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Quelque rappels du cours d’Automatique continue (3A) 
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Etapes de conception d’une commande 
 en boucle fermée 

Stabilité, caractéristiques principales 

Modélisation 

Analyse 

Synthèse du 
régulateur 

Analyse 

Objectifs 
atteints ? 

Objectifs/
performances 

à atteindre 
Système  

à réguler/asservir 

Fonction de transfert 

Stabilité, précision, 
rapidité, robustesse 

Paramètres du régulateur 

OUI 

NON 
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Définition -  Système 

•  C’est l’objet que l’on désire étudier possédant un ou des 
signaux d’entrée et un ou des signaux de sortie 
Exemples : voiture, avion, circuit électrique, bras de robot,… 
 

•  En automatique, on représente un système par un schéma 
fonctionnel 

Système 
entrée sortie 
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Classification des systèmes 

Systèmes 

biologiques 
écologiques 
sociaux,… 

vivants 

évolutifs, 
difficile  

à prévoir ou  
contrôler 

modèles 
peu précis 

naturels artificiels 

construits 
par l’homme : 
mécaniques,… 

comportement 
choisi, facile  
à prévoir ou  

contrôler 

modèles 
précis 

 
environnementaux, 

… 

comportement 
subi, plus ou moins  
facile à prévoir ou  

contrôler 

modèles 
assez précis 
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Définition - Système statique (ou instantanée) 

•  C’est un système dont l’état (ensemble de grandeurs suffisant à 
qualifier le système) à un instant donné ne dépend que de 
l’entrée à cet instant 

–  Un système statique est dit sans mémoire car sa sortie à l’instant t ne 
dépend que des valeurs de l’entrée à l’instant t 

•  L’étude d’un système statique nécessite la connaissance de : 
–  sa loi d’évolution, qui prend la forme d’une équation algébrique du 

type y(t)=f [x(t)] 

•  Exemples : y(t)=R x(t) 

   

y(t ) = 2x2(t )
5cos x(t )( )+1
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Définition - Système dynamique 

•  C’est un système dont l’état (ensemble de grandeurs suffisant à 
qualifier le système) évolue en fonction du temps 

–  Un système dynamique est dit à mémoire car sa sortie dépend de ses 
valeurs et de celles de l’entrée dans le passé 

•  L’étude d’un système dynamique nécessite la connaissance de :  
–  sa loi d’évolution, qui prend la forme d’une équation différentielle 
–  son état initial, c’est-à-dire son état à l’instant t=0 

•  Exemple : bras de robot rigide 

   ml2 d
2θ( t )
dt2

+mgl sinθ( t ) = u(t )

θ(0) =15°; !θ(0) = 0
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Système linéaire invariant dans le temps (LTI)  
et causal 

•  Un système dynamique d’entrée x(t) et de sortie y(t) décrit par une 
équation différentielle linéaire à coefficients constants : 

 
     est linéaire, invariant dans le temps (LTI) et causal 
 
 « Linear systems are important because we can solve them », Richard Feynman 
 

Dans la suite du cours, on supposera que 
les systèmes dynamiques sont LTI et causal 

 
 

Visionner la vidéo de Brian Douglas : Control Systems Lectures-LTI Systems 
 
 

 
 

 
 

 

   

a0y(t )+a1
dy(t )
dt

+…+an
dny(t )

dtn
= b0x(t )+b1

dx(t )
dt

+…+bm
dmx(t )

dtm
n ≥m
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Définition -  Modèle 

•  C’est un ensemble de relations mathématiques entre le ou les 
signaux d’entrée et le ou les signaux de sortie d’un système 
–  Il doit approcher le comportement réel du système 

–  Sa complexité/précision dépend de son utilisation 

entrée Sortie physique réelle 

Sortie simulée 

Système 

Modèle 

Visionner la vidéo de Brian Douglas : Control Systems Lectures-Modeling Physical Systems, 
An Overview 
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•  Définition : c’est le rapport de la transformée de Laplace de la 
sortie du système Y(s) sur la transformée de Laplace de l’entrée 
X(s) lorsque les conditions initiales sont nulles 

•  Remarque importante : 

En Automatique continue, on représente souvent un système  
par sa fonction de transfert G(s) 

  

 

 

Fonction de transfert 

G(s) = Y(s )
X(s )

Lorsque les conditions initiales des 
signaux d’entrée/sortie sont nulles 

Visionner la vidéo de Brian Douglas : Control Systems Lectures-Transfer functions 
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•  Ce concept de fonction de transfert ne s’applique qu’aux systèmes 
linéaires invariants dans le temps (LTI) 

•  G(s) ne dépend que du système. Elle ne dépend ni de l’entrée, ni des 
conditions initiales des signaux d’E/S 

•  La fonction de transfert d’un système s’écrit  
•  souvent comme une fonction rationnelle : rapport de 2 polynômes 

•  mais pas toujours ! 
•  Ex : système linéaire invariant dans le temps avec retard pur 

 

Fonction de transfert - Propriétés 

G s( ) = Y(s )X(s )
=
b0 +b1s +…+bm s

m

a0 +a1s +…+an s
n

!y(t)=x(t-τ ) ⇔ G(s) = Y(s )
X(s )

= e
−τs

s
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Ordre d’un système 

•  Soit un système linéaire décrit par la fonction de transfert : 

 
•  Définition 

–  L’ordre n d’un système est le degré le plus élevé du polynôme du 
dénominateur de G(s), le cas échéant après élimination des facteurs 
communs au numérateur et au dénominateur 

–  Exemples 

G(s) = s

s2 +ωo
2
; n = 2 G(s) = s

s2 + 2s
=

1
s + 2

; n =1

G s( ) = Y(s )X(s )
=
bm s

m +…+b1s +b0
sn +…+a1s +a0
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Gain statique d’un système 

•  Soit un système linéaire décrit par la fonction de transfert : 

 
•  Définition 

–  Le gain statique d’un système est la valeur de G(s) pour s=0 

•  Pour un système stable, on a aussi  

–  Il est parfois utile de définir d’autres gains : 

•  Gain en vitesse 

•  Gain en accélération 

Exemple

G(s) = 2
s +1

K = 2
Kv = 0
Ka = 0

K = lim
s→0

G(s)

K =
lim
t→+∞

y(t )

lim
t→+∞

x(t )

Kv = lims→0
sG(s )

Ka = lims→0
s2G(s)

G s( ) = Y(s )X(s )
=
b0 +b1s +…+bm s

m

a0 +a1s +…+an s
n
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G s( ) = N(s )D(s )
=
bm s

m +…+b1s +b0
sn +…+a1s +a0

=C

s − zj( )
j=1

m

∏

s − pi( )
i=1

n

∏

Pôles et zéros d’une fonction de transfert 

G(s) = s

s2 +ωo
2
=

s

s + jωo( ) s − jωo( )

Re(s) 

Im(s) 

0 

jωo 

-jωo 

Diagramme des pôles/zéros 

•  Soit une fonction de transfert G(s) 

 
•  Définitions 

–  zéros zj : racines du numérateur N(s)=0 

–  pôles pi : racines du dénominateur D(s)=0 

–  On trace souvent le diagramme des pôles/zéros 
–  Ils peuvent être réels ou complexes 
–  S’ils sont complexes, ils apparaissent  

 en paires conjuguées 
–  Exemple 
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En Automatique, on représente un système par un schéma-bloc qui 
relie la transformée de Laplace de l’entrée X(s) à la transformée de 
Laplace de la sortie Y(s) via sa fonction de transfert G(s) 
 
 
 
 
Du schéma-bloc, on peut en déduire les relations 

Schéma-bloc ou schéma fonctionnel 

Y(s ) =G(s)X(s )
ou

G(s ) = Y(s )
X(s )

X(s) Y(s) 
G(s) 
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Types de modèles & d’approches de modélisation 

Système 
physique 

Modèle de  
comportement 

(dominant) 
Modèle de  

connaissance 

Déterminé  
analytiquement 
à partir des lois 
de la Physique 

Déterminé  
expérimentalement 
à partir de signaux 

d’E/S mesurés 

Modélisation 
Physique 

Identification  
des systèmes  
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Modèle de connaissance d’un bras de robot rigide 
linéarisé 

G(s) = Θ(s )
U(s )

=
1

ml ls2 + g( )

G(s) ? 

Domaine temporel Domaine de Laplace 

ml2 L d2θ( t )
dt2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟+mglL θ( t )( ) =L u(t )( )

ml2 s2Θ(s )( )+mglθ(s ) =U(s )
ml2s2 +mgl( )Θ(s )=U(s )
G(s ) = Θ(s )

U(s )
=

1
ml2s2 +mgl

ml2 d
2θ( t )
dt2

+mgl θ( t ) = u(t )

n = 2; K =
1
mgl

; p1,2 = ± j
g
l
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Modèle de connaissance d’un bras de robot rigide 
 

G(s) = Θ(s )
U(s )

=
1

ml ls2 + g( )

Représentation en Physique Représentation en Automatique 

ml2 d
2θ( t )
dt2

+mgl θ( t ) = u(t )

U(s) Θ(s) 
G(s) 
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Types de modèles & d’approches de modélisation 

Système 
physique 

Modèle de  
comportement 

(dominant) 
Modèle de  

connaissance 

Déterminé  
analytiquement 
à partir des lois 
de la Physique 

Déterminé  
expérimentalement 
à partir de signaux 

d’E/S mesurés 

Modélisation 
Physique 

Identification  
des systèmes  
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Méthode de base par déterminer un modèle de 
comportement d’un système dynamique 

•  On envoie un échelon (ou une suite d’échelon) à l’entrée du 
système et on relève expérimentalement la réponse du système 
–  Identification de modèles « simples » d’ordre 1 ou 2 avec retard pur 

à partir de la réponse indicielle 
•  Avantages 

–  Très facile à réaliser en pratique 

Système 

t 

u(t) 

t 

y(t) 

entrée sortie 
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Rappel : Identification d’un modèle du 1er ordre à partir 
de la réponse indicielle 
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Rappel : Identification d’un modèle du 2e ordre sous-
amorti à partir de la réponse indicielle 
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Rappel : Identification d’un modèle du 1er ordre à retard 
pur à partir de la réponse indicielle 
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Identification d’un échangeur de chaleur à partir         
d’un essai indiciel 
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Identification d’un échangeur de chaleur à partir         
d’un essai indiciel 

•  Il existe aujourd’hui des méthodes qui déterminent directement les 
paramètres de modèles à partir de l’enregistrement de données 
d’entrée/sortie : programme de la suite du cours… 


