WL

UNIVERSITE
DE LORRAINE

/

\_

UNIVERSITE
DE LORRAINE

Apprentissage de mod
dynamiques

Models for disturbances: stochastic models

Hugues GARNIER

hugues.garnier@univ-lorraine.fr

POLYTE(}

NANCY

eles

/

H. Garnier



WL

UNIVERSITE
DE LORRAINE

Data-driven model learning = System identification

System Identification;

“Let the data speak about the system”.

Input u(1)

eeeeend Black Box

o,

G(s)

Output y(2)

MMM,

V

_Y(s) bys"+bs" +---+b, d

- U(s) s +as" +-+a,

Find a model structure and determine parameter values

that fit the data.
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Use of simple linear regression
for transfer function model learning — A brief recap

When the model structure is known
* In the ideal noise-free or deterministic case, T T
use of simple least squares works fine !

— the transfer function model parameter can be
estimated by linear regression

* In practice, the simple least squares method
breaks down

— The output is not perfectly known. It is
contaminated by measurement noise

= Incorrect least squares estimates
(whatever the continuous or discrete-time
model form)

How can we model the noisy measurement output ?
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ldentifying measurement noise models

* In control design and estimation/prediction, it is often important to
identify not only the dynamics from input to output, but also the
measurement noise dynamics

— how noise and disturbance perturb the system
— where noise comes in
— whether the noise is colored and correlated

* In system identification, various techniques are available for identifying
both input-output dynamics and noise dynamics

4 H. Garnier
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Classification of signals
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Model for noisy measurement output signals

often modelled as

a deterministic signal W /\ A A .
IVAVRVAVE

v(t)

+ a stochastic signal
m‘, | ]Wl'llil. llll_llll.,.(lll I, ..‘.H‘_v\

1 TR LN T

yO)=x(0)+v(t)

I VLAY,

= noisy measurement signal

"“'"wgr T g Yo
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Models for disturbance and measurement noise

So far: only deterministic models

o e(t) l wwm.

y(t)

— 3 SYSTEM ___.@_.

e disturbance and measurement noise

e Stochastic models:

® means, covariances
e spectra (energy or power)

u(t) = input

w(t) = disturbance

e(t) = measurement noise
y(t) = output

are stochastic signals
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Moments of a probability distribution
A brief review

e Moments of a random variable X with density fy(x):

- [-th moment

co

m; = E[X'] = [ x'fx(x) dx

— [-th central moment

m, = E[(X — '] = j (x — W' () dx

* Low-order moments: example

« Expectation (mean): my; = u = E[X]

« Variance: m, = 02 = E[(X — u)?]
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Family of ARMA/ARIMA models

ARMA/ARIMA models are a class of black-box models that is capable of
representing stationary as well as non-stationary stochastic signals

Stochastic

signal
1

Stationary

AR models

MA models

ARMA models

Non-stationary

Non-seasonal
ARIMA models

Seasonal
SARIMA models
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Modelling the disturbances: the stationary assumption

The stochastic measurement process is assumed to be stationary

.u.f” ,’,Um" lll||||l u lu .LI“
ik 1

Its probability distribution does not change when shifted in time

Realizations of a stationary stochastic process, vary over time in a stable

manner about a fixed mean
It is (weakly) stationary if it can be described by its first two mom
only

- Mean, variance

- AutoCorrelation Function (ACF)

ents

10
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Major assumption: stationarity of the signals

« The properties of one section of a data are much like the properties of the other
sections. The future is “similar” to the past (in a probabilistic sense)

» A stationary stochastic signals has

- no trend / no seasonality /\[\/\'PI\
- no systematic change in variation /l/lﬂ /’f

- no periodic fluctuations 1

11 H. Garnier
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Models for stationary stochastic signals
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Autocorrelation function (ACF)

Gaussian white noise

3

e Statistical correlation summarizes the o
strength of the relationship between
two different variables 1

e We can calculate the correlation for
time series observations with |
observations with previous time
instants, called lags. This is called an 2
autocorrelation

1 1 1 L 1
0 50 100 150 200 250 300
Time

e Aplot of the autocorrelation of a time
series in terms of lags is called the

Sample Autocorrelation Function
T T T

AutoCorrelation Function, or its _ | | | | ]
O 08
acronym ACF 5
§ 0.6 [
g 0.4 - i
e Sample ACF at lag h, denoted as y,,(h), 2 oz ]
measures the linear correlation between § o L.« 1 S S I S I .
_ 1 1 I | P 1 | 1 I I
Yt and Yt+h 0 2 4 6 8 10 12 14 16 18 20
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ACF: stationary case

e Autocovariance function of a stationary time series {y,}

Yy (M)=Cov(¥Visn, Y )=E[Vrsn—)e—w)] [R] <N

with the following 3 properties Yy (h)
]' Vy(o) 2 OI 0-2 o]
z |Vy(h)| =< ¥y(0) - - '—)_/—2 -|--- -
2 v =y (-

= even function. ACF is usually plotted for positive lags only 0

e Autocorrelation function of a stationary signal {y;}

vy
py(h) = 7, (0)

with all the properties of the autocovariance function, except p,(0) =1

O0<h<N

e |t measures the linear correlation between y, and y,.,

Z<— lag

14
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Autocorrelation function (ACF)

* ACF: measures the speed of variation of temporal evolutions

— we compare the time series with itself but shifted by 7z (or h)

— it allows us to see how the time series at a given time is influenced
(linear autocorrelation) by what happened at a previous time

floctvations lemtes :

/\/\ forke d[Pcmle enkre valews
N~ I\ Successiveg

- f{vdVah'ouS rapides :
faible déperclance embre valuws

Svccessiyes
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Autocorrelation function (ACF)

Slowly varying autocorrelation function — slowly varying process
Quickly varying autocorrelation function — quickly varying process
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Finite sample statistics

Given {y;,..., Yy} observations of a stationary signal {y,}, estimate
the finite sample mean, variance, autocovariance and ACF

— Sample mean
A — 1 onN
H=Yy= E2i=1 Yi
— Sample variance
A 1 N A
6 = N—_12i=1(3’i — [)?

— Sample autocovariance function
N-h
1 —_ —_
Vy(h) :NZ(yj+h_Y)(Yj_Y), 0<h<N,
j=1

with 7,(h) = 7, (=h), —N<h<0
— Sample autocorrelation function (ACF)

. Py(h)
Dy (h) = 7,(0)’

|lh| < N

17 H. Garnier
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Finite sample ACF - Example

y=[01110] =5

5
1
y= gZyz =06
=1
h

1
Vy(h) = g
~ Yy (h)
(h) == ) h=0,12,3,4
Py 7,(0)

py=[1—013 —0.26 —0.4 0.3]
In Matlab :

y=[01110];

[rho_hat _y,Lag]=xcov(y,’ norm’);
stem(Lag,rho_hat y)
Or
autocorr(y)

(Matlab econometrics toolbox)

5—
Z(yj+h -9)(yj—-¥), h=01234
j=1

Sample Autocorrelation

o
©

o
o

=]
S
T

o
N

o

o
)

o
S
T

=S
o

'
o
©

5
7,(0) = % Z(yj -y)(y;—¥) =024
1jZl
py(1) = gZ(ym —7)(y; —¥) = —0.0320
j=1
1 3
72 =2 ) (42 = 7)) — ) = ~0.0620
1j;1
3 =< Z(ma —7)(y; —¥) = —0.0960
j=1

1
1
7@ =< ) (s = 7)) — ) = 0.0720
j=1

Q.

le Autocorrelation Function

X1

X4
Y 0.3

Y -0.133333

X2
Y -0.266667
.

X3
Y -0.4

Il 1 1 1 1 Il 1
0.5 1 UdD 2 215 3 3.5
Lag

o
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The white noise process
The most fundamental example of stationary signal

* A white noise is a sequence of independent and identically distributed (i.i.d)
random variables

— The sequences are uncorrelated, have zero mean, and constant variance
— A Gaussian white noise are i.i.d observations from N (0, ?)

— Because independence implies that its variables are uncorrelated at different
times, its ACF looks like a Kronecker impulse

Gaussian white noise
T T

3 Sample Autocorrelation Function
2+ . T T T T T T T T T

0.8 -

0.6

0.4 -

0.2

0.2

| 1 1 1 1 1 1 1 1
0 2 4 6 8 10 12 14 16 18 20
Lag

| ! | I I
0 50 100 150 200 250 300
Time
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Finite sample distribution of sample ACF

e Finite sample distribution of ACF for a white noise is asymptotically
Gaussian V' (0%)

1.96

— 95% of all ACF coefficients for a white noise must lie within + N

— Itis common to plot horizontal limit lines at i% when plotting the ACF
e When N= 125, limit line values at iﬂ = 4+0.175
V125

— All ACF coefficients lie within these limits, confirming that the data are
white noise (more precisely, the data cannot be distinguished from white noise)

Sample Autocorrelation Function
T T T

1 T T T T T T
c
O 08r- .
kS
® o6F -
O
(6]
2 04r i
S
I
% 0.2 - _
g 0 T Py hd T P ) 'Y T L J
0 ) ¢ 4 Y l [ v
_0.2 1 1 | 1
0 2 4 6 8 10 12 14 16 18 20
Lag
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Properties of white noise

* Best prediction of a white noise

— If a signal is white noise, it is unpredictable and so there is nothing to forecast.
Or more precisely, the best prediction is its mean value which is zero

e Whitening test of the residuals

— At the validation stage of the system identification methodology, we will check

whether the prediction errors=residuals are a white noise by plotting its sample
ACF

Sample Autocorrelation Function

T T T T I

Sample ACF shows
some significant

0.6 5 autocorrelations at
lags 1, 2, 3 and 4.
This shows the

‘ residuals are not
1 L d L4 L
0 ‘ r — s ! L — \ —

Sample Autocorrelation
o
H

white here

1 1 1 1 1 1 1
2 4 6 8 10 12 14 16 18 20
Lag

— If the residual ACF does not resemble to the ACF of a white noise, it suggests that
improvements could be made to the predictive model

— If the residual ACF resembles to the ACF of a white noise, the modelling procedure is
finished. There is nothing else to capture in the residuals

21 H. Garnier
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Gaussian white noise

* [tis a white noise whose probability function is Gaussian

e |n Matlab
>> e=randn(200,1);

>> plot(e) >> autocorr(e)
3 . SimuIaFed whit? noise process
P _' ) ' ] 1 Sample Autocorrelation Function
‘ ‘ T T T T T T T
L I \‘ ‘\ | g
Qi "\' M ‘ H ‘ ‘ ‘ “\ [ 1 g 0.6 -
\H f\ | ‘\ | u im | (" g
“ ‘ H“H w ‘ f\ ‘ ” I | Rl I \‘ ““\ “ ﬁ\\“h‘,\[“x\ § 0.4
ol ‘ ‘ ‘ m u w \‘ M \H\“H‘i ‘ “H‘ \‘ M“ \“M 1 ‘\ M 2 02
‘{ M‘ U\ | “ m'mm tl \‘ . “J “\c‘\_J J e LT, . ! | . . .
I 0 e L ’ T S I S S
-1+ | ‘ ‘\ m‘ “" \ ‘ ‘ H H‘]‘ .‘ { ‘ ' “”‘r -0.2 1 1 1 | P | | | | |
| [ ! ! 0 2 4 6 8 10 12 14 16 18 20
\ l J 4 [ ‘ Lag
HM ‘ |
2t '
slo sb 160 1é0 1:10 1(;0 1éo 200
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Gaussian probability function
A brief review

Pim-osx=m+0)=67%
Pim-20<x=m+20)=9%
Pim-3c=sx<=m+30)=99%
Pim-4o0<x=m+40)=99,9%

m : mean
o : standard-deviation

A (%)
1
s2n |/ |
o ' ' >
m-o m m+o X

23
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Gaussian probability function
Review

* |Important properties

— Two Gaussian random signals x;, and x; for & # [ are uncorrelated
(property of white noise) and therefore independent (property of
Gaussian probability density)

— The Gaussian probability density is the only law for which there is
equivalence between non-correlation and independence

— Gaussian laws preserve their Gaussian character in any linear
operation: derivation, integration, convolution, filtering

24 H. Garnier
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Models for stationary random signals
N\
Signaux
aléatoires
stationnaires
& J
[
N -
Modéles non Modeles
paramétriques paramétriques
AN J AN J
N ) N N
Evolution Fonction Densité spectrale Modeles AR, MA,
temporelle d'autocorrélation de puissance ARMA
J | J
. signal . covariance spectrum
4 5 _1
5 4 10' y _ C(q ) €
3 t — - t
0 B 100 D(q 1)
[) 50 ti}?\oe 150 200 % ~10 |;g 10 20 10° 107 " 10° 10’
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General linear parametric model
of stationary signals

Box and Jenkins in 1970 (following Yule and Slutsky 1927)

— Many time series (or their derivatives) can be considered as a special class of
stochastic processes: (weakly) stationary stochastic processes

e First two moments are finite and constant over time
¢ Defined completely by the mean, variance and autocorrelation function

General parametric model of stationary stochastic processes (Wold 1938)
— All (weakly) stationary stochastic processes can be written as

400
Y =C+ leiek—i + ey
i=1

where ¢ is a constant and e, is a white Gaussian noise

- ey is often called the innovation process because it captures all new
information in the series at time k

26 H. Garnier
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Backward shift g~* operator

The backward shift operator, q_1 , is defined as

€k = Ek—i
The general linear model of a stationary stochastic process can be written as
_ +00
Yk = €+ 2izy Pige—i + &k

Vi =c+P(q1) &

w(q") =1+ T il

This model has an infinite-degree polynomial W(g~1!) with infinite coefficients

which cannot be estimated from a finite amount of data in the time series @

27 H. Garnier
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Towards AR, MA and ARMA models
for stationary signals

If H(q) is a rational polynomial, we can write it (at least approximately) as the

quotient of two finite-degree polynomials

C(g™)
H(q) =——=
) D(a~)
Cla7)=1+caq +-+ Cncq (Matlab System Identification
DigYHY=1+diqgt+-+ dp,q e toolbox notations)

Wold'’s theorem: every zero-mean stationary stochastic process can be written as

_C@™
k = b1 %k

— which has a finite number @, + n,) of coefficients

- e is a white Gaussian noise

This leads to the use of parsimonious models : AR, MA and ARMA models

— They are most useful for practical applications since these models can be quite easily
estimated from a finite number of signal samples

28 H. Garnier
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ARMA models: a way to “see” stationary stochastic signals as filtered white noise

Family of ARMA models
for stationary stochastic signals

— The filter takes different forms according to the signal properties

AR models MA models ARMA models
e 1 Vi ey Yk ek C(q_l) Yk
—> ——> —> ) J S —_ > >
D@ D) tla D@ D)
1 _ Clq™h)
Yie = D(g 1) €k Vi = C(q™ ek Yie = D(g—1) €k

€ "’N(O,O'Z)
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