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The video of the day
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Digital control block-diagram

+

-

U(z)
G(s)

Y(s)U(s)R(z)

Ym (s)

D(s)

+
+

H(s)

e(z)

Ym (z)

Digital part Analog partA/D

Te

C(z) H0(s)

• Need for blocks to make analog and digital parts interact:
  D/A & A/D
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Digital control block-diagram 

+

-
C(z) GZOH (z)

Y(z)R(z) e(z)

Discretization by the 
zero-order hold 

method

U(z)

+

-
C(z)

Y(z)R(z) e(z)
G(s)H0 (s)

TsTs

U(z)
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Discrete-time signals and systems
Why study them for digital control?

• Digital control
– Actuator - Process - Sensor = continuous-time system

• Control and output signals: continuous-time signals
– Controller = discrete-time system

• Input and output signals: discrete-time signals

• Tools required
– Tools for modeling discrete-time signals and systems: sampler, holds, 

digital controller, sampled systems...
– Discretization tools/methods for

• switching from a continuous-time to a sampled model
• digital simulation of the system response and/or the discrete-time 

controller design requires prior discretization of the continuous-
time system

• if an analog controller has already been designed, its digital 
implementation requires discretization



H. Garnier6

Reminders - The various tools for analyzing 
continuous-time signals and linear systems

• Continuous-time signal

• Fourier Transform (TFtc)

• Laplace transform

• Continuous system response

• Example

y(t ) = g(t )* e(t )
Y ( f ) =G( f )×E( f )
Y (s ) =G(s )×E(s )

y(t )

Y ( f ) = y(t )e− j2π ft
−∞

+∞

∫ dt

Y (s ) = y(t )e−st
0

+∞

∫ dt

!y(t )+0,5y(t ) = e(t )
s +0,5( )Y (s ) =E(s )

E(s) Y(s)
G(s ) = 1

s +0,5
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G(z) = 1
1+0,5z−1

The various tools for analyzing 
of discrete-time signals and linear systems

• Discrete-time signal

• Fourier Transform (TFtd)

• z-transform

• Digital system response 

• Example

y(k ) = g(k )* e(k )
Y ( f ) =G( f )×E( f )
Y (z) =G(z)×E(z)

y(k )

Y ( f ) = y(k )e− j2π fkTe
k=−∞

+∞

∑

y(k )+0,5y(k −1) = e(k )
1+0,5z−1( )Y (z) =E(z)

E(z) Y(z)

Y (z) = y(k )z−k

k=0

+∞

∑
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• An excitation (e.g. G(k)) is sent to the input of a system. We measure
the sampled output y(k)

Discrete-time model of a linear invariant system

System
linear 

invariant

What is the form of the discrete-time model?

e(k)=G(k)

k0 1

1

y(k)

k0 1

G(z) = 1
1+0,5z−1

y(k )+0,5y(k −1) = e(k )
1+0,5z−1( )Y (z) =E(z)

E(z) Y(z)
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Discrete-time system

• A discrete-time system is defined as an operator between two discrete-
time signals

• The mathematical tool used to facilitate its analysis is the z-transform

s(k)System
discrete-time

e(k)

S(z)G(z)E(z)
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In digital control, a system is represented by a block diagram that 
links the z-transform of the input E(z) to the z-transform of the output 
S(z) via its transfer function G(z).

From the block-diagram, we can deduce the following relationships

Block diagram

S(z) =G(z)E(z)
ou

G(z) = S(z)
E(z)

E(z) S(z)
G(z)
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Description of a discrete-time linear system

• A discrete-time linear system can be described by :
– a convolution product
– a difference equation
– its transfer function in z

• The mathematical tool used to facilitate the analysis of discrete-
time linear systems is the z-transform
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• The impulse response g(k) is used to calculate the filter output s(k)
for any input e(k) via the discrete-time convolution product

• If the filter is causal: g(k)=0 for all k < 0

Convolution product

s(k ) = g(k )* e(k ) = g( i )e(k - i )
i=-∞

+∞

∑ = g(k - i )e( i )
i=-∞

+∞

∑

s(k ) = g(k )* e(k ) = g( i )e(k - i )
i=0

+∞

∑

Z(s(k )) =Z(g(k )* e(k ))
S(z) =G(z)×E(z)
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Difference equation

• A linear time-invariant discrete-time system having an input e(k)

and an output s(k) is described by a difference equation with

constant coefficients:

a0s(k )+a1s(k -1)+…+ana s(k -na ) = b0e(k )+b1e(k -1)+…+bnb e(k -nb )

System
linear 

invariant

e(k) s(k)
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Let the difference equation express the relationship between the input signal
e(k) and the output signal s(k) of a discrete-time system:

By applying the z-transform to the 2 members of the equation and using :

Z x(k - i )( ) = z−i X (z)

Transfer function in z

a0s(k )+a1s(k -1)+…+ana s(k -na ) = b0e(k )+b1e(k -1)+…+bnb e(k -nb )

G z( ) = S(z)E(z)
=
b0 +b1z

-1 +…+bnb z
-nb

a0 +a1z
-1 +…+ana z

-na
=
b0z

na +b1z
na -1 +…+bnb z

na -nb

a0z
na +a1z

na -1 +…+ana

a0+a1z
−1 +… +ana z

−na( )S(z) = b0+b1z
−1 +… +bnbz

−nb( ) E(z)

na : filter order
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Steady-state gain of a discrete-time system

• Consider a linear system described by the transfer function :

• Definition
– If G(z) is known, the steady-state gain of a discrete-time system is the value 

of G(z) for z=1

– If we have recorded the step response of a stable system, we also have:

K = lim
z→1
G(z)

K =
lim
k→+∞

s(k )−s(0 )

lim
k→+∞

e(k )−e(0 )

G z( ) = S(z)E(z)
=
b0 +b1z

-1 +b2 z
-2 +…+bnb z

-nb

a0 +a1z
-1 +a2 z

-2 +…+ana z
-na
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z-transfer function - Example

s(k )−0 ,8s(k −1) =0 ,2e(k )

G(z) =? K =? na =?

G(z) = S(z)
E(z)

=
0,2

1−0,8z−1
=
0,2z
z −0,8

system order: na = 1

1−0 ,8z-1( )S(z) =0 ,2 E(z)

K = lim
z→1
G(z) = 0 ,2

1−0 ,8
=1
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Determining the difference equation from the 
knowledge of the z-transfer function

• Consider the z-transfer function G(z) of a digital system

How can we determine its difference equation?

G(z) is expressed in negative power of z

G(z) = 0,2z
z −0,8

G(z) = 0,2z
z −0,8

×
z−1

z−1
=

0,2
1−0,8z−1

car par définition G(z) = S(z)
E(z)

S(z)
E(z)

=
0,2

1−0,8z−1

(1−0,8z−1)S(z) = 0,2E(z)

S(z)−0,8z−1S(z) = 0,2E(z)

s(k )−0,8s(k −1) = 0,2e(k ) car Z -1 z-i S(z)( ) = s(k - i ) ici i =1
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General form 
of a discrete transfer function

• The general form of a discrete transfer function makes it easy to 
visualize :

– K gain (= steady-state gain if m=0, no pure integrator)
– the presence of pure integrators (pole at z =1) of order m
– number of samples for pure delay (pole z = 0 of order r)

G(z) = K

1− z( )
m
z−r N(z)

D(z)

K = lim
z→1

1− z( )
m
G(z)
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Analysis of a discrete-time linear system

• The characteristics of a linear discrete-time system are classically
analyzed via:

– its impulse response

– its step response

– its frequency response

– its diagram of poles and zeros
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• It corresponds to the response g(k) obtained when a Kronecker pulse
d(k) is sent to the input.

• If g(k)=0 for k<0, the system is causal

g(k)

Impulse response

Linear 
time-invariant

system

d(k)

k0 1

1

k
Impulse response

Z(s(k )) =Z(g(k )* δ(k ))
S(z) =G(z)×1
S(z) =G(z)
s(k ) = g(k )

Z δ(k )( ) = 1 
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• It corresponds to the response obtained when a step G(k) is sent
to the system

Step response

Linear 
time-invariant

system

Step response

Z(s(k )) =Z(g(k )* Γ(k ))
S(z) =G(z)× z

z -1

G(k)

k0 1

1

Z Γ(k )( ) = 1
1 - z-1

=
z
z -1

 

s(k)

k0 1

Step
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Frequency response

• If we know G(z)

The frequency response can be plotted in amplitude and phase from

• Frequency response characteristics of discrete-time models
– They are periodic with "period" fs

• The analysis and plot are limited to the frequency range [0 ; fs /2].

– No particular slopes in the Bode diagram

G( f ) = Y ( f )
E( f )

ϕ f( ) = Arg G( f )( )

G( f ) =G(z)
z=e j 2π fTe  

= G( f ) e jϕ( f )

z = esTe

s = jω = j2π f

⎫
⎬
⎪

⎭⎪
⇒ z = e j2π fTe
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Bode diagram of a discrete-time model
Example

ωe
2



H. Garnier24

Causality of a discrete-time system
Important concept for real-time implementation

• A system is causal if its output at any instant depends only on the
values of the input at present and past instants.

• Examples
– Causal system u(k) = 0.7 u(k-1) + 0.3 e(k)
– Non-causal system u(k) = 0.5u(k-1)+ 0.2 e(k)+ 0.1 e(k+1)

• The response of a causal system varies only after the input appears
(k ≥ 0) and is zero for k<0.
In particular, the impulse response g(k) = 0 for all k < 0

– Convolution product for a causal system

y(k ) = g( i )
i=−∞

+∞

∑ u(k − i ) = g( i )
i=0

+∞

∑ u(k − i )
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• Given a transfer function

• Definitions
Zeros zj are the roots of the numerator B(z)=0

Poles pi are the roots of the denominator A(z)=0

• Example

G z( ) = B(z)A(z)
=C

z− zj( )
j=1

M

∏

z− pi( )
i=1

N

∏

Pole-zero diagram

Pole-zero diagram

G(z) = B(z)
A(z)

=
0,2

1−0,8z−1
=
0,2z
z−0,8

Re(z)

Im(z)

0 0,8

Always write G(z) in positive power of z to determine poles and zeros

0

1
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• If we know the z-transfer function of the discrete-time system

The discrete-time system is stable if all of its poles pi have a complex
modulus less than 1, i.e. if they lie inside the unit circle

Example

pi <1
INSTABLE

Re(z)

Im(z)

1-1 STABLE

Stability of a discrete-time system

G z( ) =C
z− zj( )

j=1

M

∏

z− pi( )
i=1

N

∏

G(z) = 0,2z
z−0,8
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Stability of discrete-time systems
Examples
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Stability conditions 
continuous-time systems/discrete-time systems

INSTABLE

Re(z)

Im(z)

1-1

STABLE

Re(s)

Im(s)

0

STABLE

tous les pôles <1Re(tous les pôles)< 0

Analog systems Digital systems

we  

-w /2e  

we  / 2 w=0

STABLE

w /2e  

we  

Complex
module

Real part

z = esTe

(of all poles)  <  0 of all poles 



H. Garnier29

Relationship between 
s-domain poles and z-domain poles

s

s

s
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g(k)

Analysis of a discrete-time system
In a nutshell!

G(z) = S(z)
E(z)

Re(z)

Im(z)

0

Pole/zero diagram

Impulse response
g(k)

s(k ) = −a1s(k −1)+b0e(k )

Difference equation

s(k ) = g(k )* e(k )

Convolution product

Z
Z-1

Z
Z-1

Z

Z -1

G( f ) =G(z)
z=e

j2π f
fe  
= G( f ) e jϕ( f )

TFtd
TFtd-1

Frequency response
G(f)

Function
transfer

z = e j2pf/fs
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Digital control block-diagram

• The design of a control (and therefore for C(z)) using a fully discrete-time
approach is based on:

– a model G(z) of the zero-order hold + actuator + system + sensor + 
sampler elements

– the type of external signals: reference R(z), disturbance D(z)

+

-
C(z) G(z)

Y(z)U(z)R(z)

D(z)

+
+e(z)

Y(z) = C(z)G(z)
1+C(z)G(z)

Yc(z)+
1

1+C(z)G(z)
D(z)R(z) 
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Tools for evaluating the performance 
of a digital control system

• Tools for evaluating the closed-loop system performance
– its stability
– its accuracy

+

-
C(z) G(z)

Y(z)R(z)

D(z)

+
+e(z)
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Stability of a closed-loop system
• Poor control design can lead to an unstable closed-loop system!

• Before examining other performances, we must must guarantee the stability of the
closed-loop system with the chosen controller C(z)

How can you predict the loop stability before closing it?
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Tools for analyzing the stability 
of a closed-loop system

• The closed-loop system is stable if all poles pi
of FBF (z) are inside the unit circle

Y (z) = FBF (z)Yc(z)+FD(z)D(z)

INSTABLE

Im(z)

1-1 STABLE

Re(z)

+

-
C(z) G(z)

Y(z)Yc (z)

D(z)

+
+e(z)
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Tools for analyzing the stability
of a closed-loop system

The Jury criterion
The Jury criterion is used to determine stability on the basis of the
knowledge of the characteristic polynomial without calculating its roots :

𝑃 𝑧 = 𝑎!𝑧! + 𝑎!"#𝑧!"#+⋯+𝑎#z+𝑎$

A discrete-time linear system is asymptotically stable if and only if the
coefficients of its characteristic polynomial satisfy the following relations. The
conditions depend on the order of the system.
We give them only for n=2 and n=3. Higher orders can be generated without
difficulty, but are computationally tedious.
Assume that an >0. If this is not the case, simply multiply by -1.

Eliahu Jury
1923-2020
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Jury criterion - Example
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Tools for analyzing the stability of a closed-loop system
The adapted Routh-Hurwitz criterion

The Routh-Hurwitz criterion (see S5 Control course) is used to assess that the
roots of a polynomial belong to the left half-plane. It is therefore not directly
applicable to discrete-time systems
However, we can use the algebraic Routh-Hurwitz criterion applied to the
polynomial P(w) obtained by applying the bilinear transformation

z =1+w
1−w
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(Reminder)

P(s)
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Routh-Hurwitz criterion - Example

z =1+w
1−w
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Accuracy of a closed-loop system - Reminders
• A stable loop system is accurate if the steady-state error between setpoint

and output is zero when the setpoint is changed.

• Accuracy is defined as a function of the type of setpoint yc (k) :
• step setpoint: static accuracy or position error
• ramp setpoint: speed accuracy or drag error
• parabola setpoint: acceleration precision

es : static error 
or position

ev  : drag error
or speed

y(t) y(t)
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• Analyzing steady-state accuracy means studying the error 
between setpoint and steady-state output (k è + ∞).

• The closed-loop system is said: 
– accurate if this limit is zero
– not accurate if this limit is not zero

• Nevertheless, the smaller the error, the more accurate the system.

• We exploit the final value theorem 

Tool for analyzing the accuracy of a closed-loop system

εs = limk→+∞
yc(k )− y(k )( ) = lim

k→+∞
ε(k )

e (z)
FBO(z)

+

-

Yc (z) Y(z)
lim
k→+∞

ε(k ) = lim
z→1
(z−1)ε(z)
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Tool for analyzing the accuracy of a closed-loop system

• We exploit the final value theorem

è The accuracy of the closed-loop system depends on
– of Yc (z) and therefore of the type of setpoint: step, ramp, parabola, etc.
– of the open-loop transfer function FBO (z)=C(z)G(z)

lim
k→∞

ε(k ) = lim
z→1
(z−1)ε(z) = lim

z→1
(z−1) Yc(z)−Y (z)( ) = lim

z→1
(z−1)Yc(z) 1−

Y (z)
Yc(z)

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

= lim
z→1
(z−1)Yc(z) 1−FBF (z)( ) = lim

z→1
(z−1)Yc(z) 1−

C(z)G(z)
1+C(z)G(z)

⎛

⎝
⎜

⎞

⎠
⎟

= lim
z→1
(z−1)Yc(z) 1−

FBO(z)
1+FBO(z)

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

lim
k→∞

ε(k ) = lim
z→1
(z−1)Yc(z)

1
1+FBO(z)

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

H(z) =1
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Influence of disturbances on the accuracy of a looped 
system

• Reminder
– Disturbance: external input that interferes with system operation
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Method for analyzing the influence of a step disturbance on 
the accuracy of a closed-loop system

• When yc (k)=0, we want to characterize yD (k) for d(k)=G(k)

FD(z) =
1

1+FBO(z)
; YD(z) =

z
z−1

+

-
C(z) G(z)

YD (z)Yc (z)=0
D(z)

+
+

lim
k→+∞

yD(k ) = limz→1
(z−1)YD(z) = limz→1

(z−1)FD(z)D(z)

lim
k→+∞

yD(k ) = →
?

0
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Stability and performance of digital control loop structures
Summary of analysis tools

① From the loop system block diagram

① Calculate FBO (z). Deduce FBF (z) and FD (z)
② The stability of the closed-loop system is analyzed via

– Calculating the poles of FBF (z)
– Jury criteria
– the Routh-Hurwitz criterion via the bilinear transformation

③ Performance criteria are evaluated. Do they meet the specifications?

– Accuracy
• Calculation of accuracy error

– Rapidity and damping 
• Calculation of response time at n% and Dmax

+
+

D(z)
e(z)

FBO(z)
+

-

R(z) Y(z)

+

+
FBF (z)

D(z)

FD (z)

Y(z)R(z)


