
3A IA2R

Digital control

Final exam 2023/2024 - 1h30

Name & firstname: . . . . . . . . . . . . . . . . . . . . . .

Instructions:

1. Do not forget to write your name above and include all these pages with your copy.

2. You can answer in French or in English but do not mix both languages.

3. The only material you can consult is your personal A4 recto-verso piece of paper.

4. You may use a hand calculator but with no communication capabilities.

5. The exercises must be solved on your copy in the given order.

6. Good luck !

Multiple choice questions (there is one correct answer from the choices only. Wrong
answers will not be penalized.)

A sampled system is stable if all the poles of the transfer function lie INSIDE the unit
circle of the z-plane ?

� True

� False

What is the role of a Zero-Order Hold in a digital closed-loop block diagram ?

� it interpolates the discrete-time sequence generated by the digital controller

� it samples the continuous-time signals

� it avoids the aliasing effect

� it guarantees the appropriate choice of the sampling period

What is the name of the criterion that can be used to state if a discrete-time transfer
function is stable or not

� Ragazzani’s stability criterion

� Shannon’s stability criterion

� Nyquist’s stability criterion

� Jury’s stability criterion
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Exercise 1
Consider the second-order difference equation of a digital system

y(k + 2) + 0.4y(k + 1) + 0.2y(k) = u(k), with y(0) = y(1) = 0.

Determine its z-transfer function.

Exercise 2
Consider the following transfer function

G(z) =
1

z2 + 0.4z + 0.2

State whether the system is stable or not. Explain your answer.

Exercise 3
Give the difference equation that implements the control for the digital controller

C(z) =
U(z)

ε(z)
=

0.3− 0.4z−1 + 0.2z−2

1− z−1

Exercise 4
Consider the following sampled transfer function

Gzoh(z) =
Y (z)

U(z)
=

0.5z−1

1− 0.8z−1

1. Find its order, its steady-state gain and its pole.

2. Determine the system response to a unit step, i.e. when u(k) = Γ(k).

3. Determine the corresponding continuous-time transfer function G(s) when the sampling pe-
riod is Ts = 0.1s.

Problem 1 - Direct design method of the digital controller
One possibility for determining a controller directly in discrete-time is to start from a desired
closed-loop transfer function Gref (z) and to solve the closed-loop transfer function Gcl(z) for the
controller transfer function according to

Gcl(z) = Gref (z)⇒ C(z) =
1

Gzoh(z)
×

Gref (z)

1−Gref (z)
(1)

where Gzoh(z) is the sampled transfer function of the open-loop plant.
Given the sampled transfer function

Gzoh(z) =
1

(z − 1)(z − 0.5)

and the desired closed-loop transfer function as

Gref (z) =
1

z

1. Show that the digital controller C(z) takes the following form:

C(z) =
U(z)

ε(z)
= z − 0.5

2. Determine the corresponding difference equation.

3. Is-it possible to implement this control law in practice ? If not, clearly state why.

4. Suggest a solution so that the control can be implemented.
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Problem 2 - Altitude control for a mini-drone via the approximation of a PD analog
controller
The goal is to design an altitude control for the Tello mini-drone as shown in Figure 1.

Figure 1: Tello mini-drone from DJI

The input and output of the mini-drone altitude control system are:

• u(t): percentage of maximum velocity on the Z axis (related in some way to the thrust
generated by the 4 rotors);

• y(t): altitude or position along the Z axis of the mini-drone in cm.

The maximum velocity percentage-to-altitude transfer function takes the form of a first-order plus
pure integrator model

Y (s)

U(s)
=

K

s(1 + Ts)
(2)

where Y (s) = L [y(t)] and U(s) = L [u(t)].
K is the gain, T is the model time-constant. We will assume

• K = 0.8;

• T = 0.3s.

The performance requirements for the mini-drone altitude control are described in Table 1.

Requirement Assessment criteria Level

Control Step reference tracking No steady-state error
the mini-drone altitude Peak overshoot D1% = 4.3%

Settling time at 5 % t5%s = 0.5 s

Table 1: Performance requirements for the mini-drone altitude control

The proposed strategy is to use a variation of the standard PD control, where unlike the standard
PD where the derivative term is usually applied to the error, it is applied to the output, as shown
in Figure 2.

+
-

Yr(s)
kp

ε(s)
+

-

Up(s) K

s(1 + Ts)

Y (s)

kds
Ud(s)

Figure 2: Block-diagram of the PD feedback configuration of the altitude control system

3



1. Determine the internal closed-loop transfer function Fi(s) =
Y (s)

Up(s)
in terms of kd, K and T .

2. Plot the simplified closed-loop block-diagram.

3. Determine the closed-loop transfer function Gcl(s) =
Y (s)

Yr(s)
in terms of kp, kd, K and T .

4. Determine the range of values for kp and kd that ensure the stability of the closed loop system.

5. Calculate the steady-state tracking error in response to a step yr(t) = AΓ(t), i.e. :

lim
t→+∞

ε(t) = lim
t→+∞

(yr(t)− y(t))

6. Determine the value for the damping coefficient ζ and undamped natural frequency ω0 that
make the desired closed-loop transfer function step response to have D1% = 4.3 % and
t5%s = 0.5 s. It is recalled that ζ and ω0 are function of the step response performance indices
(settling time t5%s and peak overshoot D1)

ζ =

√
(ln(D1))

2

π2 + (ln(D1))2
ω0 =

3

ζt5%s

7. Give the transfer function of the desired closed-loop system Gref (s).

8. A method for determining the PD controller C(s) is to consider the desired continuous-time
second-order closed-loop transfer function Gref (s) and to solve the gains kp and kd of the PD
controller. Show that this method leads to

Gcl(s) = Gref (s)⇒


kp =

Tω2
0

K

kd =
2ζkp
ω0
− 1

K

9. Determine the approximated digital version Cd(z) that results from the use of the Tustin rule

s =
2

Ts

1− z−1

1 + z−1

for the derivative part of the PD controller:

Cd(s) = kds

10. Show that the difference equation of the digital controller output u(k) can be written as:

u(k) = up(k)− ud(k)

11. Express up(k) as a function of kp and ε(k) and ud(k) as a function of kd, Ts, ud(k − 1), y(k)
and y(k − 1).
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Appendices

Table of common unilateral Laplace and z-transforms

f(t) F (s) f(k) F (z) ROC

δ(t) 1 δ(k) 1 All z

δ(t− t0) e−st0 δ(k − i) z−i z 6= 0

Γ(t) 1
s Γ(k) z

z−1 |z| > 1

tΓ(t) 1
s2

kTsΓ(k) zTs
(z−1)2 |z| > 1

t2Γ(t) 2
s3

(kTs)
2Γ(k) z(z+1)T 2

s
(z−1)3 |z| > 1

e−atΓ(t) 1
s+a akΓ(k) z

z−a |z| > |a|

Useful properties of the unilateral z-transform

Property signal z-transform

linearity ax(k) + by(k) aX(z) + bY (z)

delays (or shifts) x(k − 1) z−1X(z)

x(k − i) z−iX(z)

time-advance x(k + 1) zX(z)− zx(0)

x(k + 2) z2X(z)− z2x(0)− zx(1)

final value theorem lim
k→+∞

x(k) = lim
z→1

(z − 1)X(z) if the limit exists

Sampled transfer function of continuous-time first-order systems
Consider a continuous-time first-order system given by its Laplace transfer function:

G(s) =
b

s+ a

Its equivalent ZOH (zero-order hold) sampled transfer function is given by:

GZOH(z) = Z
(
Bo(s)G(s)

)
=
(
1− z−1

)
Z

(
b

s(s+ a)

)
=

b1z
−1

1 + a1z−1

where a1 = −e−aTs

b1 =
b

a
(1 + a1)

and Ts denotes the sampling period.
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