

Data-driven model learning of dynamical systems

Review of linear regression and least squares estimation

Hugues GARNIER

hugues.garnier@univ-lorraine.fr

2 H. Garnier

Review of linear regression and least squares estimation

1. Least squares-based model estimation for static systems

2. Least squares-based model estimation for dynamical systems

3 H. Garnier

Regression

• Prediction of variable y on the basis of information provided by other measured variables $\varphi_1, ..., \varphi_d$.

$$\bullet \ \operatorname{Collect} \varphi = \left[\begin{array}{c} \varphi_1 \\ \vdots \\ \varphi_d \end{array} \right].$$

- Problem: find function of the regressors g(φ) that minimises the difference y g(φ) in some sense.
 So ŷ = g(φ) should be a good prediction of y.
- Example in a stochastic framework: minimise $E[y g(\varphi)]^2$.

Linear regression

• Regression function $g(\varphi)$ is parameterised. It depends on a set of parameters

$$\theta = \left[\begin{array}{c} \theta_1 \\ \vdots \\ \theta_d \end{array} \right].$$

- Special case: regression function g(φ) is linear in the parameters θ.
 Note that this does **not** imply any linearity with respect to the variables from φ.
- Special case: $g(\varphi) = \theta_1 \varphi_1 + \theta_2 \varphi_2 + ... + \theta_d \varphi_d$ So $g(\varphi) = \varphi^T \theta$.

Linear regression - Examples

Linear regression — Examples:

• Linear fit y = ax + b.

Then $g(\varphi) = \varphi^T \theta$ with input vector $\varphi = \begin{bmatrix} x \\ 1 \end{bmatrix}$ and parameter vector $\theta = \begin{bmatrix} a \\ b \end{bmatrix}$. So: $g(\varphi) = \begin{bmatrix} x & 1 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix}$.

• Quadratic function $y = c_2x^2 + c_1x + c_0$.

Then $g(\varphi) = \varphi^T \theta$ with input vector $\varphi = \left[\begin{array}{c} x^2 \\ x \\ 1 \end{array} \right]$

and parameter vector $\theta = \begin{bmatrix} c_2 \\ c_1 \\ c_0 \end{bmatrix}$. So: $g(\varphi) = \begin{bmatrix} x^2 & x & 1 \end{bmatrix} \begin{bmatrix} c_2 \\ c_1 \\ c_0 \end{bmatrix}$.

Least squares estimate

• N measurements $y(t), \varphi(t), t = 1, ..., N$.

• Minimise
$$V_N(\theta) = \frac{1}{N} \sum_{t=1}^{N} [y(t) - g(\varphi(t))]^2$$
.

• So a suitable θ is $\widehat{\theta}_N = \arg\min V_N(\theta)$.

• Linear case $V_N(\theta) = \frac{1}{N} \sum_{t=1}^{N} [y(t) - \varphi^T(t)\theta]^2$.

Least squares estimate (1)

- In the linear case the "cost" function $V_N(\theta) = \frac{1}{N} \sum_{t=1}^N [y(t) \varphi^T(t)\theta]^2$ is a quadratic function of θ .
- It can be minimised analytically: All partial derivatives $\frac{\partial V_N(\theta)}{\partial \theta}$ have to be zero in the minimum:

$$\frac{1}{N} \sum_{t=1}^{N} 2\varphi(t) [y(t) - \varphi^{T}(t)\theta] = 0$$

The solution of this set of equations is the parameter estimate $\widehat{\theta}_N$.

Least squares estimate (2)

 \bullet A *global* minimum is found for $\widehat{\theta}_N$ that satisfies a set of linear equations, the normal equations

$$\left[\frac{1}{N}\sum_{t=1}^{N}\varphi(t)\varphi^{T}(t)\right]\widehat{\theta}_{N} = \frac{1}{N}\sum_{t=1}^{N}\varphi(t)y(t).$$

• If the matrix on the left is invertible, the LSE is

$$\widehat{\theta}_N = \left[\frac{1}{N} \sum_{t=1}^N \varphi(t) \varphi^T(t) \right]^{-1} \frac{1}{N} \sum_{t=1}^N \varphi(t) y(t).$$

Least squares estimate Recommended matrix formulation

- Collect the output measurements in the vector $Y_N = \begin{bmatrix} y(1) \\ \vdots \\ y(N) \end{bmatrix}$, and the inputs in the $N \times d$ regression matrix $\Phi_N = \begin{bmatrix} \varphi^T(1) \\ \vdots \\ \varphi^T(N) \end{bmatrix}$.
- Normal equations: $\left[\Phi_N^T\Phi_N\right]\widehat{\theta}_N=\Phi_N^TY_N.$
- Estimate $\left| \widehat{\theta}_N = \Phi_N^\dagger Y_N \right|$ (Moore-Penrose) *pseudoinverse* of Φ_N : $\Phi_N^\dagger = \left[\Phi_N^T \Phi_N \right]^{-1} \Phi_N^T$. Note: $\Phi_N^\dagger \Phi_N = I$.

Linear least-squares estimate in Matlab

Solution x of overdetermined Ax = b with rectangular matrix A, so more equations than unknowns, or more rows than columns, or A is m-by-n with m > n and full rank n

Then least squares solution $\hat{x} = A^{\dagger}b$

In Matlab:

Example 1: The "well-known" linear fit y = ax + b

Measurements x_i and y_i for i = 1, ..., N.

Cost function $V_N = \frac{1}{N} \sum (y_i - ax_i - b)^2$.

1) "Manual" solution: $\frac{\partial V_N}{\partial a}=$ 0 and $\frac{\partial V_N}{\partial b}=$ 0, so

$$\begin{cases} \sum -x_i(y_i - ax_i - b) &= 0 \\ \sum -(y_i - ax_i - b) &= 0 \end{cases} \Leftrightarrow \begin{bmatrix} \sum x_i^2 & \sum x_i \\ \sum x_i & \sum 1 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} \sum x_i y_i \\ \sum y_i \end{bmatrix}$$

Parameter estimate: $\begin{bmatrix} \hat{a} \\ \hat{b} \end{bmatrix} = \begin{bmatrix} \sum x_i^2 & \sum x_i \\ \sum x_i & \sum 1 \end{bmatrix}^{-1} \begin{bmatrix} \sum x_i y_i \\ \sum y_i \end{bmatrix}$

Example 1: The "well-known" linear fit y = ax + bMatrix formulation

Measurements x_i and y_i for i = 1, ..., N.

Cost function $V_N = \frac{1}{N} \sum (y_i - ax_i - b)^2$.

2) Matrix solution:
$$Y_N = \begin{bmatrix} y(1) \\ \vdots \\ y(N) \end{bmatrix}$$
, $\Phi_N = \begin{bmatrix} x(1) & 1 \\ \vdots & \vdots \\ x(N) & 1 \end{bmatrix}$ and $\theta = \begin{bmatrix} a \\ b \end{bmatrix}$.

Cost function (in vector form) $V_N = \frac{1}{N}||Y_N - \Phi_N \theta||_2^2$.

Estimate
$$\hat{\theta}_N = \Phi_N^\dagger Y_N = \left[\Phi_N^T \Phi_N\right]^{-1} \Phi_N^T Y_N.$$

In Matlab: theta = Phi\Y;

First case study - Linear trend model of the winning men's 100 m time at the Summer Olympics

14 H. Garnier

Second case study Trend model for global surface temperature time series

Global warming seems to be clearly accelerating from 1980 onwards

- Global surface temperature time series shown against time is the temperature anomalies (in ° Celsius)
 relative to the 1951-1980 mean. The series is called GISTEMP after its producer, the NASA, New York, USA
- For more elaborated trend models, see paper by Manfred Mudelsee, *Trend analysis of climate time series:* A review of methods, Earth-Science Reviews 2019

Estimation of a linear trend model

$$V(\theta, Z^{N}) = \frac{1}{N} \sum_{k=1}^{N} (y(t_{k}) - (\alpha \times t_{k} + \beta))^{2} \qquad \theta = \begin{bmatrix} \alpha \\ \beta \end{bmatrix}$$

At the minimum of the criterion, its first derivative with respect to q is null:

$$\frac{\partial V(\theta, Z^N)}{\partial \alpha} = \frac{2}{N} \sum_{k=1}^{N} -t_k \left(y(t_k) - (\alpha \times t_k + \beta) \right) = 0$$

$$\frac{\partial V(\theta, Z^N)}{\partial \beta} = \frac{2}{N} \sum_{k=1}^{N} -\left(y(t_k) - (\alpha \times t_k + \beta) \right) = 0$$

$$\sum_{k=1}^{N} t_k \sum_{k=1}^{N} N \begin{bmatrix} \alpha \\ \beta \end{bmatrix} = \begin{bmatrix} \sum_{k=1}^{N} t_k y(t_k) \\ \sum_{k=1}^{N} t_k \sum_{k=1}^{N} N \end{bmatrix}$$

The least squares estimates are given by:

$$\begin{bmatrix} \hat{\alpha} \\ \hat{\beta} \end{bmatrix} = \begin{bmatrix} \sum_{k=1}^{N} t_k^2 & \sum_{k=1}^{N} t_k \\ \sum_{k=1}^{N} t_k & N \end{bmatrix}^{-1} \begin{bmatrix} \sum_{k=1}^{N} t_k y(t_k) \\ \sum_{k=1}^{N} y(t_k) \end{bmatrix}$$
Sous Matlab
$$theta_hat = inv([sum(years.^2) sum(years) N])^*...$$

$$[sum(years.^*T);sum(T)]$$

$$T_hat = theta(1)^* years + theta(2);$$

$$plot(years,T,'o', years,T,hat)$$

Estimation of a linear trend model by LS applied to the global surface temperature

$$V\left(\left[\begin{array}{c} \alpha \\ \beta \end{array}\right], Z^N\right) = \frac{1}{N} \sum_{k=1}^{N} \left(y(t_k) - (\alpha \times t_k + \beta)\right)^2$$

17 H. Garnier

H. Garnier

Estimation of piecewise linear trend models applied to the global surface temperature

18

Estimation of a quadratic trend model applied to the global surface temperature

$$V\left(\begin{bmatrix} \alpha \\ \beta \\ \gamma \end{bmatrix}, Z^N \right) = \frac{1}{N} \sum_{k=1}^{N} \left(y(t_k) - (\alpha t_k^2 + \beta t_k + \gamma) \right)^2$$

This is also much better than the basic linear trend model!

19 H. Garnier

Standard model accuracy measure: RMSE

- Given $\{y_1, \dots, y_N\}$ actual observations of some data $\{y_t\}$, and let \hat{y}_t be the simulated model value at time t
- We can calculate the residuals or forecast errors

$$E_N = Y_N - \hat{Y}_N = Y_N - \Phi_N \,\hat{\theta}$$

 A standard accuracy measure based on the residuals is the Root Mean Square Error (RMSE)

$$RMSE = \frac{1}{N} \| Y_N - \Phi_N \| \hat{\theta} \|_2$$

which calculates the Euclidean norm of the residuals, *i.e.*, the square root of the sum of the squares of all the residuals

Review of linear regression and least squares estimation

1. Least squares-based model estimation for static systems

2. Least squares-based model estimation for dynamical systems

22 H. Garnier

Transfer function model learning of a dynamic system by using basic linear regression

Goal: determine a continuous-time or discrete-time transfer function model of the dynamic system from step response data by using basic linear regression

• Laplace transfer function model choice:

$$G(s) = \frac{Y(s)}{U(s)} = \frac{b}{s+a}$$

- We seek to estimate the values of a and b that best fit the step response data by using basic linear regression (least squares)
- In the time-domain, the continuous-time model takes the form of a differential equation

$$(s+a)Y(s) = bU(s)$$

$$sY(s) + aY(s) = bU(s)$$

$$\dot{y}(t) + ay(t) = bu(t)$$

Output time-derivative

• At time-instant t_k

$$\dot{y}(t_k) + ay(t_k) = bu(t_k)$$

or

$$\dot{y}(t_k) = -ay(t_k) + bu(t_k)$$

• From the N=4 sampled measurements, we can write a set of 4 equations

$$\dot{y}(t_0) = -ay(t_0) + bu(t_0)$$

$$\dot{y}(t_1) = -ay(t_1) + bu(t_1)$$

$$\dot{y}(t_2) = -ay(t_2) + bu(t_2)$$

$$\dot{y}(t_3) = -ay(t_3) + bu(t_3)$$

• The 4 equations can be written in matrix form

$$\begin{bmatrix} \dot{y}(t_0) \\ \dot{y}(t_1) \\ \dot{y}(t_2) \\ \dot{y}(t_3) \end{bmatrix} = \begin{bmatrix} -y(t_0) & u(t_0) \\ -y(t_1) & u(t_1) \\ -y(t_2) & u(t_2) \\ -y(t_3) & u(t_3) \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix}$$

$$Y = \Phi \qquad \theta$$

$$\hat{\theta} = \begin{bmatrix} \hat{a} \\ \hat{b} \end{bmatrix} = [\Phi^T \Phi]^{-1} \Phi^T Y$$

• The 4 equations can be written in matrix form

$$\begin{bmatrix} 2\\0.1642\\0.0135\\0.0011 \end{bmatrix} = \begin{bmatrix} 0&1\\-1.8358&1\\-1.9865&1\\-1.9989&1 \end{bmatrix} \begin{bmatrix} a\\b \end{bmatrix}$$

$$Y = \Phi$$

$$\hat{\theta} = [\Phi^T \Phi]^{-1} \Phi^T Y$$

$$\begin{bmatrix} \hat{a} \\ \hat{b} \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \end{bmatrix} \Longrightarrow \hat{G}(s) = \frac{2}{s+1}$$

• Zero-order hold equivalent of the Laplace transfer function model choice:

$$G(s) = \frac{b}{s+a} \qquad G(z) = \frac{Y(z)}{U(z)} = (1 - z^{-1})Z\left(\frac{G(s)}{s}\right) = \frac{b_1 z^{-1}}{1 + a_1 z^{-1}}$$

The parameters
$$a_1$$
 and b_1 depend on T_s
$$\begin{cases} a_1 = -e^{-aT_s} = -0.0821 \\ b_1 = \frac{b}{a}(1 + a_1) = 1.8358 \end{cases}$$

- We seek to estimate the values of a_1 and b_1 that best fit the step response data by using basic linear regression (least squares)
- In the time-domain, the discrete-time model takes the form of a difference equation

$$(1 + a_1 z^{-1})Y(z) = b_1 z^{-1}U(z)$$

$$Y(z) + a_1 z^{-1} Y(z) = b_1 z^{-1} U(z)$$

$$y(t_k) + a_1 y(t_{k-1}) = b_1 u(t_{k-1})$$

• At time-instant t_k

$$y(t_k) + a_1 y(t_{k-1}) = b_1 u(t_{k-1})$$

or

$$y(t_k) = -a_1 y(t_{k-1}) + b_1 u(t_{k-1})$$

• From the *N=4* sampled measurements, we can write a set of 3 equations *only* because of the time-shift in the difference equation

$$y(t_1) = -a_1 y(t_0) + b_1 u(t_0)$$

$$y(t_2) = -a_1 y(t_1) + b_1 u(t_1)$$

$$y(t_3) = -a_1 y(t_2) + b_1 u(t_2)$$

• The 3 equations can be written in matrix form

$$\begin{bmatrix} y(t_1) \\ y(t_2) \\ y(t_3) \end{bmatrix} = \begin{bmatrix} -y(t_0) & u(t_0) \\ -y(t_1) & u(t_1) \\ -y(t_2) & u(t_2) \end{bmatrix} \begin{bmatrix} a_1 \\ b_1 \end{bmatrix}$$

$$Y = \Phi \qquad \theta$$

$$\hat{\theta} = [\Phi^T \Phi]^{-1} \Phi^T Y$$

 The 3 equations can be written in matrix form

$$\begin{bmatrix} 1.8358 \\ 1.9865 \\ 1.9989 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -1.8358 & 1 \\ -1.9865 & 1 \end{bmatrix} \begin{bmatrix} a_1 \\ b_1 \end{bmatrix}$$

$$Y = \Phi$$

$$\hat{\theta} = [\Phi^T \Phi]^{-1} \Phi^T Y$$

$$\begin{bmatrix} \hat{a}_1 \\ \hat{b}_1 \end{bmatrix} = \begin{bmatrix} -0.0821 \\ 1.8358 \end{bmatrix}$$

$$\Rightarrow \hat{G}(z) = \frac{\hat{b}_1 z^{-1}}{1 + \hat{a}_1 z^{-1}} = \frac{1.8358 z^{-1}}{1 - 0.0821 z^{-1}}$$

Use of simple linear regression for transfer function model learning - Take-home message

- In the ideal noise-free measurement case, it works fine
 - the continuous or discrete-time transfer function model parameter can be estimated by linear regression (least squares)
- In practice, the simple LS method breaks down for two main reasons
 - The output measurement is not perfectly known. It is contaminated by noise
 ⇒ Incorrect LS estimates whatever the continuous or discrete-time model form
 - The input and output time-derivatives required in the continuous-time model form are usually not measured

Advantages of continuous-time models

- ✓ CT models have certain advantages in relation to their equivalent DT models
 - Are more intuitive to control engineers in their every-day practice
 - Many practical control design are still based on CT models
 - CT models are often preferred for fault detection
 - reveal faults more directly than their DT counterparts
 - Parameter values are independent of T_s

$$G_{o}(p) = \frac{1}{p^{2} + p + 1}$$

$$T_{s} = 0.1s; \quad G_{T_{s}}(q^{-1}) = \frac{0.0048q^{-1} + 0.0047q^{-2}}{1 - 1.8953q^{-1} + 0.9048q^{-2}}$$

$$T_{s} = 1s; \quad G_{T_{s}}(q^{-1}) = \frac{0.3403q^{-1} + 0.2417q^{-2}}{1 - 0.7849q^{-1} + 0.3679q^{-2}}$$

Continuous-time methods presents some advantages

- ✓ CT methods present many advantages in relation to their equivalent DT methods
 - include inherent data prefiltering
 - are well-suited to fast sampling situations
 - are well-adapted to identify stiff systems
 - can cope easily with *irregularly* sampled data
 - ✓ In the following of the course, we will focus on continuous-time model learning