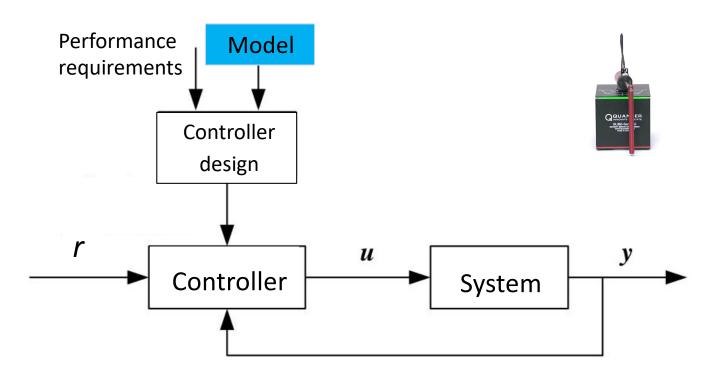


Identification of dynamical systems

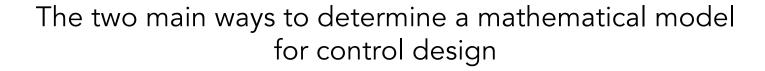
_

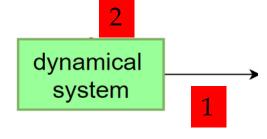
A case study with the QUBE servo 2

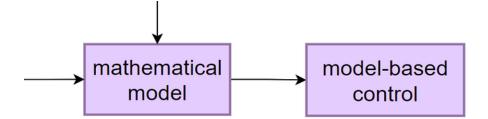
Hugues GARNIER


hugues.garnier@univ-lorraine.fr

Model identification for control What is it all about?


 Control is an interdisciplinary branch of engineering and mathematics that deals with dynamical systems with inputs, and how their behavior is modified by feedback




To do it in a **systematic way**, a **model-based approach** for control design has been developed

Model-based control design Case study: Rotary speed control of the QUBE servo 2

(a) QUBE-Servo 2 with Inertia Disc Module

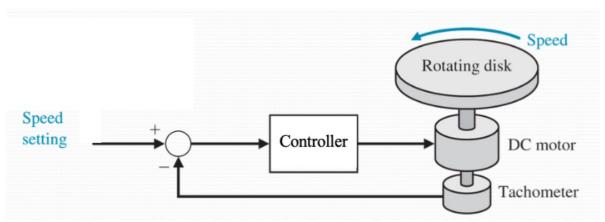
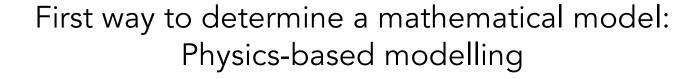
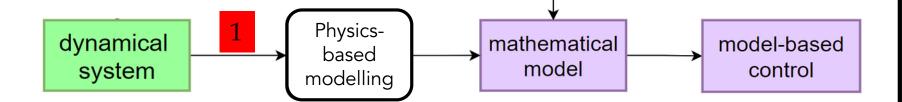
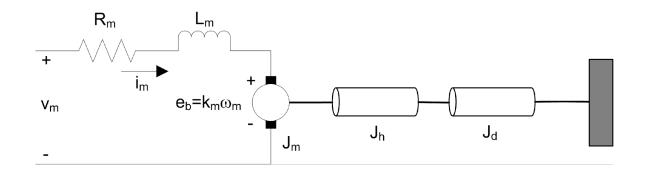




Figure 1.2: Schematic of the feedback speed control of the rotating disk



Example: Physics-based modelling of the QUBE servo 2

The equations of motion are:

$$R_{m}i_{m}(t) + L_{m}\frac{di_{m}(t)}{dt} = v_{m}(t) - k_{m}\dot{\theta}_{m}(t)$$

$$J_{eq} = J_{m} + J_{h} + J_{d}$$

$$= J_{m} + \frac{1}{2}m_{h}r_{h}^{2} + \frac{1}{2}m_{d}r_{d}^{2}$$

$$= J_{m} + \frac{1}{2}m_{h}r_{h}^{2} + \frac{1}{2}m_{d}r_{d}^{2}$$

Simplifying assumptions:

- Since the motor inductance L_m is much less than its resistance, it can be ignored
- The viscous coefficient b is assumed very small, it can be ignored
- Static friction effects neglected

Input voltage-to-angular velocity transfer function

$$\frac{\Omega_m(s)}{V_m(s)} = G(s) = \frac{k_t}{J_{eq}R_ms + k_tk_m}$$

$$G(s) = \frac{\frac{1}{k_m}}{1 + \frac{Jeq^R m}{k_t k_m} s}$$

$$G(s) = \frac{K}{Ts+1}$$

$$K = \frac{1}{k_m}; \quad T = \frac{J_{eq}R_m}{k_t k_m}$$

Example: Physical modelling of the QUBE servo 2

Physical parameters need to be determined from mechanical and electrical datasheet of the QUBE servo 2

Symbol	Description	Value
DC Motor		
R_m	Terminal resistance	8.4Ω
k_t	Torque constant	0.042 N .m/A
k_m	Motor back-emf constant	0.042 V/(rad/s)
J_m	Rotor inertia	$4.0 imes 10^{-6} ext{ kg.m}^2$
L_m	Rotor inductance	1.16 mH
m_h	Load hub mass	0.0106 kg
r_h	Load hub mass	0.0111 m
J_h	Load hub inertia	$0.6 imes 10^{-6} ext{ kg.m}^2$
Load Disk		
m_d	Mass of disk load	0.053 kg
r_d	Radius of disk load	0.0248 m

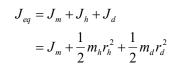
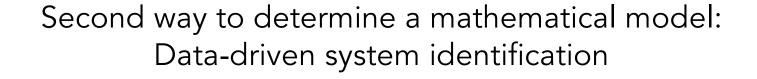
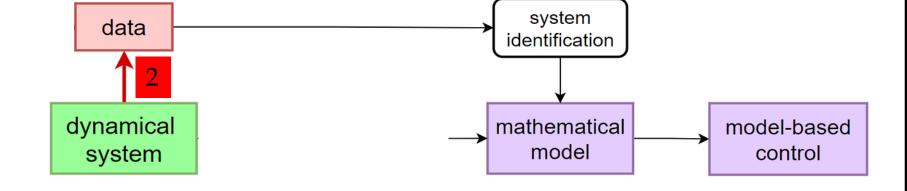
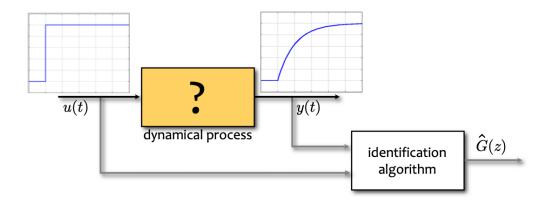


Table 1.1: QUBE-Servo 2 system parameters

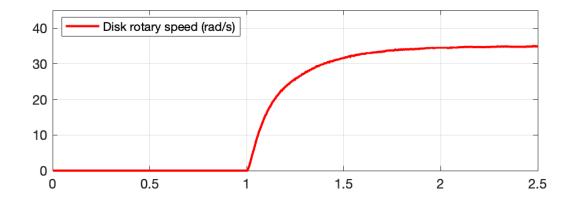

$$G(s) = \frac{\frac{1}{k_m}}{1 + \frac{Jeq^R m}{k_t k_m} s} = \frac{23.81}{1 + 0.0994s}$$



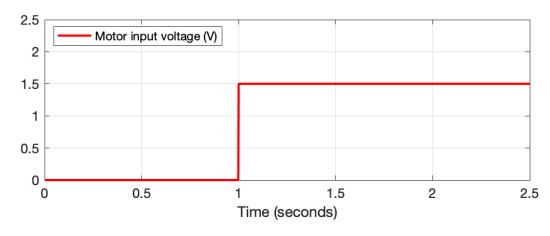
(a) QUBE-Servo 2 with Inertia Disc Module



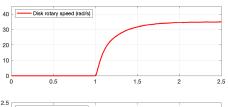
Basic system identification method Step response-based model identification

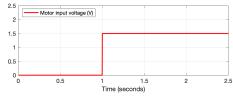

- Excite the process with a step u(t) , record output response y(t)
- Observe the shape of y(t) (1st-order response? 2nd-order undamped response? Any delay? ...)

10



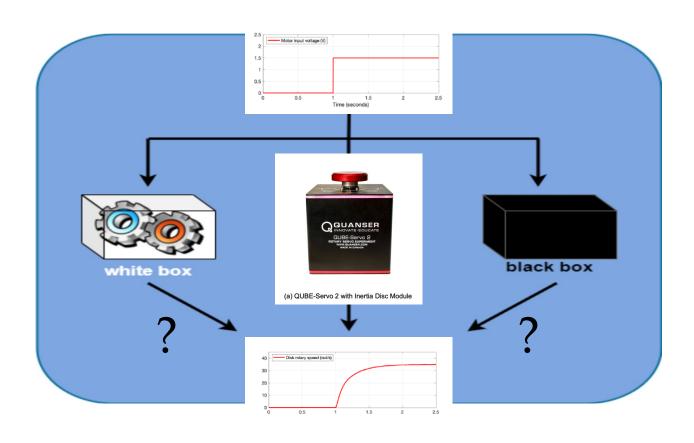
Example: Step response identification of the QUBE servo 2



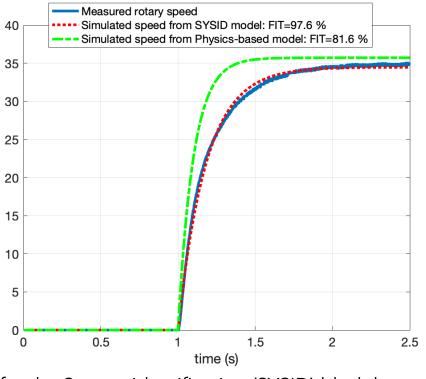


Example: Step response identification of the QUBE servo 2 by using the CONTSID toolbox

(a) QUBE-Servo 2 with Inertia Disc Module



Model quality assessment


Let us compare the measured and model outputs for the step input

Comparison of the physics-based and identified models

(a) QUBE-Servo 2 with Inertia Disc Module

The fit is better for the System identification (SYSID) black-box model Why is there a discrepancy for the Physics-based white-box model? Possible reasons:

- > Physical parameters have tolerances and may be slightly off
- > Un-modeled effects such as motor inductance,...

The two models capture quite well the main dynamic of the QUBE servo 2 system

Any of the two models could be used to design a PI control with good performance