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Review of linear regression and least squares estimation

1. Least squares-based model estimation for static systems «

2. Least squares-based model estimation for dynamical systems
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Regression

Prediction of variable y on the basis of information provided by other
measured variables ¢1, ..., ¢ 4.

¥1
Collect o =

Pd

Problem: find function of the regressors g(¢) that minimises the difference
y — g(¢) in some sense.
So y = g() should be a good prediction of y.

Example in a stochastic framework: minimise E[y — g()]2.
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Linear regression

e Regression function g(y) is parameterised. It depends on a set of

parameters
01
0= :
04

e Special case: regression function g(y) is linear in the parameters 6.
Note that this does not imply any linearity with respect to the variables
from .

e Special case: g(p) = 0191 + 0292 + ... + 0,404
So g(p) = 1.

5 H. Garnier



UNIVERSITE POLYTECH®
DE LORRAINE NANCY

Linear regression - Examples

Linear regression — Examples:

e Linear fity = ax + b.

Then g() = 16 with input vector ¢ = [ f ]

Q

] |

and parameter vector § = [ Z ] So: g(p) = [ x 1 } !

o

e Quadratic function y = coz? + c1z + cp.

2
X
Then g(¢) = ¢! 6 with input vector o = | =z
1
Co c2
and parameter vector = | ¢ |. So: g(p) = [ 2 z 1 } c1
€0 €0

6 H. Garnier



UNIVERSITE POLYTECH®
DELORRAINE o B NANCY

Least squares estimate

e N measurements y(t),o(t), t=1,...,N.

N
e Minimise V() = % Z y(t) — g(o()]2.

e So a suitable 6 is 85y = arg min Vy(6).

N
e Linear case Vy(0) = % Z ly(t) — ol (t)0)2.
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Least squares estimate (1)

L S 1y(t) — T ()02
thl Yy — @

e In the linear case the “cost” function V) (0) =

IS a quadratic function of 6.

have to be

o ; : — oV (6
e |t can be minimised analytically: All partial derivatives gg( )
zero in the minimum:

1 N
~ 22 2Oyt - o' (t)0] =0
t=1

The solution of this set of equations is the parameter estimate 8 y;.
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Least squares estimate (2)

e A global minimum is found for @ that satisfies a set of linear equations, the

normal equations

1 N . 1 N
thl ()’ (t) = ; e()y(t).

e |f the matrix on the left is invertible, the LSE is

oy = |23 ot T(tﬂ_liN o)y (1)
N = thlcp @ | N; y(1).
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Least squares estimate
Recommended matrix formulation

e Collect the output measurements in the vector Y =

and the inputs in the N x d regression matrix ® 5 =

e Normal equations: [‘DT{/‘DN] Oy = dLYy.

e Estimate|dy = /Y,

. -1
(Moore-Penrose) pseudoinverse of & : ®1, = Loy oL

Note: df oy = 1.

I y(.l) |

(V)
[ L) |

‘PTéN) _
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Linear least-squares estimate in Matlab

Solution x of overdetermined Ax = b with rectangular matrix A,
SO more equations than unknowns, or

more rows than columns, or

A is m-by-n with m > n and full rank n

Then least squares solution z = ATb
In Matlab:
x = A\b; % Preferred

X = pinv(A)xb;
X = 1inv(A’*xA)*A’'xb;
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Example 1: The “well-known” linear fity = ax + b

Measurements z; and y; fori = 1, ..., N.

Cost function Vy = % X (y; — az; — b)2.

oV oV
1) “Manual” solution: 5 N—oand =& = 0, so
a
> —zi(yi —axz; —b) = O o [ Xy T } ! a] _ { 2. TiYi
S-(yi—az;—b) = 0 | Xz X1 []|Pb 2y

Y2 Yz
ZZL',I' Zl

SV Q)

=

Parameter estimate: !
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Example 1: The “well-known” linear fity = ax + b
Matrix formulation

Measurements x; and y; for: = 1, ..., N.
Cost function Vy = + Y (y; — az; — b)2.

y§1)

y (V)

(1) 1
, Py = : : andez[

2) Matrix solution: Yy = .
z(N) 1

Cost function (in vector form) Vi = %HYN — CDN9||%.

2 1
Estimate Oy = ®{\ Yy = [®L oy olvy.

In Matlab: theta = Phi\Y;

b

13
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First case study - Linear trend model
of the winning men’s 100 m time at the Summer Olympics

13 T T T T T T T
O Winning times
125 Straight line model |
12+ O .

Winning time

T
1

8.5

1900 1920 1940 1960 1980 2000 2020
Olympic year
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Second case study

Trend model for global surface temperature time series

2

1.5

051

Temperature anomalies (°C) relative to the 1951-1980 mean

Global surface temperature time series
T T T T

T

1 1 1 | 1

-1
1880 1900

*  Global surface temperature time series shown against time is the temperature anomalies (in ° Celsius)
relative to the 1951-1980 mean. The series is called GISTEMP after its producer, the NASA, New York, USA

*  For more elaborated trend models, see paper by Manfred Mudelsee, Trend analysis of climate time series:

1920 1940 1960 1980 2000 2020
Years

A review of methods, Earth-Science Reviews 2019

Global warming seems to be

clearly accelerating from
1980 onwards
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Estimation of a linear trend model

N
1
V(e,zN) E(y(t) (axt, +/5)) 9=[ % ]
N
e At the minimum of the criterion, its first derivative with respect to g is null:
N [N N [N
av(9,z") 2 _ 2
- _N;—tk(y(tk)—(axtk+/o’))— XA Yt y(t,)
N
ov(e,z") 2
’ =— —y(t )—(OCXt +/3)) = tk N y(tk)
B N; (v, b)) _ ; ; | ;
* The least squares estimates are given by :
TN N Iy ! Sous Matlab
$2 theta_hat = inv([sum(years.”2) sum(years);
t ty(t,)
a ] kE= k ; K Z K70k sum(years) NJ)*...
Bl | N N [sum(years.*T);sum(T)]
Etk N Ey(tk) T _hat = theta(1)* years + theta(2);
k=1 plot(years,T,'o',years,T _hat)

16
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Estimation of a linear trend model by LS
applied to the global surface temperature

N
v([ % },ZN)=%E(y(tk)—(axtk+/5))2

k=1

Global surface temperature time series
T T T T

2 |

Observed
= = Linear trend model

1.5 —

We can do better !

Temperature anomalies (°C) relative to the 1951-1980 mean

-1 | | ] 1 | I
1880 1900 1920 1940 1960 1980 2000 2020
Years
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Estimation of piecewise linear trend models
applied to the global surface temperature

Temperature Anomaly (°C)

N1 N2
VI | 2% = XSyt )= (a xt, + )Y ( % | 2N SN (it )= (a xt, +8,))
( /31 Ng( k 17k 1) /52 ngn( k 27k 2)

0.0 —

il —500 >
- L (&)
c
- — (]
05— -
= = 2
IlllllllllIIIIIIIIIIIIIII'lllllllllllllllllllllllIIIIIIIIIIIIIIIIIIIII 0 u'

1880 1900 1920 1940 1960 1980 2000 2020

Year

This is much better !
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Estimation of a quadratic trend model
applied to the global surface temperature

o Nl N ) 2
V|| B |2"|=5 Dt (atf + Bt +v)
4 k=1
5 Global surface temperature time series
T T T T I
Observed
= = Quadratic trend model
15 |

This is also much
better than the basic
linear trend model !

Temperature anomalies (°C) relative to the 1951-1980 mean

-1
1880 1900 1920 1940 1960 1980 2000 2020
Years
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Standard model accuracy measure: RMSE

e Given {yq,..., Yy} actual observations of some data {y,}, and let 9, be
the simulated model value at time t

e \We can calculate the residuals or forecast errors

e A standard accuracy measure based on the residuals is the Root Mean

Square Error (RMSE)
,

1 A
RMSE= —_||Yy — @y 6
which calculates the Euclidean norm of the residuals, i.e., the square root of the
sum of the squares of all the residuals

20 H. Garnier
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Review of linear regression and least squares estimation

1. Least squares-based model estimation for static systems

2. Least squares-based model estimation for dynamical systems -
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Transfer function model learning of a dynamic system
by using basic linear regression

1 | Continuous-time |-~~~
system
7 T
[ 1 [ 1 Sampled data l l ‘
L ud ) e
Discrete-time Continuous-time
transfer function G(2) G(s) transfer function
model model
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Transfer function model learning of a dynamic system
by using basic linear regression

Goal: determine a continuous-time or discrete-time transfer function model of the
dynamic system from step response data by using basic linear regression
3 T T T T T T T T

€  Input samples
€ Output samples
25 .
S ki S PTTPPITPLPTPPRTT PRI PR - W ———
Lo
15 il
1+ - SR —— - S s Y s Y o
0.5 ; : —
O prennnnnnn 5 —
05 L | I I I | I I I
-1 0 1 2 3 4 5 6 7 8 9

Time (s)
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Continuous-time model learning of a dynamic system
by using basic linear regression

e Laplace transfer function model choice:

Y(s) b

Gls) = U(s) s+a

We seek to estimate the values of 2 and b that best fit the step response
data by using basic linear regression (least squares)

In the time-domain, the continuous-time model takes the form of a
differential equation

(s+a)Y(s) =bU(s)
sY(s) + aY(s) = bU(s)
(0 + ay(©) = bu(?)

Output time-derivative

24 H. Garnier
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Continuous-time model learning of a dynamic system

by using basic linear regression

At time-instant t,

y(tx) + ay(ty) = bu(ty)

y(ty) = —ay(ty) + bu(ty)

From the N=4 sampled measurements, we can write a set of 4 equations

y(to) = —ay(ty) + bu(ty)
y(ty) = —ay(ty) + bu(ty)
y(tz) = —ay(t;) + bu(ty)
y(t3) = —ay(t3) + bu(ts)

1111111111111
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Continuous-time model learning of a dynamic system
by using basic linear regression

* The 4 equations can be written in matrix form

V()] [—y(te) u(to)]

y(t1) _ —y(t1)  u(ty)

y(t2) —y(t) u(ty)

y(tz)) L=y(ts) u(ts).
Y = ()

)

AN

26
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Continuous-time model learning of a dynamic system
by using basic linear regression

® The 4 equations can be written
in matrix form

2 0 1 3
0.1642| |—1.8358 1 [a] 25
0.0135 - _1.9865 1 b ] e e T L T S Deeenerernreand
10.0011] -19989 14 - o

Y = CI) 8 | Qrerrrrten e D reerrrerrrerereenennes D rrrerrrrnnee e Oreerrrnrrsnnd
a 1 N

~ — - == -0.5 . ‘ ‘ - ! ! ! ‘ L
[b] [2] G(S) S+1 -1 0 1 2 3 T|m49(s) 5 6 7 8 9
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Discrete-time model learning of a dynamic system
by using basic linear regression

e Zero-order hold equivalent of the Laplace transfer function model choice:

6)=— |62)=2=01-2zz (G(s)) bzt

s+a U(z) s )T 1+a,z71
The parameters a, = —e %= —0.0821
a; and b; -— b
depend on T, b, = p (1+a,) =1.8358

We seek to estimate the values of a; and b; that best fit the step response
data by using basic linear regression (least squares)

In the time-domain, the discrete-time model takes the form of a
difference equation

(1+a,z7 YY) =bz71U(2)
Y(z) + a,z71Y(z) = byz71U(2)
V(tk) + a1y (ti—1) = byu(te—1)

28
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Discrete-time model learning of a dynamic system

by using basic linear regression

At time-instant t;

y(ty) + a1y (tx—1) = byu(ty_1)

y(ty) = —a,y(tx—1) + byu(ty_1)

From the N=4 sampled measurements, we can write a set of 3 equations
only because of the time-shift in the difference equation

y(t1) = —ayy(ty) + byu(ty)
y(t;) = —a,y(ty) + byu(ty)
y(t3) = —aiy(t;) + byu(ty)

...........

05
555555555555

...........................................................
"""""

29

H. Garnier



UNIVERSITE POLYTECH®
DELORRAINE o N wancy

Discrete-time model learning of a dynamic system
by using basic linear regression

* The 3 equations can be written in matrix form

ya)| [y uo)] ,
y(&)| = [=y(t) u(t)||, ]
y(e)|  [—y(t) ule))

Y = 'y 6

\_ /
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Discrete-time model learning of a dynamic system

by using basic linear regression

* The 3 equations can be written in
matrix form

1.8358 0 1],
1.9865| = [-1.8358  1|[,!]

©  Input samples
©  Output samples

1.9989] 1-1.9865 1
Yy = d 0
0 = [T D] 1PpTY S S — PR I N ) . —
a1] _ [-00821
b, 1.8358 o
. b,z 1 1.8358z71 o= s 4 B
=6 =1 1T 1008212
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Use of simple linear regression
for transfer function model learning - Take-home message

¢ |n the ideal noise-free measurement case, it
works fine
— the continuous or discrete-time transfer

function model parameter can be estimated
by linear regression (least squares)

* In practice, the simple LS method breaks
down for two main reasons

— The output measurement is not perfectly
known. It is contaminated by noise

= |Incorrect LS estimates whatever the
continuous or discrete-time model form

— The input and output time-derivatives
required in the continuous-time model form
are usually not measured

32
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Advantages of continuous-time models

v CT models have certain advantages in relation to their equivalent DT
models

= Are more intuitive to control engineers in their every-day practice
= Many practical control design are still based on CT models

= CT models are often preferred for fault detection

« reveal faults more directly than their DT counterparts

= Parameter values are independent of T,

0.0048¢~"+0.004792

1-1.8953g7 " +0.9048¢ 2
0.3403q7"+0.2417q 2

1-0.7849q " +0.3679q 2

T,=0.15; G (q)=
ZOH

Go(p)=¥

p2+p+1

T =1s; G; (q_1) =

S
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Continuous-time methods presents some advantages

v CT methods present many advantages in relation to their equivalent DT
methods

include inherent data prefiltering

are well-suited to fast sampling situations

are well-adapted to identify stiff systems

= can cope easily with irregularly sampled data

v" In the following of the course, we will focus on continuous-time model
learning
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