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Data-driven model learning = System identification
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Use of simple linear regression 
for transfer function model learning – A brief recap

When the model structure is known
• In the ideal noise-free or deterministic case, 

use of simple least squares works fine !
– the transfer function model parameter can be 

estimated by linear regression

• In practice, the simple least squares method 
breaks down

– The output is not perfectly known. It is 
contaminated by measurement noise

⟹ Incorrect least squares estimates 
(whatever the continuous or discrete-time 
model form)

How can we model the noisy measurement output ?
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Identifying measurement noise models 

• In control design and estimation/prediction, it is often important to 
identify not only the dynamics from input to output, but also the 
measurement noise dynamics

– how noise and disturbance perturb the system
– where noise comes in
– whether the noise is colored and correlated 

• In system identification, various techniques are available for identifying 
both input-output dynamics and noise dynamics
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Classification of signals

s

t0 t0
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Model for noisy measurement output signals

• often modelled as

a deterministic signal

+ a stochastic signal

= noisy measurement signal

x(t)

t0

v(t)

y(t)=x(t)+v(t)

t0

t
0
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Models for disturbance and measurement noise

t0

measurement noise

measurement noise

disturbance
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Moments of a probability distribution
A brief review

• Moments of a random variable 𝑋 with density 𝑓𝑋 𝑥 :
– 𝑙-th moment

 𝑚!
" = Ε 𝑋! = ∫#$

$ 𝑥!𝑓𝑋 𝑥 𝑑𝑥
– 𝑙-th central moment

𝑚" = Ε (𝑋 − 𝜇)" = +
#$

$
(𝑥 − 𝜇)"𝑓𝑋 𝑥 𝑑𝑥

• Low-order moments: example
• Expectation (mean): 𝑚% = 𝜇 = Ε 𝑋

• Variance: 𝑚& = 𝜎& = Ε (𝑋 − 𝜇)&
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Family of ARMA/ARIMA models

Stochastic 
signal

Stationary

AR models

MA models 

ARMA models

Non-stationary

Non-seasonal

ARIMA models

Seasonal

SARIMA models

• ARMA/ARIMA models are a class of black-box models that is capable of 
representing stationary as well as non-stationary stochastic signals
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Modelling the disturbances: the stationary assumption

- The stochastic measurement process is assumed to be stationary
- Its probability distribution does not change when shifted in time

- Realizations of a stationary stochastic process, vary over time in a stable 
manner about a fixed mean 

- It is (weakly) stationary if it can be described by its first two moments 
only
- Mean, variance

- AutoCorrelation Function (ACF)

t0
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Major assumption: stationarity of the signals

• The properties of one section of a data are much like the properties of the other 
sections. The future is “similar” to the past (in a probabilistic sense)

• A stationary stochastic signals has

- no trend / no seasonality

- no systematic change in variation

   

- no periodic fluctuations
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Models for stationary stochastic signals

𝑦! 	=
C(𝑞"#)
D(𝑞"#) 𝑒!
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Autocorrelation function (ACF)

• Statistical correlation summarizes the 
strength of the relationship between 
two different variables 

• We can calculate the correlation for 
time series observations with 
observations with previous time 
instants, called lags. This is called an 
autocorrelation 

• A plot of the autocorrelation of a time 
series in terms of lags is called the 
AutoCorrelation Function, or its 
acronym ACF

• Sample ACF at lag h, denoted as 𝛾! ℎ , 
measures the linear correlation between 
𝑦" and 𝑦"#$



H. Garnier14

ACF: stationary case

• Autocovariance function of a stationary time series 𝑦. 	
    𝛾/ ℎ =Cov 𝑦.01 , 𝑦. =Ε (𝑦.01−𝜇)(𝑦.−𝜇) ℎ < 𝑁

with the following 3 properties

1. 𝛾'(0) ≥ 0,

2. 𝛾'(ℎ) ≤ 𝛾'(0)
3. 𝛾' ℎ = 𝛾' −ℎ
⇒ even function. ACF is usually plotted for positive lags only

• Autocorrelation function of a stationary signal 𝑦.

𝜌/ ℎ =
𝛾/(ℎ)
𝛾/(0)

	 0 ≤ ℎ < 𝑁

with all the properties of the autocovariance function, except   𝜌! 0 = 1

• It measures the linear correlation between 𝑦. and 𝑦.01

0

𝛾' ℎ

ℎ
9𝑦&

𝜎&

lag
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• ACF: measures the speed of variation of temporal evolutions

Autocorrelation function (ACF)

– we compare the time series with itself but shifted by t (or h)
– it allows us to see how the time series at a given time is influenced 

(linear autocorrelation) by what happened at a previous time
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Autocorrelation function (ACF)
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Finite sample statistics
• Given 𝑦3, . . . , 𝑦4  observations of a stationary signal 𝑦. , estimate 

the finite sample mean, variance, autocovariance and ACF
– Sample mean

  !𝜇 = $𝑦 = &
'
∑()&' 𝑦(

– Sample variance

 !𝜎* = &
'+&

∑()&' 𝑦( − !𝜇 *

– Sample autocovariance function 

9𝛾/ ℎ =
1
𝑁
;
563

4#1

𝑦501 − <𝑦 𝑦5 − <𝑦 , 0 ≤ ℎ < 𝑁,

       with ;𝛾' ℎ = ;𝛾' −ℎ , 	 −𝑁 < ℎ ≤ 0
– Sample autocorrelation function (ACF) 

9𝜌/ ℎ =
9𝛾/(ℎ)
9𝛾/(0)

, 	 ℎ < 𝑁
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y	=	[0	1	1	1	0] N=5

7𝑦 =
1
5
:
$%#

&

𝑦$ = 0.6

>𝛾' ℎ =
1
5:
(%#

&")

𝑦(*) − 7𝑦 𝑦( − 7𝑦 , ℎ = 0, 1,2, 3,4

>𝜌' ℎ =
>𝛾'(ℎ)
>𝛾'(0)

, ℎ = 0, 1,2, 3,4

>𝜌' = [1 − 0.13 − 0.26 − 0.4 0.3]

In Matlab : 

y=[0 1 1 1 0]; 
[rho_hat_y,Lag]=xcov(y,’norm’);
stem(Lag,rho_hat_y)
Or
autocorr(y)

Finite sample ACF - Example

+𝛾! 0 =
1
5
1
"#$

%

𝑦" − 4𝑦 𝑦" − 4𝑦 = 0.24

+𝛾! 1 =
1
5
1
"#$

&

𝑦"'$ − 4𝑦 𝑦" − 4𝑦 = −0.0320

+𝛾! 2 =
1
5
1
"#$

(

𝑦"') − 4𝑦 𝑦" − 4𝑦 = −0.0620

+𝛾! 3 =
1
5
1
"#$

)

𝑦"'( − 4𝑦 𝑦" − 4𝑦 = −0.0960

+𝛾! 4 =
1
5
1
"#$

$

𝑦"'& − 4𝑦 𝑦" − 4𝑦 = 0.0720

(Matlab econometrics toolbox)
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The white noise process
The most fundamental example of stationary signal

• A white noise is a sequence of independent and identically distributed (i.i.d) 
random variables

– The sequences are uncorrelated, have zero mean, and constant variance
– A Gaussian white noise are i.i.d observations from 𝒩(0, 𝜎%)
– Because independence implies that its variables are uncorrelated at different 

times, its ACF looks like a Kronecker impulse
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Finite sample distribution of sample ACF

• Finite sample distribution of ACF for a white noise is asymptotically 

Gaussian 𝒩 0, %
(

– 95% of all ACF coefficients for a white noise must lie within ± &.()
*

– It is common to plot horizontal limit lines at ± &.()
*

 when plotting the ACF

• When N	=	125, limit line values at ± %.*+
%&,

= ±0.175
– All ACF coefficients lie within these limits, confirming that the data are 

white noise (more precisely, the data cannot be distinguished from white noise)
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Properties of white noise
• Best prediction of a white noise

– If a signal is white noise, it is unpredictable and so there is nothing to forecast. 
Or more precisely, the best prediction is its mean value which is zero

• Whitening test of the residuals
– At the validation stage of the system identification methodology, we will check 

whether the prediction errors=residuals are a white noise by plotting its sample 
ACF

– If the residual ACF does not resemble to the ACF of a white noise, it suggests that 
improvements could be made to the predictive model

– If the residual ACF resembles to the ACF of a white noise, the modelling procedure is 
finished. There is nothing else to capture in the residuals

Sample ACF shows 
some significant 
autocorrelations at 
lags 1, 2, 3 and 4.
This shows the 
residuals are not 
white here
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Gaussian white noise

• It is a white noise whose probability function is Gaussian

• In Matlab
       >> e=randn(200,1);
       >> plot(e) >> autocorr(e)
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Gaussian probability function 
 A brief review

f ( x ) = 1
σ 2π

e
−
1
2

x−m
σ

⎛

⎝
⎜

⎞

⎠
⎟

2

0
x

f(x)

mm-s m+s

P(m − σ ≤ x ≤ m + σ ) = 67%

P(m − 2σ ≤ x ≤ m + 2σ ) = 95%

P(m − 3σ ≤ x ≤ m + 3σ ) = 99%

P(m − 4σ ≤ x ≤ m + 4σ ) = 99 ,9%

ps 2
1

m : mean
s : standard-deviation
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• Important properties
– Two Gaussian random signals 𝑥- and 𝑥" for k	 ≠	 l	 are uncorrelated 

(property of white noise) and therefore independent (property of 
Gaussian probability density)

– The Gaussian probability density is the only law for which there is 
equivalence between non-correlation and independence

– Gaussian laws preserve their Gaussian character in any linear 
operation: derivation, integration, convolution, filtering

Gaussian probability function 
Review
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Models for stationary random signals

𝑦! 	=
C(𝑞"#)
D(𝑞"#) 𝜀!
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General linear parametric model 
of stationary signals

• Box and Jenkins in 1970 (following Yule and Slutsky 1927)
– Many time series (or their derivatives) can be considered as a special class of 

stochastic processes: (weakly) stationary stochastic processes
• First two moments are finite and constant over time
• Defined completely by the mean, variance and autocorrelation function

• General parametric model of stationary stochastic processes (Wold 1938)
– All (weakly) stationary stochastic processes can be written as

𝑦+ = 𝑐 +;
,-&

#.

𝜓,𝑒+/, + 𝑒+

where 𝑐  is a constant and 𝑒+ is a white Gaussian noise

– 𝑒+ is often called the innovation process because it captures all new 
information in the series at time k
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Backward shift 𝑞+&	operator

• The backward shift operator, 𝑞#% , is defined as

𝑞*+ 𝜀, = 𝜀-*+

𝑞*. 𝜀, = 𝜀,*.

• The general linear model of a stationary stochastic process can be written as

  𝑦- = 𝑐 + ∑./%0$𝜓.𝜀-#. + 𝜀-

  𝑦- 	= 𝑐 + 𝜓(𝑞*+) 𝜀-

Ψ 𝑞*+ = 1 + ∑./%0$𝜓.𝐿.

• This model has an infinite-degree polynomial Ψ 𝑞"#  with infinite coefficients 

which cannot be estimated from a finite amount of data in the time series 😩
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Towards AR, MA and ARMA models 
for stationary signals

• If 𝐻 𝑞 is a rational polynomial, we can write it (at least approximately) as the 

quotient of two finite-degree polynomials

𝐻 𝑞 =
C(𝑞"#)
D(𝑞"#)

C 𝑞"# = 1 + 𝑐#𝑞"# +⋯+ 𝑐<!𝑞
"<!

D 𝑞"# = 1 + 𝑑#𝑞"# +⋯+ 𝑑<"𝑞
"<"

• Wold’s theorem:  every zero-mean stationary stochastic process can be written as

 𝑦+ 	=
0(2!")
4(2!")

𝑒+

– which has a finite number (𝑛# + 𝑛$) of coefficients 

– 𝑒= is a white Gaussian noise

• This leads to the use of parsimonious models : AR, MA and ARMA models
– They are most useful for practical applications since these models can be quite easily 

estimated from a finite number of signal samples 

(Matlab System Identification 
toolbox notations)
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Family of ARMA models 
for stationary stochastic signals

• ARMA models: a way to “see” stationary stochastic signals as filtered white noise
– The filter takes different forms according to the signal properties

    𝑒, ∼ 𝒩(0, 𝜎7)

𝑦+𝑒+

AR models

1
𝐷(𝑞/&)

𝑦+ 	=
𝐶(𝑞/&)
𝐷(𝑞/&) 𝑒+

𝑦+ = 𝐶(𝑞/&)𝑒+𝑦+ 	=
1

𝐷(𝑞/&) 𝑒+

𝑦+𝑒+

MA models

𝐶(𝑞/&)
𝐷(𝑞/&)

𝑦+𝑒+

ARMA models

𝐶(𝑞/&)


