✓ Under weak conditions, the normalized sums tend to the corresponding expected values as N tends to infinity. Hence

$$\hat{\theta}_{ISSVf} \xrightarrow{N \to \infty} \theta_{O}$$

$$\hat{\theta}_{ISSVf} \xrightarrow{N \to \infty} \theta_{O} \quad \text{if} \begin{cases} \bar{E} \left\{ \varphi_{f}(t_{k}) \varphi_{f}^{T}(t_{k}) \right\} & \text{is nonsingular} \\ \bar{E} \left\{ \varphi_{f}(t_{k}) v_{f}(t_{k}) \right\} = 0 \end{cases}$$

- The first condition is satisfied in most cases
- The second condition is <u>never</u> satisfied
- ✓ LSSVF estimates are always biased because of the correlation between the regression vector $\varphi_f(t_k)$ and the noise $v_f(t_k)$
 - even if $v(t_k)$ is white noise, $v_f(t_k)$ becomes colored due to the SVF filtering

Simple LSSVF estimator – Conclusions

- ✓ Simple LSSVF method has some attractive properties
 - Simple, analytical solution easy to compute, low computational complexity
- ✓ Main shortcomings
 - <u>always biased</u> in noisy output measurement situations

$$\bar{E}\left\{\hat{\theta}_{lssvf}\right\} \neq \theta_{o} \quad \text{since} \quad \bar{E}\left\{\varphi_{f}(t_{k})v_{f}(t_{k})\right\} \neq 0$$

quite sensitive to the SVF filter cut-off frequency

$$L(p) = \frac{1}{\left(p + \lambda\right)^n}$$

Motivation for studying more advanced methods

We can do better!

Traditional solutions to get optimal estimates

- ✓ Maximum Likelihood Method (ML)
 - If the disturbances on the system are Gaussian, the ML method coincides with the *Prediction Error Method* (PEM)

✓ Instrumental Variable Method (IV)

33 H. Garnier

Prediction Error Method (PEM)

- ✓ Main idea: model the noise!
- \checkmark General approach applicable to a wide range of model structures: OE, BJ, ...
- ✓ Conditions to obtain optimal PEM estimates are well-established

$$\hat{\theta}_{pem} = \arg\min_{\theta} \sum_{k=1}^{N} \varepsilon^{2}(t_{k}, \theta) = \arg\min_{\theta} \sum_{k=1}^{N} \left\| y(t_{k}) - \hat{y}(t_{k}, \theta) \right\|^{2}$$

- ✓ If assumptions about the noise valid: delivers optimal estimates
- ✓ Involves often solving a non-convex optimization problem
 - relies on iterative nonlinear optimization (computationally quite demanding)
 - Examples: gradient descent, Levenberg-Marquardt, ... See TFEST in the SID toolbox
 - special care required for the initialization of the iterative search
 - may be trapped in false solutions that correspond to local minima

Instrumental Variable (IV) method

- ✓ Main idea: model the noise!
- \checkmark General approach applicable to a wide range of model structures: *OE, BJ, ...*
- ✓ Conditions to obtain optimal IV estimates are well-established

$$\hat{\theta}_{iv}^{opt} = \arg\min_{\theta} \sum_{k=1}^{N} \left\| z_f^{opt}(t_k) L^{opt}(p) \left(y(t_k) - \varphi^T(t_k) \theta \right) \right\|_{Q}^{2}$$

- Need to specify the *instrument* z_f and the *prefilter* L(p)
- ✓ If the assumptions about the noise are valid: delivers *optimal* estimates
- ✓ If the assumptions about the noise are not valid: delivers unbiased estimates
- ✓ Based on (pseudo) linear regression
 - do not rely on nonlinear optimization : less risk to be trapped in false solutions
 - low computational complexity (comparable to the LS method)

Solution of the Instrumental Variable (IV) method

- ✓ **Recap**: LSSVF estimates always biased because of the correlation between the regression vector $\varphi_f(t_k)$ and the noise $v_f(t_k)$
- ✓ Main idea of IV: introduce a vector $z_f(t_k)$ called instrument or instrumental variable which components are <u>uncorrelated</u> with $v_f(t_k)$

$$\begin{split} E\left\{Z_f(t_k)V_f(t_k)\right\} &= 0\\ \frac{1}{N}\sum_{k=1}^N z_f(t_k)V_f(t_k) &= 0 \qquad \text{with} \quad V_f(t_k) = y_f^{(n)}(t_k) - \varphi_f^T(t_k)\theta\\ \hat{\theta}_{iv} &= sol_\theta \frac{1}{N}\sum_{k=1}^N z_f(t_k) \left(y_f^{(n)}(t_k) - \varphi_f^T(t_k)\theta\right) = 0\\ \hat{\theta}_{iv} &= \left[\frac{1}{N}\sum_{k=1}^N z_f(t_k)\varphi_f^T(t_k)\right]^{-1} \left[\frac{1}{N}\sum_{k=1}^N z_f(t_k)y_f^{(n)}(t_k)\right] \end{split}$$

• How should the instrument $z_f(t_k)$ be chosen?

Basic two step IV-based SVF estimator

- ✓ The instrument must be chosen so that it is:
 - $E\left\{z_f(t_k)v_f(t_k)\right\} = 0$ not correlated with the measurement noise
 - sufficiently correlated with the filtered regression vector $E\{z_f(t_k)\varphi_f^T(t_k)\}\neq 0$

$$E\left\{z_f(t_k)\varphi_f^T(t_k)\right\} \neq 0$$

$$\varphi_f^T(t_k) = L(p) \left[-y^{(n-1)}(t_k) \quad \cdots \quad -y(t_k) \quad u^{(m)}(t_k) \quad \cdots \quad u(t_k) \right] \quad L(p) = \frac{1}{(p+\lambda)^n}$$

✓ In the basic two-step IVSVF estimator, the instrument is built as

$$z_f^T(t_k) = L(p) \left[-\hat{x}^{(n-1)}(t_k) \quad \cdots \quad -\hat{x}(t_k) \quad u^{(m)}(t_k) \quad \cdots \quad u(t_k) \right]$$

$$\hat{x}(t_k) = G(\rho, \hat{\theta}_{lssvf})u(t_k)$$

is the estimated noise-free output calculated from an a priori LSSVF estimate

The basic *IV-based SVF* estimator can then be computed from

$$\hat{\theta}_{ivsvf} = \left[\frac{1}{N} \sum_{k=1}^{N} z_f(t_k) \varphi_f^T(t_k)\right]^{-1} \left[\frac{1}{N} \sum_{k=1}^{N} z_f(t_k) y_f^{(n)}(t_k)\right]$$

Two-step IV-based SVF estimator - Summary

38

3.2542 2.6889

1.6865

IVSVF estimator - Matlab implementation - Noisy case

```
B=2;
                        % B(p)=2
A=[1 \ 4 \ 3];
                        % A(p) = p^2 + 4p + 3 - True system
u=prbs(4,100);
                        % PRBS input from the CONTSID
N=1500: Ts=0.01:
t=(0:N-1)'*Ts;
x=lsim(B,A,u,t);
                        % simulation of the noise-free output
y=x+0.2*randn(N,1); % white Gaussian noise added
data=iddata(v,u,Ts);idplot(data);
% First step – LSSVF estimation
lambda=3:
                                     % I: SVF filter cut-off frequency
den L=[1 2*lambda lambda^2]; % denominator of the SVF filter
                                                                                                     10
                                                                                                           12
num L0=1:
                                     % numerator of L0(p)=1/(p+\lambda)^2
                                                                                           Time (seconds)
num L1=[1 0];
                                     % numerator of L1(p) =p/(p+\lambda)<sup>2</sup>
num L2=[1 \ 0 \ 0];
                                     % numerator of L2(p) = p^2/(p+\lambda)^2
yf0=lsim(num L0,den L,y,t);
                                     % Computation of the SVF filter bank outputs
yf1=lsim(num_L1,den_L,y,t);
yf2=lsim(num_L2,den_L,y,t);
uf0=lsim(num_L0,den_L,u,t);
Phi_N=[-yf1 -yf0 uf0];
                                     % Regression matrix
Y_N=yf2;
                                     % Output vector
theta Issvf=Phi N\Y N
                                     % LSSVF estimates
theta Issvf'
                                     % see also the LSSVF routine in the CONTSID toolbox
```

% Mlssvf=lssvf(data,[2 1 0],lambda)

IVSVF estimator - Matlab implementation - Noisy case

```
% Second step – IVSVF estimation
% Construction of the auxiliary model
Blssvf=theta lssvf(3)';
                                  % Auxiliary model
Alssvf=[1 theta lssvf(1:2)'];
% Simulation of the auxiliary model output
xest=lsim(Blssvf,Alssvf,u,t);
% Computation of the SVF filter bank outputs for the auxiliary model
xestf0=lsim(num L0,den L,xest,t);
                                             % filtered auxiliary model output
xestf1=lsim(num L1,den L,xest,t);
                                             % 1st-order time-derivative of the filtered auxiliary model output
% Construction of the IV matrix
Z N=[-xestf1 -xestf0 uf0];
                                              % Instrumental variable matrix
% IVSVF estimates
theta ivsvf=(Z N'*Phi N)\Z N'*Y N;
                                              % IVSVF solution
theta ivsvf'
3.9454 2.9977
                   1.9685
                                              % see also the ivsvf routine in the CONTSID toolbox
                                              % Mivsvf=ivsvf(data,[2 1 0],lambda)
% The estimation error has clearly been reduced
```

- % Run several times your program to get a feel for the bias reduction (which can vary depending on the noise realization) or even better run a Monte Carlo simulation

40

Basic IVSVF estimator – Conclusions

- Some attractive properties
 - simple
 - analytical solution
 - low computational complexity
 - unbiased estimates in output measurement noise situations $S \notin M, G \in G$

- But IVSVF estimates
 - the method is not iterative, it has two steps only
 - quite sensitive to the choice of the SVF filter
 - not minimum variance

Motivation for studying more advanced IV methods

We can still do better! How to choose the instrument to get optimal estimates?

Extended Instrumental Variable

- ✓ To improve the basic IV estimate accuracy, some extensions are introduced
 - operate a prefiltering by $L(\rho)$ on both I/O data
 - enlarge the instrument vector $\mathbf{z}(t_k)$ such that $n_z \ge n_\theta$

$$\rho$$
 = q or ρ = ρ

✓ The so-called **extended IV estimate** is then given (Söderström & Stoica 1983)

$$\hat{\theta}_{xiv} = \arg\min_{\theta} \left\| \underbrace{\left(\frac{1}{N} \sum_{k=1}^{N} L(\rho) z(t_k) L(\rho) \varphi^T(t_k) \right)}_{R_N} \theta - \underbrace{\left(\frac{1}{N} \sum_{k=1}^{N} L(\rho) z(t_k) L(\rho) y(t_k) \right)}_{r_N} \right\|_{Q}^{2}$$

- $L(\rho)$ is a stable prefilter, Q a positive definite weighting matrix $\|x\|_Q^2 = x^T Q x$
- ✓ It is the weighted LS solution of an overdetermined system of linear equations

$$\hat{\theta}_{xiv} = \left(R_N^T Q R_N\right)^{-1} \left(R_N^T Q r_N\right)$$

This solution is then well suited for the consistency analysis of the IV estimators

Optimal IV – General results

✓ Data-generating system (ρ =p or ρ =q)

$$y(t_k) = \frac{B_o(\rho)}{A_o(\rho)} u(t_k) + H_o(\rho) e(t_k)$$
$$y(t_k) = \varphi^T(t_k) \theta_o + v(t_k)$$

$$\begin{cases} \bar{E}\left\{L(\rho)z(t_k)L(\rho)v(t_k)\right\} = 0\\ \bar{E}\left\{L(\rho)z(t_k)L(\rho)\varphi^T(t_k)\right\} \text{ is nonsingular} \end{cases}$$

✓ IV estimates are *optimal* if (Söderström and Stoica 1983)

$$\begin{aligned} \mathbf{Q} &= \mathbf{I} & n_{\mathbf{Z}} &= n_{\theta_o} \\ L^{opt}(\rho) &= \frac{1}{H_o(\rho)A_o(\rho)} \\ z^{opt}(t_k) &= \varphi_o(t_k) \text{ : noise-free version of } \varphi(t_k) \end{aligned}$$

✓ IV estimates are asymptotically Gaussian distributed

$$\sqrt{N} \left(\hat{\theta}_{iv} - \theta_o \right) \xrightarrow[N \to \infty]{\text{dist}} N(0, P_{iv})$$

$$P_{iv} = \sigma_e^2 \, \overline{E} \left\{ \left(L(\rho) z(t_k) \right) \left(L(\rho) z(t_k) \right)^T \right\}$$

 $e(t_k)$

Optimal IV – General results

✓ Data-generating system (ρ =p or ρ =q)

$$y(t_k) = \frac{B_o(\rho)}{A_o(\rho)} u(t_k) + H_o(\rho) e(t_k)$$
$$y(t_k) = \varphi^T(t_k) \theta_o + v(t_k)$$

✓ **Optimal accuracy** if (Söderström & Stoica 1983. See also Young 1976. Optimal IV derives from the ML equations. See the following recent paper

P.C. Young, Refined instrumental variable estimation: ML optimization of a unified BJ model, Automatica, 2015)

$$\begin{split} L^{opt}(\rho) &= \frac{1}{H_o(\rho)A_o(\rho)} \\ z_f^{opt}(t_k) &= L^{opt}(\rho)\varphi_o(t_k) \quad \varphi_o(t_k) \text{: noise-free version of } \varphi(t_k) \end{split}$$

- ✓ Inherent filtering: a distinguishing feature of optimal IV
 - Interesting for CT model identification, the filtering
 - ensures minimum variance estimates
 - provides a convenient way for generating the time-derivatives
 - > can be automatically (and optimally) chosen

Implementation of the optimal IV solution

- ✓ Usual dilemma met with accuracy optimization
 - requires the knowledge of the true plant and noise models !!
 - $\varphi_o(t_k)$: noise-free version of $\varphi(t_k)$ requires the knowledge of the noise-free output $x(t_k)$
- $\begin{cases} Z_f^{opt}(t_k) = L^{opt}(\rho)\varphi_o(t_k) \\ L^{opt}(\rho) = \frac{1}{H_o(\rho)A_o(\rho)} \end{cases}$
- ✓ Two different main implementations have been suggested.
 - Multistep procedure (Söderström & Stoica 1983)
 - Example: IV4 (4 steps) routine in the SID toolbox
 - assumes a (rather peculiar) ARARX model structure
 - may be quite unreliable in practice (see later on)
 - Iterative (or refined) procedure (Young 1976, 1984)
 - Example: TFSRIVC routine in the CONTSID toolbox
 - assumes a COE model structure
 - is particularly reliable in practice

Iterative implementation of optimal IV: TFSRIVC for COE models

Data-generating system: a CT output error (COE) model

$$\begin{cases} x(t) = \frac{B_o(p)}{A_o(p)} u(t) \\ y(t_k) = x(t_k) + e(t_k) \end{cases}$$

✓ Optimal choice for the instrument and filter

$$\begin{cases} z_f^{opt}(t_k) = L^{opt}(p)\varphi_o(t_k) \\ L^{opt}(p) = \frac{1}{A_o(p)} \end{cases}$$

$$\begin{cases} Z_f^{opt}(t_k) = L^{opt}(p)\varphi_o(t_k) & \varphi_o^T(t_k) = \begin{bmatrix} -x^{(n-1)}(t_k) & \cdots & -x(t_k) & u^{(m)}(t_k) & \cdots & u(t_k) \end{bmatrix} \\ L^{opt}(p) = \frac{1}{\Delta(p)} \end{cases}$$

- Requires the knowledge of the true plant model and noise-free output
- Solution (P.C. Young)
 - use of an iterative procedure where the instrument and prefilter are iteratively adapted until they converge on their optimal value

$$\hat{\theta}_{\text{srivc}}^{i+1} = \left[\sum_{k=1}^{N} z_f(t_k, \hat{\theta}^i) \varphi_f^T(t_k, \hat{\theta}^i) \right]^{-1} \left[\sum_{k=1}^{N} z_f(t_k, \hat{\theta}^i) y_f^{(n)}(t_k, \hat{\theta}^i) \right]$$

Optimal TFSRIVC method for COE models

The learning rate is usual very fast

TFSRIVC parametric error covariance matrix estimate

- ✓ Good empirical estimates of the uncertainty in the TFSRIVC parameter estimates
 - Provided by the parametric error covariance matrix estimate

$$P_{\hat{\theta}_{srivc}} = E\left\{ \left(\hat{\theta}_{srivc} - \theta_o\right) \left(\hat{\theta}_{srivc} - \theta_o\right)^T \right\} \ge J^{-1}$$
 J: Fischer Inf. Matrix

$$\hat{P}_{srivc} = \frac{\sigma_{\hat{e}}^2}{N} \left[\frac{1}{N} \sum_{k=1}^{N} z_f(t_k, \hat{\theta}_{srivc}) z_f^T(t_k, \hat{\theta}_{srivc}) \right]^{-1}$$
where $\hat{e} = y(t_k) - \hat{y}(t_k, \hat{\theta}_{srivc})$

- even for small sample size N
- can be used in the procedure to select the best model structure (see YIC criterion later)

To sump up

- Simple LSSVF: always biased
- Two-step IVSVF: unbiased but not minimum variance
- Iterative TFSRIVC: optimal (unbiased & minimum variance) for COE models
 unbiased with low (but not minimum) variance when the additive noise is colored

The TFSRIVC algorithm provides a reliable and robust approach to CT model identification

It is recommended for day-to-day use

Instrumental variable: take-home messages

- ✓ Include inherent (possibly optimal) data prefiltering
- ✓ Conditions to obtain optimal IV estimates are well-established
- ✓ Provide consistent estimates even for an imperfect noise structure $S \notin M$, $G \in G_o$
 - Choice of the instrument and prefilters influences the variance only, while the consistency properties are secured
- ✓ Implementation of the optimal IV solution
 - Iterative algorithms: much more preferable than multistep algorithms
- ✓ Offer similar good performance as PEM methods in general
- ✓ Iterative IV implementations present one major advantage over PEM
 - are much less sensitive to the initialization stage

Software aspects

- ✓ Several actively maintained toolboxes are available
 - Comprehensive Mathworks SID toolbox (L. Ljung)
 - FDIDENT toolbox (I. Kollar, J. Schoukens)
 - UNIT toolbox (B. Ninness)
 - CAPTAIN toolbox (P. Young)

System Identification Toolbox™

✓ No software entirely dedicated to direct CT approaches

first released in 1999

CONtinuous-Time System IDentification

Key features

- ✓ Supports direct CT identification approaches
 - Basic linear black-box models
 - Transfer function and state-space models
 - regularly and irregularly sampled data
 - Time-domain or frequency domain data
 - More advanced black-box models
 - On-line, errors-in-variables and closed-loop situations
 - Nonlinear systems: block-structured, LPV or LTV models
- ✓ May be seen as an add-on to the Matlab System Identification toolbox
 - Uses the same syntax, data and model objects
 M=tfsrivc(data,np,nz)
- ✓ P-coded version freely available from: <u>www.cran.univ-lorraine.fr/contsid</u>

Main features of the latest version 7.4

- ✓ Core of the routines mainly based on iterative optimal IV: SRIVC
 - CONTSID includes also a few PEM and subspace-based methods
- ✓ SRIVC-based parameter estimation schemes for more advanced identification
 - simple process models: PROCSRIVC
 - Transfer function + delay models: TFSRIVC
 - Transfer function + delay + noise models: TFRIVC
 - Time Varying Parameter models: recursive RSRIVC
 - Closed-loop identification: CLSRIVC
 - LPV models: LPVSRIVC
 - Hammerstein models: HSRIVC, ...
- ✓ Includes a new flexible *GUI* and many *demos* to illustrate its use and the recent developments

CONTSID graphical user interface

Allows the user to easily apply the iterative process of system identification

>>contsid_demo

>>contsid_demo

>>contsid demo

>>contsid_demo

CONTSID demonstration programs

Case Studies

Tutorials

What has the CONTSID to offer ?

More Advanced Identification

Quit

MENU More Advanced System Identification with the CONTSID Identification of Box-Jenkins Models for Colored Measurement Noise Identification of Transfer Function Models plus Time-delay Identification of Multivariable Systems Identification of Systems Operating in Closed Loop Identification of Errors-in-Variable (EIV) Models Recursive Identification of Linear Time-Invariant (LTI) Models Recursive Identification of Linear Time-Varying (LTV) Models Identification of Nonlinear Linear Parameter Varying (LPV) Models Identification of Nonlinear Block-structured Models Identification of Partial Differential Equation (PDE) Models Quit