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1.1 Introduction

Mathematical models of dynamic systems are required in most areas of
scientific enquiry and take various forms, such as di!erential equations,
di!erence equations, state-space equations and transfer functions. The most
widely used approach to mathematical modelling involves the construction
of mathematical equations based on physical laws that are known to govern
the behaviour of the system. Amongst the drawbacks to this approach
are that the resulting models are often complex and not easily estimated
directly from the available data because of identifiability problems caused by
over-parameterisation. This complexity also makes them difficult to use in
applications such as control system design.

If sufficient experimental or operational data are available, an alternative
to physically-based mathematical modelling is data-based ‘system identifi-
cation’, which can be applied to virtually any system and typically yields
relatively simple models that can well describe the system’s behaviour within
a defined operational regime. Such models can be either in a ‘black-box’ form,
which describes only the input–output behaviour, or in some other, internally
descriptive form, such as state-space equations, that can be interpreted in
physically meaningful terms. This book presents some recent developments
in system identification applied to the modelling of continuous-time systems.

Dynamic systems in the physical world are naturally described in continuous-
time (CT), di!erential equation terms because the physical laws, such as
conservation equations, have been evolved mainly in this form. Paradoxically,
however, the best known system identification schemes have been based
on discrete-time (DT) models (sometimes referred to as sampled-data
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models), without much concern for the merits of natural continuous-time
model descriptions and their associated identification methods. In fact, the
development of CT system identification techniques occurred in the the last
century, before the development of the DT techniques, but was overshadowed
by the more extensive DT developments. This was mainly due to the ‘go
completely discrete-time’ trend that was spurred by parallel developments in
digital computers.

Much less attention has been devoted to CT modelling from DT data and
many practitioners appear unaware that such alternative methods not only
exist but may be better suited to their modelling problems. The identification
of continuous-time models is indeed a problem of considerable importance
that has applications in virtually all disciplines of science and engineering.
This book presents an up-to-date view of this active area of research and
describes methods and software tools recently developed in this field.

This chapter is organised as follows. In the first section, the general procedure
for system identification is reviewed. Thereafter, the basic features for fitting
DT and CT models to sampled data are presented with the objective of high-
lighting issues in CT model identification. Basic solutions to the main issues
are then presented. The main motivations for identifying CT models directly
from sampled data are then discussed, before we present some specialised top-
ics in system identification that deserve special attention. At the same time,
this introductory chapter aims at tying together the di!erent contributions
of the book. In this regard, the outline of the book is presented in the last
section.

1.2 System Identification Problem and Procedure

A linear time-invariant continuous-time system with input u and output y can
always be described by

y(t) = G(p)u(t) + χ(t) (1.1)

where G is the transfer function, p the time-domain di!erential operator and
the additive term χ(t) represents errors and disturbances of all natures. The
source of χ(t) could be measurement errors, unmeasured process disturbances,
model inadequacy, or combinations of these. It is assumed that the input
signal {u(t), t1 < t < tN} is applied to the system, with u(t) and the
output y(t) both sampled at discrete times t1, · · · , tN . The sampled signals
are denoted by {u(tk); y(tk)}.

The identification problem can be stated as follows: determine a continuous-
time model for the original CT system from N sampled measurements of the
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input and output ZN = {u(tk); y(tk)}N
k=1.

There are three di!erent kinds of parameterised models:

• grey-box models, where the model is constructed in continuous-time from
basic physical principles and the parameters represent unknown values of
the system coefficients that, at least in principle, have a direct physical
interpretation. Such models are also known as physically parameterised or
tailor-made models;

• black-box models, which are families of flexible models of general appli-
cability. The parameters in such models, which can be continuous time
or discrete time, have no direct physical interpretation (even though the
CT version is closer to the physically parameterised model than the DT
version), but are used as vehicles to describe the properties of the input–
output relationships of the system. Such models are also known as ready-
made models;

• data-based mechanistic (DBM) models, which are e!ectively models
identified initially in a black-box, generic model form but only considered
credible if they can be interpreted in physically meaningful terms.

In this book, we restrict our attention to black-box model identification. The
reader is referred, for instance, to [4] and the references therein, for grey-box
model identification; and [53] and the references therein, for DBM model
identification.

The basic ingredients for the system identification problem are as follows

• the data set;
• a model description class (the model structure);
• a criterion of fit between data and models;
• a way to evaluate the resulting models.

System identification deals with the problem of determining mathematical
models of dynamical, continuous-time systems using measured input–output
data. Basically this means that a set of candidate models is chosen and then
a criterion of fit between model and data is developed. Finally, the model
that best describes the data according to the criterion, within the model set,
is computed using some suitable algorithm.

There are two fundamentally di!erent time-domain approaches to the problem
of obtaining a black-box CT model of a natural CT system from its sampled
input–output data:

• the indirect approach , which involves two steps. First, a DT model for
the original CT system is obtained by applying DT model estimation meth-
ods to the available sampled data; and then the DT model is transformed
into the required CT form. This indirect approach has the advantage that
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it uses well-established DT model identification methods [23, 39, 52]. Ex-
amples of such methods, which are known to give consistent and statisti-
cally efficient estimates under very general conditions, are prediction error
methods optimal instrumental variable techniques;

• the direct approach , where a CT model is obtained immediately using
CT model identification methods, such as those discussed in this book.
Without relying any longer on analogue computers, the present techniques
exploit the power of the digital tools. In this direct approach, the model
remains in its original CT form.

Independent of how the identification problem is approached, a model
parametrisation will lead to the definition of a predictor

ŷ(tk,θ) = g(θ, Zk−1) (1.2)

that depends on the unknown parameter vector θ, and past data Zk−1. The
general procedure for estimating a parameterised model from sampled data,
regardless of whether it is a CT or DT model, is as follows:

1. from observed data and the predictor ŷ(tk,θ), form the sequence of pre-
diction errors

ε(tk,θ) = y(tk) − ŷ(tk,θ) k = 1, . . . , N (1.3)

2. filter the prediction errors through a linear filter F (•) to enhance or at-
tenuate interesting or unimportant frequency bands in the signals

εf(tk,θ) = F (•)ε(tk,θ) (1.4)

where • can be the shift operator if the filter is in discrete time or the
di!erential operator when the filter is in continuous time;

3. choose a scalar-valued, positive function l(·) to measure the size or norm
of the filtered prediction error

l(εf(tk,θ)) (1.5)

4. minimise the sum of these norms

θ̂ = arg min
θ

VN (θ) (1.6)

where

VN (θ) =
1
N

N⎢

k=1

l(εf(tk,θ)) (1.7)

This procedure is general and pragmatic, in the sense that it is indepen-
dent of the particular CT or DT model parametrisation used, although this
parametrisation will a!ect the minimisation procedure. Indeed, as we will see,
some peculiarities occur in CT model identification that do not occur in DT
model identification. We deal with these aspects of the estimation problem
in the following three sections. For simplicity of presentation, the formulation
and basic solution of both CT and DT model identification problems will be
restricted to the case of a linear, single-input, single-output system.
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1.3 Basic Discrete-time Model Identification

1.3.1 Difference Equation Models

Perhaps the simplest model of a linear, discrete-time system is the linear
di!erence equation

y(tk) + a1y(tk−1) + . . . + anay(tk−na) = b1u(tk−1) + . . . + bnbu(tk−nb) + v(tk)
(1.8)

where the relationship between the input and output is expressed in terms of
the sampled sequences u(tk) and y(tk) for k = 1, 2, . . . , N .
Equation (1.8) can also be written as

A(q−1)y(tk) = B(q−1)u(tk) + v(tk) (1.9)

or
y(tk) =

B(q−1)
A(q−1)

u(tk) + χ(tk); χ(tk) =
1

A(q−1)
v(tk) (1.10)

with

B(q−1) =b1q
−1 + · · · + bnbq

−nb ,

A(q−1) =1 + a1q
−1 + · · · + anaq−na

where q−1 is the backward shift operator, i.e., q−1x(tk) = x(tk−1). Equation
(1.8) can be expressed in a vector form that is linear in the model parameters

y(tk) = ϕT (tk)θ + v(tk) (1.11)

with

ϕT (tk) =
⎥
−y(tk−1) · · ·− y(tk−na)u(tk−1) · · ·u(tk−nb)

⎫
(1.12)

θ = [a1 . . . ana b1 . . . bnb ]
T (1.13)

In this case, the predictor defined in (1.2) takes the form

ŷ(tk,θ) = ϕT (tk)θ (1.14)

1.3.2 The Traditional Least Squares Method

A traditional way of determining θ is to minimise the sum of the squares of
the prediction error ε(tk,θ) by defining the criterion function

VN (θ) =
1
N

N⎢

k=1

(y(tk) − ŷ(tk,θ))2 (1.15)
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then minimising with respect to θ. In the present case, ŷ(tk,θ) is linear in θ
and the criterion VN is quadratic, so that VN (θ) can be minimised analytically
to give the least squares (LS) estimate

θ̂LS =

⎬
1
N

N⎢

k=1

ϕ(tk)ϕT (tk)

⎭−1
1
N

N⎢

k=1

ϕ(tk)y(tk) (1.16)

Once the regression vector ϕ(tk) is constructed (from the measured sampled
input–output data), the solution can be computed easily. In the statistical lit-
erature, this approach is usually referred to as ‘linear regression analysis’ and
the linear, simultaneous equations that yield the solution (1.16) are termed
the ‘normal equations’. It is important to realise, however, that this is not
a classical regression problem because the elements of the regression vector
ϕ(tk) are not exactly known, as required in regression analysis, but are mea-
sured variables that can be contaminated by noise. This has deleterious e!ects
on the parameter estimates that are considered later in the book. It should
also be noted that this basic LS method is a special case of the more general
prediction error method discussed in Section 1.2, where the analytical solution
does not exist and recourse has to be made to other optimisation approaches,
such as gradient optimisation or iterative ‘relaxation’ estimation.

1.3.3 Example: First-order Difference Equation

The traditional LS method is outlined below for the case of a simple first-order
DT model

y(tk) + a1y(tk−1) = b1u(tk−1) + v(tk) (1.17)

which can be written in regression form as

y(tk) = [−y(tk−1)u(tk−1)]
[

a1

b1

]
+ v(tk) (1.18)

Now, according to (1.16), from N available samples of the input and output
signals observed at discrete times t1, . . . , tN , uniformly spaced, the linear LS
parameter estimates are given by

[
â1

b̂1

]
=




1
N

N∑
k=1

y2(tk−1) − 1
N

N∑
k=1

y(tk−1)u(tk−1)

− 1
N

N∑
k=1

y(tk−1)u(tk−1)
1
N

N∑
k=1

u2(tk−1)




−1 


− 1

N

N∑
k=1

y(tk)y(tk−1)

1
N

N∑
k=1

y(tk)u(tk−1)





It is well known that, except in the special case when v(tk) in (1.8) is a white
noise, simple LS estimation is unsatisfactory. Solutions to this problem led to
the development of various approaches, as documented in many books (see
e.g., [23, 39,52]).
The simple di!erence equation model (1.8) and the well-known LS estimator
(1.16) represent the simplest archetype of DT model identification.
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1.3.4 Models for the Measurement Noise

In the previous section, we parameterised the description of dynamical systems
in a particular form. There are many other possibilities that depend on the
method used to model the measurement noise. A common approach used
in DT model identification is to assume that the additive disturbance χ(tk),
contaminating the output measurement has a rational spectral density and
can be represented as a DT white noise source e(tk) passed through a linear
filter H(q−1), i.e.,

χ(tk) = H(q−1)e(tk) (1.19)

When the system and noise models are combined, the standard discrete-time
model of a linear dynamic system then takes the form

y(tk) = G(q−1)u(tk) + H(q−1)e(tk) (1.20)

In general, the estimation of the parameters in this model is a non-linear
statistical estimation problem that can be solved in several ways: e.g., gradient
optimisation procedures, such as the maximum likelihood and prediction error
methods; and iterative procedures, such as optimal instrumental variables.

1.4 Issues in Direct Continuous-time Model
Identification

1.4.1 Differential Equation Models

A continuous-time model of the system takes the form of a constant coefficient
di!erential equation

dny(t)
dtn

+ a1
dn−1y(t)
dtn−1

+ · · ·+ any(t) = b0
dmu(t)

dtm
+ · · ·+ bmu(t) + v(t) (1.21)

where dix(t)
dti denotes the ith time derivative of the continuous-time signal x(t).

Equation (1.21) can be written alternatively as

y(n)(t) + a1y
(n−1)(t) + · · · + any(t) = b0u

(m)(t) + · · · + bmu(t) + v(t) (1.22)

where x(i)(t) denotes the ith time derivative of the continuous-time signal
x(t). Equation (1.21) or (1.22) can be written in the alternative time-domain
di!erential operator form

A(p)y(t) = B(p)u(t) + v(t) (1.23)

or
y(t) =

B(p)
A(p)

u(t) + χ(t); χ(t) =
1

A(p)
v(t) (1.24)
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with

B(s) =b0p
m + b1p

m−1 + · · · + bm

A(s) =pn + a1p
n−1 + · · · + an, n ≥ m

and p denoting the di!erential operator, i.e., px(t) = dx(t)
dt .

At any time instant t = tk, (1.22) can be rewritten in regression-like form as

y(n)(tk) = ϕT (tk)θ + v(tk) (1.25)

where the regressor and parameter vectors are now defined by

ϕT (tk) =
⎥
−y(n−1)(tk) · · ·− y(tk)u(m)(tk) · · ·u(tk)

⎫
(1.26)

θT = [a1 . . . an b0 . . . bm] (1.27)

However, unlike the di!erence equation model, where only sampled input
and output data appear, the di!erential equation model (1.25) contains input
and output time derivatives that are not available as measurement data in
most practical cases. When compared with DT model identification, direct
CT model identification raises several technical issues that are discussed in
the following sections.

1.4.2 Input–Output Time Derivatives

The first difficulty in handling CT models is due to the need for the (normally
unmeasured) time derivatives of the input–output signals. Various meth-
ods have been devised to deal with the reconstruction of the time deriva-
tives [8,37,40–42,45,56]. Each method is characterised by specific advantages,
such as mathematical convenience, simplicity in numerical implementation
and computation, handling of initial conditions, physical insight, accuracy
and others.
One traditional approach that dates from the days of analogue computers
[47] is known as the state-variable filter (SVF) method. This method will be
reviewed in Section 1.5.1, with the objective to highlight the di!erences from
DT model identification.

1.4.3 Models for the Measurement Noise

Another difficulty with CT model identification is due to continuous-time
stochastic processes. Although the noise model can be given in a CT form,
difficulties arise in the estimation because of the theoretical and practical
problems associated with the use of CT white noise and its derivatives. A noise
model in an equivalent discrete-time form is much more flexible and easier to
implement in the estimation problem. Thus, a hybrid model parametrisation
method has evolved that involves the identification of a CT model for the
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process and a DT model for the noise [16,29,58]. The continuous-time hybrid
model of a linear dynamic system then takes the following form,

x(t) = G(p)u(t) (1.28a)

χ(tk) = H(q−1)e(tk) (1.28b)
y(tk) = x(tk) + χ(tk) (1.28c)

or,
y(tk) = G(p)u(tk) + H(q−1)e(tk) (1.29)

where the operators have been mixed informally here in order to illustrate
the nature of the estimation model. This approach alleviates the practical
difficulties that may be encountered in the parameter estimation of the fully
stochastic CT model.

1.5 Basic Direct Continuous-time Model Identification

1.5.1 The Traditional State-variable Filter Method

Let us first consider the transfer function (TF) model (1.23) in the simple
noise-free case (the noise-free output is denoted as x(t)), i.e.,

A(p)x(t) = B(p)u(t) (1.30)

Assume now that a SVF filter with operator model F (p) is applied to both
sides of (1.30). Then, ignoring transient initial conditions

A(p)F (p)x(t) = B(p)F (p)u(t) (1.31)

The minimum-order SVF filter is typically chosen to have the following oper-
ator model form4

F (p) =
1

(p + λ)n (1.32)

where λ is the parameter that can be used to define the bandwidth of the
filter.
Equation (1.31) can then be rewritten, in expanded form, as

(
pn

(p + λ)n + a1
pn−1

(p + λ)n + . . . + an
1

(p + λ)n

)
x(t)

=
(

b0
pm

(p + λ)n + . . . + bm
1

(p + λ)n

)
u(t) (1.33)

Let Fi(p) for i = 0, 1, . . . , n be a set of filters defined as

4 The filter dc gain can be made unity if this is thought desirable.
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Fi(p) =
pi

(p + λ)n (1.34)

By using the filters defined in (1.34), Equation (1.33) can be rewritten, as

(Fn(p) + a1Fn−1(p) + . . . + anF0(p)) x(t) = (b0Fm(p) + . . . + bmF0(p)) u(t)
(1.35)

Equation (1.35) can also be written as

x(n)
f (t) + a1x

(n−1)
f (t) + . . . + anx(0)

f (t) = b0u
(m)
f (t) + . . . + bmu(0)

f (t) (1.36)

with

x(i)
f (t) = fi(t) ∗ x(t)

u(i)
f (t) = fi(t) ∗ u(t)

where fi(t), for i = 0, . . . , n represent the impulse responses of the filters
defined in (1.34) and ∗ denotes the convolution operator. The filter outputs
x(i)

f (t) and u(i)
f (t) provide prefiltered time derivatives of the inputs and

outputs in the bandwidth of interest, which may then be exploited for model
parameter estimation.

Consider now the situation where there is an additive noise on the output
measurement. Then, at time instant t = tk, substituting xf(t) for yf(t), (1.36)
can be rewritten in standard linear regression-like form as

y(n)
f (tk) = ϕT

f (tk)θ + η(tk) (1.37)

where η(tk) is a filtered noise term arising from the output measurement noise
χ(tk) and the filtering operations, while

ϕT
f (tk) =

[
−y(n−1)

f (tk) · · ·− y(0)
f (tk)u(m)

f (tk) · · ·u(0)
f (tk)

]
(1.38)

θ = [a1 . . . an b0 . . . bm]T (1.39)

Now, from N available samples of the input and output signals observed at
discrete times t1, . . . , tN , not necessarily uniformly spaced, the linear least-
squares (LS)-based SVF parameter estimates are given by

θ̂LSSVF =

⎬
1
N

N⎢

k=1

ϕf(tk)ϕT
f (tk)

⎭−1
1
N

N⎢

k=1

ϕf(tk)y(n)
f (tk) (1.40)

It is well known that, except in the special case where η(tk) in (1.37) is zero
mean and uncorrelated (white noise), LS-based SVF estimation although sim-
ple, is unsatisfactory. For example, even if the noise term χ(tk) in (1.24) is
white, the resultant parameter estimates are asymptotically biased and incon-
sistent. Solutions to this problem are the subject of various chapters in this
book.
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1.5.2 Example: First-order Differential Equation

The LS-based SVF method is outlined below for the case of a simple first-order
di!erential model given by

y(1)(t) + a1y(t) = b0u(t) + v(t) (1.41)

Applying a first-order SVF filter to both sides yields
(

p

p + λ
+ a1

1
p + λ

)
y(t) = b0

1
p + λ

u(t) +
1

p + λ
v(t) (1.42)

which can be rewritten as

(F1(p) + a1F0(p)) y(t) = b0F0(p)u(t) + F0(p)v(t) (1.43)

Equation (1.43) can be expressed for t = tk as

y(1)
f (tk) + a1yf(tk) = b0uf(tk) + η(tk) (1.44)

and written in regression-like form as

y(1)
f (tk) = [−yf(tk)uf(tk]

[
a1

b0

]
+ η(tk) (1.45)

Now, according to (1.40), from N available samples of the input and output
signals observed at discrete times t1, . . . , tN , not necessarily uniformly spaced,
the linear LS-based SVF parameter estimates are given by

[
â1

b̂0

]
=




1
N

N∑
k=1

y2
f (tk) − 1

N

N∑
k=1

yf(tk)uf(tk)

− 1
N

N∑
k=1

yf(tk)uf(tk) 1
N

N∑
k=1

u2
f (tk)




−1 


− 1

N

N∑
k=1

y(1)
f (tk)yf(tk)

1
N

N∑
k=1

y(1)
f (tk)uf(tk)





The di!erential equation model (1.21) and the traditional LS-based SVF es-
timator (1.40) represent the simplest archetype of direct CT model identifi-
cation.

1.6 Motivations for Identifying Continuous-time Models
Directly from Sampled Data

There are many advantages in describing a physical system using CT models
and also in identifying the CT models directly from sampled data. Here, we
implicitly assume that the sampling rate is sufficiently fast to permit the
identification of a continuous-time model from sampled data. It is true that
DT models may be better suited to the design and simulation of control
systems in a digital environment. However, because a DT model is estimated
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from sampled data with a fixed sampling rate, it is only really valid for this
chosen sampling rate in its later applications. On the other hand, if a CT
model is obtained using data collected at a fast sampling rate, this CT model
may be discretised into a DT model with any sampling rate (not necessarily
related to the original sampling rate). This is particularly advantageous in
the situation where the issue is one of choosing the appropriate sampling rate
for discrete-time system modelling and control system design.

The following subsections provide a discussion of the various issues of
continuous-time versus discrete-time modelling.

1.6.1 Physical Insight into the System Properties

Most physical phenomena are more transparent in a CT setting, as the models
of a physical system obtained from the application of physical laws are nat-
urally in a CT form, such as di!erential equations. A continuous-time model
is preferred to its discrete-time counterpart in the situation where one seeks
a model that represents an underlying CT physical system, and wishes to
estimate parameter values that have a physical meaning, such as time con-
stants, natural frequencies, reaction times, elasticities, mass values, etc. While
these parameters are directly linked to the CT model, the parameters of DT
models are a function of the sampling interval and do not normally have
any direct physical interpretation. For example, consider a mechanical system
represented by the following second-order CT transfer function

1
ms2 + bs + k

(1.46)

where the parameters represent the mass, elasticity and friction that have a
direct physical meaning. Now, a DT model of the same process will take the
following form

b0z + b1

a0z2 + a1z + a2
(1.47)

where z denotes the Z-transform variable. The parameters of the correspond-
ing DT model do not have a direct physical meaning.

In many areas such as, for example, astrophysics, economics, mechanics, en-
vironmental science and biophysics, one is interested in the analysis of the
physical system [3, 18, 27, 56]. In these areas, the direct identification of CT
models has definite advantages.

1.6.2 Preservation of a priori Knowledge

The a priori knowledge of relative degree (the di!erence between the orders of
the denominator and numerator) is easy to accommodate in CT models and,
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therefore, allows for the identification of more parsimonious models than in
discrete time. This is obvious in the example of the second-order mechanical
system, where additional parameters are introduced in the numerator of the
DT transfer function by the sampling process.

1.6.3 Inherent Data Filtering

Explicit prefiltering strategies are recommended in the general approach to
system identification [23, 52], where it is shown that these strategies improve
the statistical efficiency of the parameter estimates. However, the prefiltering
strategy is not inherent in DT model identification and the user is, there-
fore, confronted with a choice of whether to add prefiltering. This scenario is
contrasted with the situation in CT identification, where the prefiltering is in-
herent and has two roles: in addition to its original use for reconstructing the
filtered time derivatives within the bandwidth of the system to be identified,
it became clear [58] that it can perform the same, statistically meaningful
prefiltering role as in DT identification.

1.6.4 Non-uniformly Sampled Data

In some situations, it is difficult to obtain equidistant sampled data. This
problem arises in medicine, environmental science, transport and traffic sys-
tems, astrophysics and other areas, where measurement is not under the con-
trol of the experimenter or where uniform sampling is practically impossible.
For these non-uniformly sampled data systems, the standard DT linear, time-
invariant models will not be applicable because the assumption of a uniformly
sampled environment, as required for the existence of such discrete-time mo-
dels, is violated. On the other hand, the coefficients of CT models are assumed
to be independent of the sampling period and so they have a built-in capa-
bility to cope with the non-uniformly sampled data situation. With a small
modification of the data handling procedure, the measurements are considered
as points on a continuous line, which do not need to be equidistantly spaced.

1.6.5 Transformation between CT and DT Models

The parameter transformation between DT and CT representations is well
studied [32]. The poles of a DT model are mapped according to the poles
in the continuous-time model via the relation: pd = epcTs , where pd is the
discrete-time pole, pc is the continuous-time pole and Ts is the sampling
interval. However, the zeros of the DT model are not as easily mapped
as the poles. Even if the continuous-time system is minimum phase (i.e.,
all zeros in the left half-plane), the corresponding discrete-time model can
be non-minimum phase (i.e., possesses zeros outside of the unit circle). In
addition, due to the discrete nature of the measurements, the discrete-time
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models do not capture all of the information about the CT signals.

Moreover, in order to describe the signals between the sampling instants, some
additional assumptions have to be made: for example, assuming that the ex-
citation signal is constant within the sampling intervals (the zero-order hold
assumption). However, violation of these assumptions may lead to estimation
errors [35].

1.6.6 Sensitivity Problems of DT Models at High Sampling Rates

It is well known that discrete-time models encounter difficulties when the
sampling frequency is too high in relation to the dominant frequencies of the
system under study [1]. In this situation, the DT poles lie too close to the
unit circle in the complex domain and the parameter estimates can become
statistically ill-defined.

1.6.7 Stiff Systems

Sti! systems are systems with eigenvalues that are of a di!erent order of
magnitude, i.e., the system contains both slow and fast dynamics. Since a DT
model is related to a single sampling rate, it is often difficult in such situations
to select a sampling rate that captures the complete dynamics of the system
without any compromise. In order to illustrate this scenario, suppose that
there are two time constants in a sti! system, the fast time constant is 1 (s)
and the slow time constant is 100 (s). Typically, the sampling interval Ts is
selected approximately in the range of 0.1 to 0.25 of the time constant in
order to capture the dynamics associated with this time constant. Assume
that Ts = 0.25 of the fast time constant, the poles in the discrete-time model
are then e−0.01Ts = 0.9975 and e−Ts = 0.7788; and the slow pole is now very
close to the unit circle in the complex plane (see previous subsection). As a
result, a small estimation error could cause the estimated model to become
unstable. However, if we now reduce the sampling rate, in order to avoid this
difficulty, the dynamics associated with the fast time constant can become
poorly identified. For example, suppose that Ts = 10 (s), then poles in the
discrete model are e−0.1 = 0.9048 and e−10 = 4.54×10−5; so that, although the
slow pole moves away from the unit circle, the fast pole virtually disappears
from the model structure. Thus, we see that DT models find it difficult, at a
specified sampling interval, to deal with both the quick and slow dynamics.
In contrast to this, a sti! system can be better captured by a continuous-time
model estimated from rapidly sampled data and the coefficients of this model
are independent of the sampling rate.
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1.7 Specialised Topics in System Identification

The general framework of parameter estimation for linear, time-invariant CT
models has to include the consideration of additional factors, such as the iden-
tification of the model structure (the order of the transfer function polynomials
and the size of any pure time delay), the possible non-integral nature of any
pure time delay, identification from data collected during closed-loop experi-
ments, etc. The following subsections briefly introduce these other factors and
how they are discussed in the present book.

1.7.1 Identification of the Model Structure

Data-based modelling of a continuous-time model consists of model struc-
ture identification and the estimation of the parameters that characterise this
structure. A continuous-time model structure is prescribed by its model order:
i.e., the order of its denominator polynomial and a relative degree. Due to the
relative degree, there are many candidate model structures for a given model
order. The objective of model structure identification is to select the ‘best’
model structure among all candidates, based on performance indices, which
are often the sum of squares of prediction errors, the statistical properties
of the errors and numerous statistical identification criteria. Model structure
identification will be discussed in Chapter 6.

1.7.2 Identification of Pure Time (Transportation) Delay

An important additional part of the model structure is the existence of a pure
time delay parameter. Unlike the situation in DT identification, where the
time delay is assumed to be an integral number of sampling intervals and
is often absorbed into the definition of the numerator polynomial (as lead-
ing zero-valued parameters), the time-delay parameter for CT system models
is normally associated directly with the input signal and can have a non-
integral value. As a result, the estimation of the time-delay parameter in CT
identification deserves special attention. The interesting issues, in this regard,
include simultaneously identifying the continuous-time model parameters and
time-delays. Identification of systems with unknown time-delay is discussed
in Chapters 11 and 12.

1.7.3 Identification of Continuous-time Noise Models

Identification of the system characteristics from output observations only is
referred to as time-series analysis in econometrics, blind identification in signal
processing, noise modelling in system identification, and operational modal
analysis in mechanical engineering. A fundamental problem is how to model a
continuous-time stochastic process based on sampled measurements. Several
solutions are possible. One of the key issues is how to sample a continuous-time
stochastic system. These issues are discussed in Chapter 2.



16 H. Garnier, L. Wang and, P.C. Young

1.7.4 Identification of Multi-variable Systems

Systems with many input signals and/or many output signals are called multi-
variable. Such systems are often more challenging to model. In particular,
systems with several outputs can be difficult. A basic reason for the difficulties
is that the couplings between several inputs and outputs lead to more complex
models. The structures involved are richer and more parameters are required
to obtain a good fit. A class of multi-variable system identification schemes,
based on the subspace estimation and state-space realisations have emerged
since the late 1980s. The use of these subspace methods to identify CT state-
space models is discussed in Chapter 10.

1.7.5 Identification in Closed Loop

Many systems have feedback that cannot be interrupted for an identification
experiment, as for example when an existing controller cannot safely be dis-
connected from an industrial process. In this situation, special procedures are
necessary to avoid identifiability problems that can be induced by the feed-
back connection. Closed-loop identification schemes are described in Chapters
5 and 13.

1.7.6 Identification in the Frequency Domain

Linear dynamic systems have equivalent and complementary descriptions: in
the time domain and in the frequency domain. Although the two descriptions
are basically equivalent to each other, the formulation of the identification
problem leads to di!erent methods in the two domains. In many practical
situations, parameter estimation in the frequency domain is of considerable
interest [30]. Practical aspects of frequency-domain parametric identification
methods are discussed in Chapter 8.

1.7.7 Software for Continuous-time Model Identification

System identification is typically an iterative procedure, where the insights
and judgements of the user are mingled with formal considerations, exten-
sive data handling and complex algorithms. To make the application of the
identification procedure successful, it is almost always necessary to have some
user-friendly software tools to facilitate the user’s modelling. These software
aspects are discussed in Chapters 8 and 9.

1.8 Historical Review

In contrast to the present day, the control world of the 1950s and 1960s was
dominated by CT models as most control system design was concerned with
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CT systems and most control system implementations employed analogue
techniques. Moreover, almost all CT identification methods were largely de-
terministic, in the sense that they did not explicitly model the additive noise
process nor attempt to quantify the statistical properties of the parameter
estimates. Nevertheless, it is fascinating to see that some of these early papers
introduced interesting concepts that foreshadowed later, important develop-
ments of a very similar nature. For instance, Valstar [43] and Young [47, 48]
suggested the use of prefilters to solve the derivative measurement problem
and this same ‘state-variable filter’ (SVF) approach5 was re-discovered, some
20 years afterwards [34], under the title of ‘Poisson-moment functionals’
(PMF). Most early research also used completely analogue implementation,
with both the prefilters and the estimation algorithm implemented in an
analogue manner (e.g., [14, 22, 48]); while some, adumbrating developments
to come, utilised hybrid implementations where analogue prefiltering was
combined with a digital identification algorithm [47, 49]. Indeed, two of
these references [14, 22] also consider non-linear system identification, using
a purely deterministic ‘state-dependent parameter’ approach that would
emerge, many years later, in a stochastic, purely digital form (e.g., [59]).

Also in the 1960s, it was realised that measurement noise could cause
asymptotic bias on the parameter estimates when linear least squares (re-
gression) methods were used to estimate the parameters in dynamic systems.
Within a largely deterministic setting, papers appeared (e.g., [20, 46, 49, 50])
that graphically demonstrated the value of the instrumental variable (IV)
modification to both the recursive and en-bloc least squares algorithms that
had been used for CT identification prior to this. Here, the instrumental
variables were generated as the output of a recursively updated ‘auxiliary
model’ of the system that, together with the prefilters, was implemented
directly in continuous time.

Perhaps because of the dominant interest in DT identification and estimation
since 1970, a stochastic formulation of the CT estimation problem did not
appear until 1980. Then, Young and Jakeman [58], following the optimal
prefiltering and recursive-iterative estimation procedures for DT systems
(first presented in [51]), suggested an optimal ‘hybrid’ refined instrumental
variable solution to the CT identification problem (RIVC). This involves a
CT model of the system and a discrete-time ARMA model for the noise.
However, at that time, it was only implemented in a simplified form (SRIVC)
that yields consistent and statistically efficient parameter estimates when the
additive noise χ(t) in (1.24) is white.

Responding to the research on RIVC estimation, Huang et al. [15] imple-
mented an alternative hybrid solution that allowed for coloured noise and

5 Also called the ‘method of multiple filters’ [49].
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utilised a gradient optimisation algorithm, rather than the iterative solution
used in the SRIVC algorithm and proposed in the RIVC algorithm. However,
they chose to convert the problem into an entirely DT form and so did not
implement the prefilters and auxiliary model explicitly in continuous time.
Also, they did not present any stochastic simulation results and, as such, it
is not possible to reach any clear conclusions about the statistically efficiency
of the algorithm.

Despite these excursions into stochastic systems and full statistical estima-
tion, most publications on CT identification during the 1970s and 1980s were
deterministic in concept and suggested various methods of implementing pre-
filters (see [8] for a recent overview for example). Most of the deterministic
approaches are available in the continuous-time system identification (CON-
TSID) toolbox6 for MATLAB! (see Chapter 9 in this book). Since the deter-
ministic methods have been documented so fully, it will suffice here merely to
outline the main features of each approach.

Linear Filter Methods

These methods originated from the third author’s early research in this
area [47, 48, 50] where the method was referred to as the ‘method of multi-
ple filters’ (MMF). It involves passing the input and output signals through a
chain of (usually identical) first-order prefilters with user-specified bandwidth,
normally selected so that it spans the anticipated bandwidth of the system
being identified (see Section 1.5.2 for the simplest example of this method).
More recently this MMF approach has been re-named the generalised Poisson
moment functionals (GPMF) approach [34, 40]. Recent MMF/GPMF devel-
opments have been proposed by the first author and his co-workers [2,7,9–11].

Integration-based Methods

The main idea of these methods is to avoid the di!erentiation of the data
by performing an order n integration. These integral methods can be roughly
divided into two groups. The first group, using numerical integration and
orthogonal function methods, performs a basic integration of the data and
special attention has to be paid to the initial condition issue. The second
group includes the linear integral filter (LIF: [33]) and the re-initialised partial
moments (RPM: [6]) approaches. Here, advanced integration methods are used
to avoid the initial condition problem either by exploiting a moving integration
window (LIF) or a time-shifting window (RPM).

6 http://www.cran.uhp-nancy.fr/contsid: the CONTSID toolbox also contains the
SRIVC and RIVC algorithms.
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Modulating Function Methods

This approach was first suggested almost half a century ago by Shinbrot
in order to estimate the parameters of linear and non-linear systems [36].
Further developments have been based on di!erent modulating functions.
These include the Fourier-based functions [26], in either trigonometric or
complex exponential form; spline-type functions; Hermite functions and,
more recently, Hartley-based functions [42]. A very important advantage of
using Fourier- and Hartley-based modulating functions is that the model
estimation can be formulated entirely in the frequency domain, making it
possible to use efficient DFT/FFT techniques.

Other Methods

Several other approaches have been suggested that cannot be classified
directly into any of the categories discussed in the previous subsections.
An interesting approach is reported in [16] where the idea is to replace the
di!erentiation as represented by the Laplace operator s by the operator w.
These operators are related via the bilinear relationship w = s−a

s+a . The new
w-domain model can be estimated directly from sampled data, using filtered
signals. Afterwards, the parameters of this model are translated back to the
parameters of the ordinary continuous-time model, using simple algebraic
relations. The w operator can be an all-pass filter. In this case, the filter
does not alter the frequency content of the signals and only a!ects the phase.
This setup is closely related to the SVF method (see also [5] for a related
scheme where the filters take the form of CT Laguerre functions). Two
other approaches that have attracted a lot of attention in the identification
community in the 1990s are subspace-based methods (see [2, 13, 17,21,24,25]
but also Chapter 10 in this book) and finite di!erence methods [19, 28, 38].
This latter approach, which is based on replacing the di!erentiation operator
with finite di!erences, will be considered in some depth in this book (see
Chapters 2 and 3).

Most recently, attention has re-focused on stochastic model identification and
statistically optimal CT estimation procedures. First, in discussing a paper on
optimal CT identification by Wang and Gawthrop [44], Young [54] drew at-
tention to the virtues of the existing SRIVC estimation algorithm and demon-
strated its superiority in a simulation example. This encouraged, at last, the
implementation of the full hybrid RIVC algorithm [57] that is presented and
evaluated in Chapter 4 of this book, as well as the development of an associ-
ated closed-loop version of the algorithm [12], which is described in Chapter
5. A useful by-product of this renewed interest in these optimal algorithms is
that optimal RIV algorithms are now available for Box–Jenkins-type stochas-
tic transfer function models of CT and DT systems, providing a unified ap-
proach to the identification and estimation of transfer function models [55].
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