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Review of linear regression and least squares estimation 
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Model-based
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1. Least squares-based model estimation for static systems

2. Least squares-based model estimation for dynamical systems

Review of linear regression and least squares estimation
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Regression
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Linear regression
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Linear regression - Examples
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Least squares estimate
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Least squares estimate (1)



H. Garnier9

Least squares estimate (2)
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Least squares estimate
Recommended matrix formulation
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Linear least-squares estimate in Matlab 
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Example 1: The “well-known” linear fit y = ax + b 
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Example 1: The “well-known” linear fit y = ax + b
Matrix formulation 
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First case study - Linear trend model
of the winning men’s 100 m time at the Summer Olympics
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Second case study
Trend model for global surface temperature time series

Global warming seems to be 
clearly accelerating from 

1980 onwards

• Global surface temperature time series shown against time is the temperature anomalies (in °Celsius) 
relative to the 1951-1980 mean. The series is called GISTEMP after its producer, the NASA, New York, USA

• For more elaborated trend models, see paper by Manfred Mudelsee, Trend analysis of climate time series: 
A review of methods, Earth-Science Reviews 2019
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Estimation of a linear trend model

• At the minimum of the criterion, its first derivative with respect to q is null:

• The least squares estimates are given by :
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Sous Matlab
theta_hat = inv([sum(years.^2) sum(years);
                    sum(years) N])*...
                    [sum(years.*T);sum(T)]
T _hat = theta(1)* years + theta(2);
plot(years ,T ,'o',years ,T _hat )
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Estimation of a linear trend model by LS
applied to the global surface temperature

We can do better !
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Estimation of piecewise linear trend models
applied to the global surface temperature

This is much better !
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Estimation of a quadratic trend model
applied to the global surface temperature

This is also much 
better than the basic 
linear trend model !
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Standard model accuracy measure: RMSE

• Given 𝑦!, . . . , 𝑦" actual observations of some data 𝑦# , and let $𝑦# be 
the simulated model value at time t

• We can calculate the residuals or forecast errors
𝐸" = 𝑌" − )𝑌" = 𝑌" −Φ" +𝜃

• A standard accuracy measure based on the residuals is the Root Mean 
Square Error (RMSE)

RMSE= !
"
𝑌" − Φ" %𝜃

#

which calculates the Euclidean norm of the residuals, i.e., the square root of the 
sum of the squares of all the residuals 



H. Garnier21

1. Least squares-based model estimation for static systems

2. Least squares-based model estimation for dynamical systems

Review of linear regression and least squares estimation
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Continuous-time
system

Ts

u(tk), y(tk)

hold

Sampled data

Discrete-time 
transfer function

model

G(z) G(s) Continuous-time 
transfer function

model

Transfer function model learning of a dynamic system
by using basic linear regression 
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Transfer function model learning of a dynamic system
by using basic linear regression

Goal: determine a continuous-time or discrete-time transfer function model of the 
dynamic system from step response data by using basic linear regression
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Continuous-time model learning of a dynamic system
by using basic linear regression

• Laplace transfer function model choice:  

𝐺 𝑠 =
𝑌(𝑠)
𝑈(𝑠)

=
𝑏

𝑠 + 𝑎

• We seek to estimate the values of a and b that best fit the step response  
data by using basic linear regression (least squares)

• In the time-domain, the  continuous-time model takes the form of a 
differential equation

𝑠 + 𝑎 𝑌 𝑠 = 𝑏𝑈 𝑠

𝑠𝑌 𝑠 + 𝑎𝑌 𝑠 = 𝑏𝑈 𝑠

𝑦̇(𝑡) + 𝑎𝑦 𝑡 = 𝑏𝑢 𝑡

Output time-derivative
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• At time-instant tk

𝑦̇(𝑡$) + 𝑎𝑦(𝑡$) = 𝑏𝑢(𝑡$)

or

𝑦̇ 𝑡$ = −𝑎𝑦 𝑡$ + 𝑏𝑢(𝑡$)

• From the N=4 sampled measurements, we can write a set of 4 equations

𝑦̇ 𝑡% = −𝑎𝑦 𝑡% + 𝑏𝑢(𝑡%)

𝑦̇ 𝑡! = −𝑎𝑦 𝑡! + 𝑏𝑢(𝑡!)

𝑦̇ 𝑡# = −𝑎𝑦 𝑡# + 𝑏𝑢(𝑡#)

𝑦̇ 𝑡& = −𝑎𝑦 𝑡& + 𝑏𝑢(𝑡&)

Continuous-time model learning of a dynamic system
by using basic linear regression
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• The 4 equations can be written in matrix form

𝑦̇ 𝑡%
𝑦̇ 𝑡!
𝑦̇ 𝑡#
𝑦̇ 𝑡&

=

−𝑦 𝑡% 𝑢(𝑡%)
−𝑦 𝑡!
−𝑦 𝑡#
−𝑦 𝑡&

𝑢(𝑡!)
𝑢(𝑡#)
𝑢(𝑡&)

𝑎
𝑏

𝑌 = Φ 𝜃

%𝜃 = 2𝑎
3𝑏
= [Φ'Φ](!Φ'𝑌

Continuous-time model learning of a dynamic system
by using basic linear regression
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• The 4 equations can be written 
in matrix form

2
0.1642
0.0135
0.0011

=
0 1

−1.8358
−1.9865
−1.9989

1
1
1

𝑎
𝑏

𝑌 = Φ 𝜃

+𝜃 = [Φ$Φ]%!Φ$𝑌

$𝑎
)𝑏

= 1
2 ⟹ )𝐺 𝑠 =

2
𝑠 + 1

Continuous-time model learning of a dynamic system
by using basic linear regression
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• Zero-order hold equivalent of the Laplace transfer function model choice:  

𝐺 𝑠 = &
'()

𝐺 𝑧 = *(,)
.(,)

= 1 − 𝑧%! 𝑍 /(')
'

= &!,"!

!()!,"!

!
𝑎! = −𝑒"#$!= −0.0821

𝑏! =
𝑏
𝑎 1 + 𝑎! = 1.8358

• We seek to estimate the values of 𝑎! and 𝑏! that best fit the step response  
data by using basic linear regression (least squares)

• In the time-domain, the  discrete-time model takes the form of a 
difference equation

1 + 𝑎!𝑧(! 𝑌 𝑧 = 𝑏!𝑧(!𝑈 𝑧

𝑌 𝑧 + 𝑎!𝑧(!𝑌 𝑧 = 𝑏!𝑧(!𝑈 𝑧

𝑦(𝑡$) + 𝑎!𝑦 𝑡$(! = 𝑏!𝑢 𝑡$(!

The parameters 
a1 and b1
depend on Ts

Discrete-time model learning of a dynamic system
by using basic linear regression
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• At time-instant tk

𝑦(𝑡$) + 𝑎!𝑦 𝑡$(! = 𝑏!𝑢 𝑡$(!

or

𝑦 𝑡$ = −𝑎!𝑦 𝑡$(! + 𝑏!𝑢 𝑡$(!

• From the N=4 sampled measurements, we can write a set of 3 equations 
only because of the time-shift in the difference equation

𝑦 𝑡! = −𝑎!𝑦 𝑡% + 𝑏!𝑢(𝑡%)

𝑦 𝑡# = −𝑎!𝑦 𝑡! + 𝑏!𝑢(𝑡!)

𝑦 𝑡& = −𝑎!𝑦 𝑡# + 𝑏!𝑢(𝑡#)

Discrete-time model learning of a dynamic system
by using basic linear regression
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• The 3 equations can be written in matrix form

𝑦 𝑡!
𝑦 𝑡#
𝑦 𝑡&

=
−𝑦 𝑡% 𝑢 𝑡%
−𝑦 𝑡! 𝑢 𝑡!
−𝑦 𝑡# 𝑢 𝑡#

𝑎!
𝑏!

𝑌 = Φ 𝜃

%𝜃 = [Φ'Φ](!Φ'𝑌

Discrete-time model learning of a dynamic system
by using basic linear regression



H. Garnier31

• The 3 equations can be written in 
matrix form

1.8358
1.9865
1.9989

=
0 1

−1.8358 1
−1.9865 1

𝑎!
𝑏!

𝑌 = Φ 𝜃

0𝜃 = [Φ"Φ]#!Φ"𝑌

3𝑎!
0𝑏!

= −0.0821
1.8358

⟹ 0𝐺 𝑧 =
0𝑏!𝑧#!

1 + 3𝑎!𝑧#!
=

1.8358𝑧#!

1 − 0.0821𝑧#!

Discrete-time model learning of a dynamic system
by using basic linear regression
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Use of simple linear regression 
for transfer function model learning - Take-home message

• In the ideal noise-free measurement case, it 
works fine

– the continuous or discrete-time transfer 
function model parameter can be estimated 
by linear regression (least squares)

• In practice, the simple LS method breaks 
down for two main reasons

– The output measurement is not perfectly 
known. It is contaminated by noise
⟹ Incorrect LS estimates whatever the 
continuous or discrete-time model form

– The input and output time-derivatives 
required in the continuous-time model form 
are usually not measured 
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Advantages of continuous-time models

ü CT models have certain advantages in relation to their equivalent DT 
models

§ Are more intuitive to control engineers in their every-day practice

§ Many practical control design are still based on CT models

§ CT models are often preferred for fault detection 
• reveal faults more directly than their DT counterparts 

§ Parameter values are independent of Ts

Go( p) =
1

p2 + p +1

Ts = 0.1s; GTs (q
−1) = 0.0048q−1+0.0047q−2

1−1.8953q−1+0.9048q−2

Ts =1s; GTs (q
−1) = 0.3403q−1+0.2417q−2

1−0.7849q−1+0.3679q−2

ZOH
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Continuous-time methods presents some advantages

ü CT methods present many advantages in relation to their equivalent DT 
methods

§ include inherent data prefiltering

§ are well-suited to fast sampling situations

§ are well-adapted to identify stiff systems

§ can cope easily with irregularly sampled data

ü In the following of the course, we will focus on continuous-time model 
learning


