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The only dumb question is the one that remains unasked. Albert Einstein.

The z-transform and its application for solving linear
time-invariant difference equations

A knowledge of the z-transform is very important in digital control but also in digital signal processing.
It is a valuable tool for representing, analyzing and designing discrete-time systems or digital filters. The
unilateral z-transform of a discrete-time signal is defined as:

X(z) =

+∞∑
k=0

x(k)z−k

The z-transform of common discrete-time signals have been determined in closed form. They are usually
given in the form of table (see Appendix). Such a table is particularly useful in finding the inverse z-transform.

Just as linear continuous-time systems are described by differential equations, linear discrete-time systems
are described by difference equations. The Laplace transform can be used for solving linear time-invariant
differential equations. Similarly, the z-transform is an operational method for solving linear time-invariant
difference equations.

Exercise 1.1
Plot each of the following discrete-time signals. By using the properties and the table of z-transforms (see
Appendix), find their z-transform :

(a) x1(k) = δ(k − 1) + 3δ(k − 2) + δ(k − 3)

(b) x2(k) = Γ(k)

(c) x3(k) = akΓ(k)

(d) x4(k) =
(
− 1 + 2k

)
Γ(k)

where δ(k) and Γ(k) denote the Kronecker impulse and discrete-time step respectively.

Exercise 1.2
Given the following z-transform of a discrete-time sequence,

X(z) = 4z−2 + 2 + 3z−1

determine the inverse z-transform by direct inspection.
Express x(k) in as a sum of weighted discrete-time delayed Kronecker impulses and plot the discrete-time
sequence.

Exercise 1.3
Given the following z-transforms, determine each original discrete-time sequence by using the partial fraction
expansion method.

X1(z) =
z2

(z − 1)(z − 2)
; X2(z) =

z

z2 + 6z + 8

Give, when it is possible, the first four terms of each sequence and the final value x(+∞). Use the initial
value theorem to check the correctness of your inverse z-transform calculation.
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Exercise 1.4
Using the z-transform, solve the following difference equation:

s(k)− 3s(k − 1) = e(k)

when e(k) = 4Γ(k)

Exercise 1.5
Show that the difference equation:

s(k)− 5s(k − 1) + 6s(k − 2) = Γ(k)

has the following solution

s(k) =

(
1

2
− (2)k+2 +

1

2
(3)k+2

)
Γ(k)
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Sampled transfer functions
Exercise 2.1

1. Recall the digital closed-loop control block-diagram of a continuous-time systems described by its
transfer function G(s).

2. Plot the output of the zero-order hold (ZOH) block when the controller output takes the form of the
discrete sequence displayed in Figure 2.1.

Figure 2.1: Sampled controller output

3. Recall the plot of the impulse response of the ZOH. Deduce from the plot its mathematical expression
h0(t) and derive its transfer function H0(s) from it.

4. Recall the formula of the so-called sampled transfer function GZOH(z) (which is also denoted as the
diskretized version of the plant G(s) by using the zero-order hold method).

5. Determine the sampled transfer function GZOH(z) when the continuous-time plant G(s) is a first-order
model:

G(s) =
b

s+ a

Note the dependency of the sampled transfer function parameters to the sampling period Ts.

Exercise 2.2

Figure 2.2: Sampled transfer function
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Consider a sampled system constituted by the cascade of a zero-order hold (ZOH) H0(s), a continuous-time
transfer function G(s) and a sampler as shown in Figure 2.2 where:

G(s) =
2

1 + 2s

1. Give the steady-state gain, the time-constant, the pole and zero of G(s).

2. Determine the sampled transfer function GZOH(z) when Ts = 1s.

3. Check your results with Matlab by typing the following commands:
s = tf(’s’);
G=2/(1+2*s)
Gzoh=c2d(G,1,’zoh’)

4. Calculate the pole and zero of GZOH(z).

5. Recall the relationship between the poles of G(s) and GZOH(z).

6. Give the difference equation of the sampled system.

7. Calculate the response y(k) to a unit discrete-time step u(k) = Γ(k) for k = 0, 1, 2, 3, 4 and compare it
with the step response of the continuous-time system G(s) recalled below :

yc(t) = K(1− e−t/T )Γ(t)

computed at the appropriate sampled time-instants t = kTs for k = 0, 1, 2, 3, 4.

Exercise 2.3
Consider a sampled system constituted by the cascade of a zero-order hold (ZOH) H0(s), a continuous-time
transfer function G(s) and a sampler where

G(s) =
s+ 4

(s+ 1)3

1. Calculate the poles and zero of G(s).

2. Use Matlab to plot zero-pole diagram and the step response of the continuous-time transfer function.
Note that the continuous-time process exhibits an aperiodic step response which is due to its zero in
the left half of the s-plane

3. Given that the unit of time is minutes, determine the sampled transfer function GZOH(z) by using
Matlab and investigate the location of its zeros with respect to the unit circle when the sampling period
Ts is 2 and 0.5 min.

4. For each case, plot the step response of the sampled transfer function and check whether the sampled
transfer function exhibits an non-inverse response.

Exercise 2.4
Consider a sampled system constituted by the cascade of a zero-order hold (ZOH) H0(s), a continuous-time
transfer function G(s) and a sampler where

G(s) =
−3s+ 1

(2s+ 1)(5s+ 1)

1. Use Matlab to plot the step response of the continuous-time transfer function. Note that the continuous-
time second-order process exhibits an inverse step response which is due to its zero in the right half of
the s-plane.

2. Given that the unit of time is minutes, determine the sampled transfer function GZOH(z) by using
Matlab and investigate the location of its zero with respect to the unit circle when the sampling period
is 1, 2, 6, 7, 8, and 10 min.

3. For each case, plot the step response of the sampled transfer function and check whether the sampled
transfer function exhibits also an inverse response.
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Analysis of discrete-time systems
Exercise 3.1
Consider the sampled system given the following discrete-time transfer function

GZOH(z) =
2z−5

(z − 1)2
0.2

z − 0.8

1. Give the system order, its zero and poles.

2. Determine the gain, the number of integrators and number of samples of the time-delay.

Exercise 3.2
Consider the sampled system given by its transfer function

GZOH(z) =
Y (z)

U(z)
=

0.4z−1

1− 0.8z−1

1. Give the system order and determine its steady-state gain, its zero and pole.

2. Plot the zero-pole diagram. Conclude about the stability of the sampled system.

3. Check your answers by executing the following Matlab code:
Gd=tf([0 0.4],[1 -0.8],pi)
dcgain(Gd)
zero(Gd)
pole(Gd)
pzplot(Gd)

4. Determine the difference equation of the discrete-time system.

5. Compute its response to a discrete-time unit step input.

6. Use the final value theorem to determine the step response value when k →∞.

Exercise 3.3
State whether the discrete-time transfer functions given below are stable, marginally stable or unstable.
Justify your answer.

G1(z) =
5z

(z + 0.2)(z − 0.8)
G2(z) =

5z

(z + 1.2)(z − 0.8)

G3(z) =
5(z + 1)

z(z − 1)(z − 0.8)
G4(z) =

5(z + 1.2)

z2(z − 1)2(z + 0.1)

Exercise 3.4
The characteristic equation of a digital transfer function is given as

D(z) = z3 + z2 + 0.5z + 0.25 = 0

State by using Jury’s stability criterion whether the system is stable or not.
Exercise 3.5
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The characteristic equation of a linear digital feedback control system is given as

D(z) = z2 + z +Kp

where Kp is a real positive constant.

Find the range of values for Kp so that the digital feedback control system is stable.

Exercise 3.6
Consider a sampled system constituted by the cascade of a zero-order hold (ZOH) H0(s), a continuous-time
transfer function G(s) and a sampler

G(s) =
2

(s+ 2)(s+ 1)

1. Give the block-diagram representation of the sampled system.

2. Determine the sampled transfer function GZOH(z) when Ts = 0.25s.

3. A unity feedback proportional digital control is implemented for the continuous-time system. Represent
the block-diagram of the closed-loop digital control.

4. Represent the equivalent digital control block-diagram with the sampled transfer function GZOH(z).

5. Determine the range of proportional gain Kp which guarantees the digital closed-loop system to be
stable.

6. Determine the final value response of the closed-loop output when the setpoint is a discrete-time unit
step.

Exercise 3.7
A continuous-time system is modeled by the following first-order plus delay transfer function

G(s) =
1

1 + 8s
e−2s

1. Find the PI controller that results by applying the Ziegler-Nichols tuning rules to the process (see
Appendix).

2. Determine the transfer function of the digital controller C(z) by using the backward difference approx-
imation for the integral part when Ts =0.1s.

3. Give the difference equation of the digital controller output.

4. Give the Matlab code that implements the closed-loop control for the digital PID controller.
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Model-based design of digital controllers

Exercise 4 - Altitude control for a mini-drone via the approximation of a PD
analog controller
The goal is to design an altitude control for the Tello mini-drone as shown in Figure 4.1.

Figure 4.1: Tello mini-drone from DJI

The input and output of the mini-drone altitude control system are:

• u(t): motor speed in % (related in some way to the thrust generated by the 4 rotors);

• y(t): altitude or position along the Z axis of the mini-drone in cm.

The maximum velocity percentage-to-altitude transfer function takes the form of a first-order plus pure
integrator model

Y (s)

U(s)
=

K

s(1 + Ts)
(1)

where Y (s) = L [y(t)] and U(s) = L [u(t)].
K is the gain, T is the model time-constant. We will assume

• K = 0.8;

• T = 0.3s.

The performance requirements for the mini-drone altitude control are described in Table 1.

Requirement Assessment criteria Level
Control Step reference tracking No steady-state error
the mini-drone altitude Peak overshoot D1% = 4.3%

Settling time at 5 % t5%s = 1 s

Table 1: Performance requirements for the mini-drone altitude control
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The proposed strategy is to use a variation of the standard PD control, where unlike the standard PD where
the derivative term is usually applied to the error, it is applied to the output, as shown in Figure 4.2.

+
-

Yr(s)
kp

ε(s)
+

-

Up(s) K

s(1 + Ts)

Y (s)

kds
Ud(s)

Figure 4.2: Block-diagram of the PD feedback configuration of the altitude control system

1. Determine the internal closed-loop transfer function Fi(s) =
Y (s)

Up(s)
in terms of kd, K and T .

2. Plot the simplified closed-loop block-diagram.

3. Determine the closed-loop transfer function Gcl(s) =
Y (s)

Yr(s)
in terms of kp, kd, K and T .

4. Determine the range of values for kp and kd that ensure the stability of the closed loop system.

5. Calculate the steady-state tracking error in response to a step yr(t) = AΓ(t), i.e. :

lim
t→+∞

ε(t) = lim
t→+∞

(yr(t)− y(t))

6. Determine the value for the damping coefficient ζ and undamped natural frequency ω0 that make
the desired closed-loop transfer function step response to have D1% = 4.3 % and t5%s = 1 s. It is
recalled that ζ and ω0 are function of the step response performance indices (settling time t5%s and
peak overshoot D1)

ζ =

√
(ln(D1))2

π2 + (ln(D1))2
ω0 =

3

t5%s
when ζ ≈ 0.707

7. Give the transfer function of the desired closed-loop system Gref (s).

8. A method for determining the PD controller C(s) is to consider the desired continuous-time second-
order closed-loop transfer function Gref (s) and to solve the gains kp and kd of the PD controller. Show
that this method leads to

Gcl(s) = Gref (s)⇒


kp =

Tω2
0

K

kd =
2ζkp
ω0
− 1

K

9. Determine the approximated digital version Cd(z) that results from the use of the backward Euler rule

s =
1− z−1

Ts

for the derivative part of the PD controller:

Cd(s) = kds

10. Show from the block-diagram 4.2 that the difference equation of the digital controller output u(k) can
be written as:

u(k) = up(k)− ud(k)

11. Express up(k) as a function of kp and ε(k) and ud(k) as a function of kd, Ts, y(k) and y(k − 1).
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English to French translation

bandwidth : bande passante
closed-loop system : système bouclé
cut-off frequency : fréquence (ou pulsation) de coupure

damped frequency : pulsation amortie
damping ratio : coefficient d’amortissement

feedback : contre-réaction
feedback system : système à contre-réaction
impulse response : réponse impulsionnelle
integral wind-up : emballement du terme intégral
impulse response : réponse impulsionnelle

input : entrée
gain : gain

linear time-invariant (LTI) : linéaire invariant dans le temps
output : sortie

overshoot : dépassement
rise time : time de montée

root locus : lieu des racines
sampled : échantillonné

sampled systems : systèmes échantillonnés
setpoint : consigne

settling time : temps de réponse
steady-state gain : gain statique

steady-state response : réponse en régime permanent
step response : réponse indicielle
time-invariant : invariant dans le temps

transient response : réponse transitoire
undamped natural frequency : pulsation propre non amortie

zero-order holder : bloqueur d’ordre zéro
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Appendix

Table of common unilateral Laplace and z-transforms

The table below provides a number of Laplace and z-transform pairs and their region of convergence (ROC).
Remarks:

f(t) F (s) f(k) F (z) ROC

δ(t) 1 δ(k) 1 All z

δ(t− t0) e−st0 δ(k − i) z−i z 6= 0

Γ(t) 1
s Γ(k) z

z−1 |z| > 1

tΓ(t) 1
s2 kTsΓ(k) zTs

(z−1)2 |z| > 1

akΓ(k) z
z−a |z| > |a|

e−atΓ(t) 1
s+a e−akTsΓ(k) z

z−e−aTs
|z| > |a|

te−atΓ(t) 1
(s+a)2 kTse

−akTsΓ(k) Tse
−aTsz

(z−e−aTs )2
|z| > |a|

cos(ω0t)Γ(t) s
s2+ω2

0
cos(ω0kTs)Γ(k) z(z−cos(ω0Ts))

z2−2 cos(ω0Ts)z+1 |z| > |1|

sin(ω0t)Γ(t) ω0

s2+ω2
0

sin(ω0kTs)Γ(k) sin(ω0Ts)z
z2−2 cos(ω0Ts)z+1 |z| > |1|

• The notation for z found in the table above may differ from that found in other tables. For example, the basic
z-transform of a unit discrete-time step Γ(k) can be written as either of the following two expressions, which are
equivalent:

Z(Γ(k)) = Γ(z) =
z

z − 1
=

1

1− z−1

• The ROC for a given sequence x(k), is defined as the range of z for which the z-transform converges. Since the
z-transform is a power series, it converges when x(k)z−k is absolutely summable. Stated differently,

+∞∑
k=0

|x(k)z−k| <∞ must be satisfied for convergence.

Property 1. if x(k) is of finite duration, then the ROC is the entire z-plane, except possibly z = 0 and/or z =∞.

Property 2. The ROC does not contain any poles.

Useful properties of geometric series

finite sum of geometric series
N∑
k=0

qk = N + 1 if q = 1

N∑
k=0

qk =
1− qN+1

1− q
if q 6= 1

infinite sum of geometric series lim
N→+∞

N∑
k=0

qk =
1

1− q
if |q| < 1

10



Useful properties of the unilateral z-transform

Some useful properties which have found practical use are summarized below.

Property signal z-transform

linearity ax(k) + by(k) aX(z) + bY (z)

time-delay x(k − 1) z−1X(z) if x(k) is causal1

x(k − i) z−iX(z) if x(k) is causal

x(k − 1) z−1X(z) + z−2x(−1) if x(k) is non-causal

x(k − i) z−iX(z) +

−1∑
j=−i

zj−ix(j) if x(k) is non-causal

time-advance x(k + 1) zX(z)− zx(0)

x(k + 2) z2X(z)− z2x(0)− zx(1)

x(k + i) ziX(z)−
i−1∑
j=0

zi−jx(j)

convolution y(k) = h(k) ∗ u(k) Y (z) = H(z)U(z)

y(k) =

+∞∑
i=−∞

h(i)u(k − i)

differentiation kx(k) −z dX(z)
dz

accumulation
k∑
i=0

x(i) 1
1−z−1X(z)

initial value theorem if x(k) = 0 for k < 0 x(0) = lim
z→+∞

X(z)

final value theorem lim
k→+∞

x(k) = lim
z→1

(z − 1)X(z) if the limit exists

1 A signal is causal if x(k) = 0, for all k < 0
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Sampled transfer functions of continuous-time systems

Sampled transfer functions of continuous-time systems

Figure A.1: Sampled system

Consider a Zero-Order Hold (ZOH) H0(s) cascaded with a continuous-time transfer function G(s) and a
sampler as shown in Figure A.1, the corresponding sampled transfer function is given by:

GZOH(z) =
Y (z)

U(z)
= Z

(
H0(s)G(s)

)
=
(
1− z−1

)
Z

(
G(s)

s

)
=

(
z − 1

z

)
Z

(
G(s)

s

)

First-order systems
Consider a continuous-time first order system given by its Laplace transfer function:

G(s) =
b

s+ a

Its equivalent ZOH sampled transfer function is given by:

GZOH(z) = Z
(
H0(s)G(s)

)
=
(
1− z−1

)
Z

(
b

s(s+ a)

)
=

b1z
−1

1 + a1z−1

where a1 = −e−aTs

b1 =
b

a
(1 + a1)

and Ts denotes the sampling period.

Second-order systems
Consider a continuous-time second order system given by its Laplace transfer function:

G(s) =
a× b

(s+ a)(s+ b)

Its equivalent ZOH sampled transfer function is given by:

GZOH(z) = Z
(
H0(s)G(s)

)
=
(
1− z−1

)
Z

(
a× b

s(s+ a)(s+ b)

)
GZOH(z) =

b1z
−1 + b2z

−2

(1 + αz−1)(1 + βz−1)

where 

α = −e−aTs

β = −e−bTs

b1 =
b× α− a× β

b− a
+ 1

b2 =
b× β − a× α

b− a
+ α× β

and Ts denotes the sampling period.

12



PID tuning by using empirical rules

A PID controller defined in its so-called ideal form is defined as:

C(s) = Kp

1 +
1

Tis
+

Tds

1 +
Td
N
s

 = Kp +Ki
1

s
+Kd

s

1 +
Td
N
s

(1)

The individual effects of these three Kp, Ki and Kd parameters appearing in (1) on the closed-loop perfor-
mance of stable plants are recalled in Table 1 below.

Tuning of the PID controller by using the Ziegler-Nichols rules
Assume a continuous-time process is reasonably well modeled by the first-order plus time-delay transfer
function model:

G(s) =
Ke−τs

1 + Ts

Several tuning rules are available for determining the PID controller parameter values. The proposed rules
address different design specifications such as load disturbance rejection or setpoint tracking.
The most popular tuning rules are those attributed to Ziegler-Nichols. Their aim is to provide satisfactory
load disturbance rejection.
Table 2 shows the Ziegler-Nichols rules for P, PI, or PID controllers defined in its so-called ideal form (see
(1)).

Controller type Kp Ti Td

P
T

Kτ

PI 0.9
T

Kτ
3τ

PID 1.2
T

Kτ
2τ 0.5τ

Table 2: Ziegler-Nichols disturbance rejection tuning rules for a first-order-plus delay model determined from
an open-loop step response
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