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Définition - Systeme

C’est I’objet que I'on désire étudier possédant un ou des
signaux d’entrée et un ou des signaux de sortie

Exemples : voiture, avion, circuit électrique, bras de robot,...

En automatique, on représente un systeme par un schéma
fonctionnel

entrée sortie
Systeme
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Classification des systemes

Systemes
artificiels naturels vivants
construits biologiques
par 'homme : environnementaux, ecologiques
mecaniques,... sociaux, ...
comportement comportement évolutifs,
choisi, facile subi, plus ou moins difficile
a prévoir ou facile a prévoir ou a prévoir ou
controler contréler controler
modeles modéles modéles
precis assez precis peu précis

H. Garnier
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Définition - Systeme statique (ou instantanée)

C’est un systeme dont I’état (ensemble de grandeurs suffisant a
qualifier le systeme) a un instant donné ne dépend que de
I’entrée a cet instant

— Un systeme statique est dit sans mémoire car sa sortie a I'instant t ne
dépend que des valeurs de I'entrée a l'instant ¢

L'étude d'un systéme statique nécessite la connaissance de :

— sa loi d’évolution, qui prend la forme d’'une équation algébrique du
type y(t)=f [x(?)]

2x%(t)

Exemples : y(t)=R x(t) y(t)= 5cos(x(t))+1

5 H. Garnier
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Définition - Systeme dynamique

C’est un systeme dont I’état (ensemble de grandeurs suffisant a
qualifier le systeme) évolue en fonction du temps

— Un systeme dynamique est dit a mémoire car sa sortie dépend de ses
valeurs et de celles de I'entrée dans le passé

L'étude d'un systéeme dynamique nécessite la connaissance de :
— sa loi d’évolution, qui prend la forme d’'une équation différentielle
— son état initial, c’est-a-dire son état a I'instant =0

Exemple : bras de robot rigide

o2 d?e(t)
dt?

+mgl sinf(t)=u(t)

6(0) =15°:6(0) =0
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Systeme linéaire invariant dans le temps (LT])
et causal

Un systéme dynamique d’entrée x(t) et de sortie y(t) décrit par une
équation différentielle linéaire a coefficients constants :

n m
ayy(t)+a, dy(t)+...+and y(t)=box(t)+b1 dx(t)+...+b d7x(1)
dt at” at™

m
est linéaire, invariant dans le temps (LTI) et causal

« Linear systems are important because we can solve them », Richard Feynman

Dans la suite du cours, on supposera que
les systemes dynamiques sont LTI et causal

Visionner la vidéo de Brian Douglas : Control Systems Lectures-LTI Systems

7 H. Garnier
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Définition - Modele

C’est un ensemble de relations mathematiques entre le ou les

signaux d’entrée et le ou les signaux de sortie d’un systeme

— Il doit approcher le comportement réel du systeme

POLYTECH’
NANCY

entree Sortie physique réelle o
*| Systéme |— o :
il /f‘
005f t l
Sortie simulée oﬁ\ ! A
* Modéle — ol { |\ \A
MY ‘

— Sa complexité/précision dépend de son utilisation

Visionner la vidéo de Brian Douglas : Control Systems Lectures-Modeling Physical Systems,

An Overview

H. Garnier
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Fonction de transfert

Définition : c’est le rapport de la transformée de Laplace de la
sortie du systeme Y(s) sur la transformée de Laplace de 'entrée
X(s) lorsque les conditions initiales sont nulles

Y( S ) Lorsque les conditions initiales des
G(s)=—=
X( S ) signaux d’entrée/sortie sont nulles

Remargque importante :

En Automatique continue, on représente souvent un systeme
par sa fonction de transfert G(s)

Visionner la vidéo de Brian Douglas : Control Systems Lectures-Transfer functions

9 H. Garnier
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Fonction de transfert - Propriétés

Ce concept de fonction de transfert ne s’applique qu’aux systemes
linéaires invariants dans le temps (LTI)

G(s) ne dépend que du systéme. Elle ne dépend ni de I'entrée, ni des
conditions initiales des signaux d’'E/S

La fonction de transfert d’'un systeme s’écrit
« souvent comme une fonction rationnelle : rapport de 2 polynémes

G(S)= Y(s) _ b0+b1s+...+bmsm
X(s) ay+as+..+a s"

* mais pas toujours !
» EX: systéme linéaire invariant dans le temps avec retard pur

Y(s)_e™
X(s) s

yli)=x(tr) < G(s)=

10 H. Garnier
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Ordre d’'un systeme

Soit un systeme linéaire décrit par la fonction de transfert :

G(s)= Y(s) _ b, s"+...+bs+b,
X(s) s"+.+as+a,

Définition
— L’ordre n d’un systeme est le degré le plus éleve du polynébme du

dénominateur de G(s), le cas échéant apres élimination des facteurs
communs au nhumérateur et au denominateur

— Exemples

S . 2
> 5 = G(s)= = con=1

S° +w] s24+2s S+2

G(s) =

11 H. Garnier
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Gain statique d’'un systeme

Soit un systeme linéaire décrit par la fonction de transfert :

G(S)= Y(s) _ by+bs+...+b s
X(s) ay+as+..+a s"
« Définition
— Le gain statique d’un systeme est la valeur de G(s) pour s=0
K= IlimG(s)
> lim y(t)
» Pour un systeme stable, on a aussi = jgo—x(t) Exemple2
— 400
— |l est parfois utile de définir d’autres gains : G(s)= S+1
K=2
« Gain en vitesse K, = lim sG(s) K,=0
s—0 K =0
- Gain en accélération K_= lin‘é SZG( S) ?
S—
12
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Pdles et zéros d’'une fonction de transfert

Soit une fonction de transfert G(s) ﬁ( )
S-Z.

J

= _c =
D(s)  s"+..+as+a, L
S-p;

[1(s-P)

G(S)— N(s) _ bmsm+...+b1s+b0

Définitions
— zéros z;: racines du numerateur N(s)=0

— péles p; : racines du dénominateur D(s)=0 Tim(s)

— On trace souvent le diagramme des pdéles/zéros %, Joo

— lls peuvent étre réels ou complexes an >

— S’ils sont complexes, ils apparaissent % o, Re(s)
en paires conjuguées

S

— Exemple  G(s)- s fwg = (S+/a’o)(s_jw°)

Diagramme des poles/zéros

13
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/ Schéma-bloc ou schéma fonctionnel \

En Automatique, on represente un systeme par un schéma-bloc qui
relie la transformée de Laplace de l'entrée X(s) a la transformée de
Laplace de la sortie Y(s) via sa fonction de transfert G(s)

X(s) Y(s)
— G(s) —

Du schéma-bloc, on peut en déduire les relations

Y(s)=G(s)X(s)
ou

N

14 H. Garnier
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Types de modeles & d’approches de modélisation

Modélisation

Ph yslqu/

Systéeme
physique

Modéle de
connaissance

A\ 4

Déterminé
analytiqguement
a partir des lois
de la Physique

Identification
des systemes

Mod-éle de
comportement
(dominant)

Déterminé
experimentalement
a partir de signaux

d’E/S mesurés
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Modele de connaissance d’'un bras de robot rigide

linearisé
Domaine temporel

mi? L(

mi? (32

(m1232 + mgl)@(s)= U(s)

Domaine de Laplace

G(s) ?
dzzg t)] +mglL(6(t)) = L (u(t))

o(s )) +mglé(s)=U(s)

O(s) _ 1

G(s)-

12 d?o(t)
dt?

+mgl 6(t)=u(t) G(s)

U(s) mi?s?+mgl
O(s) _ 1
Uts) mi(is® +g)

16
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Modele de connaissance d’un bras de robot rigide

Représentation en Physique Représentation en Automatique

U(s) o(s)
—  G(s) |—

O(s) _ 1

)= ts) m/(/SZ " g)

2
mi? ddigt) +mgl 6(t) =u(t)

17 H. Garnier
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Types de modeles & d’approches de modélisation

Modélisation

Ph ysV

Systéeme
physique

Modéle de
connaissance

A\ 4

Déterminé
analytiqguement
a partir des lois
de la Physique

Identification
des systemes

Mod-éle de
comportement
(dominant)

Déterminé
experimentalement
a partir de signaux

d’E/S mesurés
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Methode de base par déterminer un modele de

On envoie un échelon (ou une suite d’échelon) a I'entrée du
systeme et on releve expérimentalement la réponse du systeme

— Identification de modéles « simples » d’ordre 1 ou 2 avec retard pur

comportement d’'un systeme dynamique

a partir de la réponse indicielle

Avantages
— Treés facile a réaliser en pratique

entrée sortie

T U(t)

Systeme

v—+

y %
t
| >
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Rappel : Identification d'un modéle du 1¢" ordre a partir

de la reponse indicielle
Modele du premier ordre

Réponse indicielle du systéme y(+=)
y(T7%)---- 95% de y(+=)
G(s) = \ /
1+ Ts
5
Relever les valeurs finale et initiale de la réponse
et de I'échelon. On en déduit K :

o _ Y(Eoo) = y(0)

<3
u(+o00) — u(0)

9 Relever y(TrS%), en déduire T°% puis T :

1
5%
T = L

3

40 50
temps (s)

20
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Rappel : Identification d'un modele du 2° ordre sous-
amorti a partir de la réponse indicielle
Modele du second ordre pseudo-périodique

ng
G(s) =

s2 + 2zwos + w?

o Relever les valeurs finales et initiales de la
réponse et de |'échelon. On en déduit K :

y(+o0) — y(0)
u(+o00) — u(0)

K =

e Relever les valeurs finale et initiale de la réponse
ainsi que celle du premier dépassement y(tD1 ).

On en déduit Dy, puis z :

1 =

Y(Tp,) — y(c0)
y(o0) — ¥(0)

o | n)?
\| (In(Dy))? + =2

e Relever l'instant du premier dépassement Tp, .
On en déduit wq :

U

7])1 \/1 - Z2

wo =

Réponse indicielle du systéeme

21
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Rappel : Identification d'un modele du 1¢" ordre a retard
pur a partir de la reponse indicielle

Modele de Broida

Broida a proposé d'approcher la réponse apériodique de
tout systéme d'ordre n par un premier ordre avec retard

Réponse indicielle du systéme

pur 10
Ke—TS
G(s) = u
1+ Ts
8 - =ult)
—y()
== = modele
o Relever les valeurs finales et initiales de la ! Ko™
réponse et de I'échelon. On en déduit K : 6 H(s) = 19T
+Ts
, _ Y(Fo0) = y(0)
u(+o0) —w(@) BT
e Relever y(T,%g%) et y(T,‘:,O%), en déduire T,2,,8%
et T:,O% puis : 1 ey 2 S iy
0 Y Vv J
- 28% 40% -10 0 30 40 50 60
= 2,87, — 1,87, | Lol
0, 0,
T=55(Tn" — T2%)

Ces méthodes simples fournissent, en général, des modeles de comportement
dominant assez grossiers.

22
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|dentification d’'un échangeur de chaleur a partir
d'un essai indiciel

1.5

— — Consigne
Température mesurée

0 0.5 1 1.5
Temps (mn)
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|dentification d’'un échangeur de chaleur a partir

Amplitude
Température en sortie echangeur

Il existe aujourd’hui des méthodes qui déterminent directement les
parametres de modéles a partir de I'enregistrement de données

1.5

—
T

o
o
T

o
-

-0.5

d’'un essai indiciel

Simulated Response Comparison

data (Température en sortie echangeur)
M: 90.38%
,///,
////
/’/’l
0.5 1 1.5

Time (minutes)

d’entrée/sortie : programme de la suite du cours...
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