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Lab 1

Digital model-based altitude control for a
mini-drone

The work done during this mini-project will be noted in a report and marked. You are asked to follow
the instructions given below to write your report.

Instructions for writing your lab report

A lab report is a scientific document. It should be self-contained: that is, someone who has never seen
the lab instructions should be able to understand the problems that you are solving and how you are
solving them. All the choices you have made should be clearly motivated. Comment and explain all
your plots so as to make it easy to follow your way of thinking.

Your lab report can be written in French or in English but do not mix both languages. It should
be organized as follows:

• a general introduction specifying the objectives of the lab

• For each assignment or exercise:

. a brief presentation of the expected outcomes

. a description of the obtained results in graphical and or numerical form

. a critical analysis of the results

. a short conclusion

• a general conclusion explaining what has been understood during the lab and any difficulties
encountered.

When working in an experimental environment, results are always important, but SO is your ability to
communicate the information with others. Any work you will submit should be neat, well-organized
and easy to understand. Your report is a demonstration of your ability to understand the course you
are studying as well as a reflection of your organizational skills.

Sending your report to the tutor

The report should be written in groups of two students and sent by email to the tutor in the form of a
single pdf format file attached to the message by the deadline given by your instructor during the lab.
Please indicate the following "subject" for your email when you send your report to the tutor:
Control_Lab1_Names_LabGroupNumber
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Lab 1 – Digital model-based altitude control for a mini-drone

This lab provides an introduction to drone control, particularly focusing on altitude digital control
using both Proportional and Proportional-Derivative (PD) controllers.
The drone we will be using is the Tello mini-drone controlled via Wi-Fi.

The objectives are the following:

1. to learn about the basics of a drone including its components and how the drone flies;

2. to identify a linear low-order model from real data;

3. to design and tune both P and PD controllers for the altitude of the mini-drone based on the
identified linear model and evaluate its performance in simulation by using Simulink;

4. to implement and evaluate the best designed controller on the physical TELLO mini-drone from
a Python program.

Safety warning message: during this lab, you must exercise extreme caution when handling your
mini-drone. Ensure that you follow all safety instructions. Unauthorized maneuvers or negligence can
lead to injuries or damage to equipment.

1.1 The Tello mini-drone

Prior to operating any experimental system, it is imperative to familiarize yourself with the various
components of the system. Part of the process involves the identification of the individual hardware
components, including its sensors and actuators.

The Tello mini-drone is a small quadcopter that features a vision positioning system and an onboard
camera as shown in Figure 1.1.

Figure 1.1: Tello mini-drone from DJI

Using its vision positioning system and advanced flight controller, it can hover in place and is suitable
for flying indoors. Its maximum flight time is about 13 minutes. Whenever you can, connect the
TELLO drone to the USB port of your PC to recharge the battery for the next test.

1.1.1 Main components

The main components of the mini-drone are presented in Table 1.1.
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Lab 1 – Digital model-based altitude control for a mini-drone

1. Propellers 6. Antennas
2. Motors 7. Vision positioning system
3. Aircraft status indicator 8. Flight battery
4. Camera 9. Micro USB port
5. Power button 10. Propeller guards

Table 1.1: Main components of the Tello mini-drone

1.1.2 Identification of the physical system components

Visit the official website www.ryzerobotics.com/fr/tello and answer the following questions from
the TELLO User guide.

1. Present the onboard actuators, explaining their role in flight control.

2. Present the onboard sensors for altitude measurement and IMU (Inertial Measurement Unit)
sensors for orientation and acceleration measurements.

3. Is there a GPS ?

4. How much does the mini-drone weigh?

5. Overview the communication protocol used to interface with the TELLO drone from a PC or a
MAC, focusing on sending control commands and receiving sensor data.

1.2 First control of the Tello mini-drone by using its App

1. Search for "Tello" on the App Store or Google Play to download the Tello App on your mobile
device.

2. Go to the room C335.

3. Press once the power button to turn the mini-drone on.

4. Place your Tello on the black cross in the middle of the room with the in-front camera facing the
window.

5. Go outside the cage.

6. Launch the Tello App on your mobile device.

7. Enable the Wi-Fi on your mobile device and connect to the Tello XXXXXX network. Connection
has been established when the LED indicator blinks yellow slowly and the live camera view is
shown on your mobile device.
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Lab 1 – Digital model-based altitude control for a mini-drone

8. Select Auto Takeoff.

9. Use the virtual joysticks in the App to test your ability to control the mini-drone. Try to control
the drone to make a square trajectory of 50 cm.

10. Select Auto landing.

1.3 Understanding the basics of quadcopter control

There are many types of Unmanned Aerial Vehicles (UAVs), but the TELLO mini-drone used is a
quadcopter. A quadcopter is a type of helicopter which has 4 rotors. Each one of them produces
thrust and torque at the same time.
To understand how a quadcopter flies, it is very important to have the concept of 6-degrees of freedom
(6-DOF).
The 6 degrees of freedom is a representation of how an object moves through 3D space by either
translating linearly or rotating axially as shown in Figure 1.2.

Figure 1.2: The 6 degrees of freedom

Specifically, the object can move in three dimensions, on the X, Y and Z axes (left/right, forward/back,
up/down), as well as change orientation between those axes though rotation usually called yaw, roll
and pitch which are defined below

• Yaw (lacet): the drone rotates in place, flat, around its center of gravity. This can be likened
to making a "No" sign with our head.

• Roll (roulis): the drone behaves as if it wanted to roll. This can be likened to tilting our head
left or right.

• Pitch (tangage): the drone behaves as if it wanted to rear up or dive forward. This can be
likened to making a "Yes" sign with our head.

Impact on the motors

A quadcopter is equipped with four rotors, two of which rotate clockwise and two of which rotate
counterclockwise.

Hovering

When all rotors spin at exactly the same speed, the forces on the multi-rotor are equal, and the
quadcopter will hover in place (fly and stabilize itself in midair).
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Lab 1 – Digital model-based altitude control for a mini-drone

Figure 1.3: Principle of howering

For the quadcopter to be able to fly and stabilize itself in midair, the total thrust produced by the 4
rotors should be equal to the gravitational force subjected to the system.

Ascending or descending

To make the quadcopter ascend, the thrust is increased on all four rotors equally and conversely to
descend.

Figure 1.4: Principle of ascend and descend

Yaw

To rotate the quadcopter, we need to increase the thrust of two of the four motors. So, if we want to
turn clockwise (right), we would increase the thrust towards the two rotors turning counterclockwise
(left) and vice versa to turn in the other direction.

Figure 1.5: Principle of Yaw
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Lab 1 – Digital model-based altitude control for a mini-drone

Roll and Pitch

Finally, if we need to move forward/backward or go left/right, we will decrease the thrust of the rotors
in the direction we want to move and increase the thrust towards the opposite rotors.

For the pitch movement, the rotation speed of the front motors is increased while that of the rear
motors is decreased.

Figure 1.6: Principle of Pitch

1.3.1 Videos to know more about drone control

To known more about the basics of drone control, you can watch Brian’s Douglas introduction videos
to this topic:

Drone Simulation and Control, Part 1: Setting Up the Control Problem

Drone Simulation and Control, Part 2: How Do You Get a Drone to Hover?

1.3.2 Manual control

From the first video, we know that by manipulating the four motor speed in specific ways through the
Motor Mixing Algorithm (MMA), thrust, roll, pitch, and yaw can be controlled directly and so we are
able to control the drone in 3D space. This is the open-loop control configuration as shown in Figure
1.7 that you have used for controlling the TELLO with the App on your mobile device.

Figure 1.7: Manual control of the mini-drone through the Motor Mixing Algorithm (MMA)
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Lab 1 – Digital model-based altitude control for a mini-drone

1.3.3 Full closed-loop control

From the second video, we know that the full closed-loop control architecture is quite complex and looks
like the one shown in Figure 1.8 with several different control loops and 6 different PID controllers.

Figure 1.8: Full closed-loop architecture for the mini-drone control

1.4 Altitude control of the TELLO mini-drone

During this lab, the goal is to consider just a single loop, the altitude loop. Remember, this is
independent of the other loops so we can tweak and adjust altitude without affecting roll, pitch, or
yaw. To make sure they are out of the equation completely, we will just set the commands to 0 for
roll, pitch, and yaw as shown in Figure 1.9.

The goal is therefore to design a control for the mini-drone that uses thrust to adjust the altitude. If we
are able to measure the drone altitude then we can feed it back to compare it to an altitude reference.
The resulting error is then fed into a PID controller that is using that information to determine how
to increase or decrease thrust.

Figure 1.9: Altitude control architecture for the mini-drone

The input and output of the mini-drone altitude control system are:

• u(t): motor speed in % (related in some way to the thrust generated by the 4 motors);

• y(t): altitude in cm or vertical position along the Z axis of the mini-drone.
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Lab 1 – Digital model-based altitude control for a mini-drone

1.4.1 Control performance requirements

The performance requirements for the mini-drone altitude control are described in Table 1.2.

Requirement Assessment criteria Level
Control of the Step reference tracking No steady-state error
drone altitude Peak overshoot D1% = 4.3%

Settling time at 5 % t5%s = 2 s
Table 1.2: Performance requirements for the mini-drone altitude control

1.4.2 Download of the files required for the lab

1. Download the zipped file Lab1.zip from the course website and save and unzip it in your
Documents/Matlab/Control_Lab/ folder.

2. Start Matlab.

3. Important ! By clicking on the browse for folder icon , change the current folder of
Matlab so that it becomes your Documents/Matlab/Control_Lab/ folder that contains the
files needed for this lab.

4. In the Current Folder window of Matlab, click right on the folder
Documents/Matlab/Control_Lab/Lab1 and select add to path the selected folder.

5. Double-click on the folder Lab1 so that it becomes your current folder. You should see the
different .slx, .m and .py files needed for this Lab.

1.5 Vertical dynamic model identification

The determination of a model is a first crucial step for the design of a feedback control system.

1.5.1 Vertical dynamic model

The motor speed-to-altitude transfer function can be modelled as a first-order plus pure integrator
model

Y (s)

U(s)
=

K

s(1 + Ts)
(1.1)

where Y (s) = L [y(t)] and U(s) = L [u(t)].
K is the model gain and T is the model time-constant.

As the vertical velocity on the Z axis vz(t) is the time-derivative of the vertical position or altitude,
both variables are linked in the Laplace domain by an integrator so that (1.1) can be expressed as:

Y (s)

U(s)
=
Y (s)

Vz(s)
× Vz(s)

U(s)
=

1

s
× K

1 + Ts
(1.2)

where Vz(s) = L [vz(t)] is the vertical velocity of the mini-UAV on the Z axis.
Identifying a system having a pure integrator is tricky and it is better when the measure is available
to identify the response between the vertical velocity and the input (the maximum motor speed here)
since the model takes the form of a simple first-order system:

Vz(s)

U(s)
=

K

1 + Ts
(1.3)
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Lab 1 – Digital model-based altitude control for a mini-drone

1.5.2 Model identification from square wave response experiments

1.5.2.1 Recording of the square wave response

This experiment is carried out in open-loop/manual mode, i.e. there is no feedback control to the
altitude. As the system is marginally stable, the input command should be designed with special care.
As shown in Figure 1.10, the input command is a square wave input (a series of positive and negative
steps) around a working operating point. The duration of each step should be carefully chosen so that
the drone vertical position increases and decreases of about 50 cm without hitting the ceiling.
Warning Remember that the experiment is conducted in open loop. If there are disturbances, like
small, invisible airflow, they will induce a little roll or pitch changes into the system, the thrust will then
not only adjust altitude but also create some horizontal motions and the mini-drone will start to move
away from the centre of the room and possibly crashes into the net. This is why it is recommended to
close the door of the room when the open-loop control test is carried out.

1. Go to the room C335 with your mini-drone.

2. Log in with the following account: .\admin_IA2R

3. Ask the instructor to enter the password.

4. Go to the C:/temp/Tello folder.

5. Open the file Tello_OL_control.py.

6. Press once the power button to turn the mini-drone on.

7. Connect your mini-drone to the WIFI.
Each mini-drone can be connected to the computer in room C335 when it is turned on via WIFI.
You can identify your mini-UAV by removing the battery and looking inside the battery case.
You should see written on a white paper
WIFI:TELLO-XXXXXX where the six X represent the ID of your mini-UAV.

8. Place your Tello in the middle of the room with the in-front camera facing you.

9. Go outside of the cage.

10. Close the door of the room.

11. Run the python fileChoose Select Run without debbuging and then click on Trust Workspace
& Continue or Python debbuger and Yes.

12. The mini-drone should auto-take off at about 1 m and waits for 3 seconds. Then a square wave
input will be sent to the rotor speed. The drone should go up to 1,50m and down to about 1m
four times and finally auto-land.

13. If everything went well, a figure will be plotted showing the experimental response data that is
also recorded in the file DataOL_Tello.txt.

14. Copy the .txt file on a USB key or send it to you by e-mail.

15. Delete the .txt file.

16. Go back to the C212 room.
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Lab 1 – Digital model-based altitude control for a mini-drone

1.5.3 Identify your model

1. Open Matlab and execute the dataOL_plot.m file to get a plot similar to Figure 1.10.

2. Determine the quantization step size for both the altitude measure and vertical velocity measure.

3. Open and run the test_your_model.mlx file. This file will help you to adjust the first-order
model parameters by using the data you recorded from initial default parameter values set at the
top of the .mlx file.

4. Run the file and observe the fit percentage between the measured and simulated model vertical
speed response.

5. Refine the parameter values for K and T at the top of the .mlx file to get the best fit possible
between the two responses.

Note that from the measured data we can observe a small time-delay on the vertical speed response.
We are however going to ignore this time-delay (as it is very small) for the design and tuning of the P
and PD controllers.

Figure 1.10: Vertical velocity response of the mini-drone to a square wave input

1.6 P control for altitude tracking of the mini-drone

Now we have a relatively good model of the vertical dynamic of the drone, we can design a model-based
PID control for altitude tracking.
For systems represented by a first-order transfer function plus a pure integrator, a simple P controller
or a PD controller should be enough to get good tracking performances.

We start by first tuning and testing the performance of a simple P controller using Simulink before
implemented the P control in Python code on the TELLO mini-drone.
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Lab 1 – Digital model-based altitude control for a mini-drone

1.6.1 P controller tuning and test in Simulink

Figure 1.11 shows a simple proportional feedback configuration of the mini-drone altitude tracking
system.

kp
K

s(1 + Ts)

Yr(s) + ε(s) U(s) Y (s)

−

Figure 1.11: Block-diagram of the simple proportional feedback configuration of the mini-drone altitude
tracking system

1. Determine the closed-loop transfer function FCL(s).

2. From the requirements specified in Table 1.2, determine the proportional gain value kp.

3. Open the Simulink file Simul_digital_P_altitude_control.slx . Enter the parameters of your
identified model K and T and set the gain of the P controller.

4. Run the file. Are the specification requirements satisfied in simulation ? If not adjust the gain
of the P controller.

5. Analyze the motor command response. Does it reach the saturation ?

6. Give the few Python lines to implement the digital P control.

1.6.2 P controller implementation in Python and test on the TELLO drone

1. Go to the room C335 with your mini-drone.

2. Go to the C:/temp/Tello folder.

3. Open the file Tello_CL_control.py.

4. Set the P controller gain below the commented line: Enter the P gain value below:

5. Press once the power button to turn the mini-drone on.

6. Connect your mini-drone to the WIFI.

7. Place your TELLO in the middle of the room with the in-front camera facing you.

8. Go outside the cage.

9. Close the door of the room.

10. Run the python file. Choose Select Run without debbuging and then click on Trust
Workspace & Continue or Python debbuger and Yes.

11. The mini-drone should auto-take off at about 1 m and waits for 3 seconds. Then a square wave
will be applied to the altitude setpoint. The drone should track the square wave setpoint and
finally auto-land.

12. If everything goes well, a figure will be plotted showing the experimental response data that is
also recorded in the file DataCL_Tello.txt.

13. Copy the .txt file on a USB key or send it to you by e-mail to include it later in your report.
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Lab 1 – Digital model-based altitude control for a mini-drone

14. Delete the .txt file.

15. Go back to the C212 room.

16. Open Matlab and execute the dataCL_plot.m file to get a plot of the closed-loop control perfor-
mance.

17. Analyze the motor command response. Does it reach the saturation ?

18. Analyze the altitude tracking with the simple P controller. Are the specification requirements
satisfied in practice.

1.7 PD control for altitude tracking

The proposed strategy is to use a variation of the standard PD control, where unlike the standard PD
where the derivative term is usually applied to the error, it is applied to the output, as shown in Figure
1.12.

+
-

Yr(s)
kp

ε(s)
+

-

Up(s) K

s(1 + Ts)

Y (s)

kds
Ud(s)

Figure 1.12: Block-diagram of the PD feedback configuration of the altitude control system

1.7.1 PD controller tuning and test in Simulink

1. Determine the closed-loop transfer function FCL(s).

2. From the requirements specified in Table 1.2, determine the proportional and derivative gains kp
and kd of the analog PD controller.

3. Find a discretized version of the continuous-time PD controller by using an approximation method
(Euler backward, Tustin, ...).

4. Give the block diagram of the digital controller (described in the z-domain) to control the
continuous-time system (described in the s-domain). Do not forget to represent the blocks (ZOH,
Quantizer, ...) to make analog and digital parts interact.

5. Modify the Simulink file Simul_digital_P_altitude_control.slx to implement the digital PD
controller. Save it as Simul_digital_PD_altitude_control.slx.

6. Enter the parameters of your identified model K and T and set the gains of the PD controller.

7. Run the file. Are the specification requirements satisfied in simulation ? If not adjust the gains
of the PD controller.

8. Analyze the motor command response. Does it reach the saturation ?

9. Give the few Python lines to implement the digital PD control.
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Lab 1 – Digital model-based altitude control for a mini-drone

1.7.2 PD controller implementation in Python and test on the TELLO drone

1. Go to room C212 and test the digital control implemented in Python on the TELLO mini-drone.

2. If everything goes well, a figure will be plotted showing the experimental response data that is
also recorded in the file DataCL_Tello.txt.

3. Copy the .txt file on a USB key or send it to you by e-mail to include it later in your report.

4. Delete the .txt file.

5. Go back to the C212 room.

6. Open Matlab and execute the dataCL_plot.m file to get a plot of the closed-loop control perfor-
mance.

7. Analyze the motor command response. Does it reach the saturation ?

8. Analyze the altitude tracking with the simple P controller. Are the specification requirements
satisfied in practice.
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Lab 1 – Digital model-based altitude control for a mini-drone

1.8 Troubleshooting

This section provides solutions to some issues you might encounter when using the TELLO drone
during this lab.

1.8.1 Connection issues

If you try to connect to your drone via WIFI and it takes too long with the computer you are using,
just run the Python code. If the battery level is printed, then your drone is connected to the computer.

Note that your drone will automatically switch off after 2 or 3 mn. You will need to switch it on and
then connect again to the WIFI before executing the Python code.

1.8.2 Calibration issues

If the Python code returns an error message after printing the battery level, it either means that your
drone battery is too low (under 10 or 20 %) or needs to be calibrated.
To calibrate your drone, you first need to download the Tello app on your phone from this following
link: www.dji.com/uk/downloads/djiapp/tello

Then, when you open the App, it will automatically try to connect your phone to a Tello drone which
will open your Wi-Fi interface and show you the available devices. Now, choose your drone. As it is
not an internet device, your phone might ask you if you still want to connect to it. Confirm and when
you are connected, go back until you see the App again.

Once you are connected to your drone and at the main interface of the App, you should see a gear on
the top left side of your screen. Click on it then to "More" and to the "..." on the left side. The first
option to appear should be "IMU Status". Click on "Calibrate" on the right side of this option and
follow the instructions.

If you try to calibrate your drone and the App indicates that it has been calibrated without the need
to place the drone in 6 different positions, close the App. Restart your drone and do the whole process
again. If it is still the same, then it means your drone cannot be calibrated. Mark it and use another one.

In this calibration instructions, it is said that you should remove the propellers. There is a metallic
and flat stick in the plastic bags inside the drone box. It is the Propeller Removal Tool they are
talking about. The hollow part is to be used between the propeller and the motor to which it is attached.

Before removing them, mark that there is a pair with marks near the axis. The marked propellers
should be at the top left and bottom right of the drone while the unmarked fill the other slots.

Note that this calibration is necessary for the Python code to be uploaded to the drone.
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Lab 2

Model-based state feedback control of a
rotary inverted pendulum

You are not asked to submit a report for this lab which will not therefore be marked. You are, however,
encouraged to write a personal report.
In this lab, we will mainly use the QUBE-Servo 2 with the inverted pendulum.

Layout of the Lab

A balance system is a mechanical system in which the center of mass is balanced above a pivot point.
Some common examples of balance systems are shown in Figure 2.1. The Segway personal transporter
uses a motorized platform to stabilize a person standing on top of it. When the rider leans forward,
the transportation device propels itself along the ground but maintains its upright position. Another
example is a rocket, in which a gimbaled nozzle at the bottom of the rocket is used to stabilize the body
of the rocket above it. Other examples of balance systems include humans or other animals (gorilla,
kangaroos, etc) standing upright. This might seem easy but it is not and requires some learning process
and skill. You can test your ability to balance a pen at the end of one of your finger to feel the difficulty.

Figure 2.1: Examples of balance systems. (a) Segway personal transporter, (b) Saturn rocket and (c) inverted
pendulum on a cart.

While PID control is applicable to many control problems and often perform satisfactorily, it can
perform poorly in some applications. This is in particular the case when the system has multiple
inputs and multiple outputs or when the system is unstable in open loop.
This lab considers the two previous situations: it addresses the control of an inverted pendulum
balanced on a rotary arm. We investigate how the inverted pendulum can be stabilized/balanced
using full state feedback, and explore pole placement as the technique for choosing the feedback gains.
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The objective is to illustrate the various stages of design that lead to the pole-placement control to
stabilize/balance the rotary inverted pendulum.
The lab is structured into the following sections:

1. an introduction or a refresher about model-based state feedback control by the pole placement
method. The methodology is illustrated by using a simulation example and tested in Simulink;

2. the design of a pole placement controller based on the physics informed linearized state-space
model and the evaluation of its control performance in simulation by using Simulink;

3. the implementation and test of the designed pole placement based state feedback control to
stabilize/balance the physical rotary inverted pendulum.

2.1 Pole placement control - A refresher from a simulation example

2.1.1 A video to start with

To get a refresher about pole placement (or full) state feedback control, watch at the beginning of the
lab, all together, the video from Brian Douglas on this topic:
What is Pole Placement (Full State Feedback) | State Space - Part 2
www.youtube.com/watch?v=FXSpHy8LvmY
Listen carefully to the different comments given by Brian Douglas !

2.1.2 Background

Pole placement is a method of calculating the feedback gain matrix used to assign closed-loop poles to
specified locations, thereby ensuring system stability. Closed-loop pole locations have a direct impact
on time response characteristics such as rise time, settling time, and transient oscillations.
The standard state-space representation of a multi-input multi-output (MIMO) continuous linear time-
invariant (LTI) system with n state variables, r input variables, and m output variables is{

ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t)
(2.1)

where x ∈ Rn×1 is the vector of state variables, u ∈ Rr×1 is the control input vector, y ∈ Rm×1 is the
output vector, A ∈ Rn×n is the state matrix, B ∈ Rn×r is the input matrix, C ∈ Rm×n is the output
matrix, and D ∈ Rm×r is the feedforward matrix.
The schematic of a standard state-feedback control is shown in Figure 2.2 where K is a matrix of
control gains. Note that here we feedback all of the system states x, rather than using the system
outputs y for feedback.

Figure 2.2: Block diagram of standard state-feedback control

Let u(t) be a state feedback control law of the form

u(t) = −Kx(t) + r(t) (2.2)
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where K ∈ Rm×n is the feedback gain vector. Applying this to the first equation of (2.1) gives the
closed-loop system equation

ẋ(t) = Ax(t)−BKx(t) +Br(t) = (A−BK)x(t) +Br(t). (2.3)

2.1.3 Controllability

If the system is unstable, we might be able to design a state-feedback controller to stabilize it. Even
if the system is stable, we may still want to regulate the performance of the system according to some
design specifications (e.g., final state, rate of convergence, and settling time). These are possible if the
system is controllable.
By controllable, we mean that for any initial state vector xa and any desired final state xb, there exists
a control input u that can steer the state of the system from xa to xb in finite time [1]. Otherwise, we
say that the system is uncontrollable. Note that the definition does not require u to be bounded.
To check if the system is controllable, we can compute the rank of the Controllability matrix

C =
[
B AB A2B . . . An−1B

]
(2.4)

where n is the dimension of the state vector x. Then, we say that the linear system described by (2.1)
or, equivalently, the pair (A,B) is controllable if and only if rank(C) = n. Otherwise, we conclude that
the linearized system (or, in other words, the pair (A,B)) is uncontrollable.
We will use the MATLAB command ctrb to generate the controllability matrix and the MATLAB
command rank to test the rank of the matrix.

Co = ctrb(A,B);
controllability = rank(Co)

2.1.4 Pole placement

If (A,B) is controllable, we can use the state-feedback to place the poles at desired locations, e.g. in
the left half of the s-plane. Thus we can find a matrix gain K for the closed-loop system in (2.3) to
obtain a desired characteristic equation

n∏
i=1

(s− λi) = sn + an−1s
n−1 + . . .+ a1s+ a0 = 0 (2.5)

where λi ∈ C for i ∈ {1, . . . , n} and aj ∈ R for j ∈ {0, 1, . . . , n− 1}.
We will use the MATLAB command place to generate the matrix gain K
P=[λ1 . . . λn]

K=place(A,B,P)

Caution
Pole placement can be badly conditioned if you choose unrealistic pole locations. In particular, you
should avoid:

• Placing multiple poles at the same location.

• Moving poles that are weakly controllable or observable. This typically requires high gain, which
in turn makes the entire closed-loop eigenstructure very sensitive to perturbation.

2.1.5 State feedback control design of a simulation second-order system

To illustrate how to design K to obtain desired pole location, i.e. desired characteristic equation, we
consider the design in the case of a simulation second-order system.
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2.1.5.1 Analytical determination of the feedback gain

Consider a LTI system described by the following second-order ordinary differential equation:

ÿ(t) + ẏ(t)− 2y(t) = u̇(t) + u(t) (2.6)

1. Show that the transfer function of the system is

G(s) =
Y (s)

U(s)
=

s+ 1

s2 + s− 2
(2.7)

2. Determine the poles and show that the open-loop system is unstable.

3. Let us transform the transfer function model into state-space.
G(s) can also be decomposed as

Y (s)

U(s)
=
Y (s)

Z(s)
× Z(s)

U(s)
(2.8)

with
Y (s)

Z(s)
= s+ 1 (2.9)

and
Z(s)

U(s)
=

1

s2 + s− 2
(2.10)

Show that (2.9) and (2.10) are respectively equivalent to

y(t) = ż(t) + z(t) (2.11)
z̈(t) + ż(t)− 2z(t) = u(t) (2.12)

4. Assume x1(t) = ż(t) and x2(t) = z(t), such that

x(t) =

[
x1(t)

x2(t)

]
(2.13)

show that the state space model in canonical form can be written as{
ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t)
(2.14)

with

A =

[
−1 2

1 0

]
, B =

[
1

0

]
, C =

[
1 1
]

(2.15)

5. Show that the characteristic equation of the open loop system is

|λI −A| = λ2 + λ− 2 = 0. (2.16)

6. Determine the eigenvalues of A and show that the open loop state-space model is unstable.

7. We use here the pole placement method such that the closed loop poles have the values at -1 and
-2.
The desired closed loop characteristic equation is therefore:

(λ+ 1)(λ+ 2) = λ2 + 3λ+ 2 = 0 (2.17)
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The control law is:
u(t) = krr(t)−K x(t) (2.18)

where kr is a scalar and K is a 1×2 gain matrix.

K =
[
k1 k2

]
(2.19)

Show by plugging (2.18) into (2.14) that the closed-loop state-space model becomes:{
ẋ(t) = ACLx(t) +BCLr(t)

y(t) = Cx(t)
(2.20)

with

ACL = A−BK =

[
−1− k1 2− k2

1 0

]
, BCL = krB =

[
kr

0

]
, C =

[
1 1
]

(2.21)

8. Show that the characteristic equation of the closed-loop model is:

λ2 + (1 + k1)λ− 2 + k2 = 0 (2.22)

Hint: determine the eigenvalues of ACL by calculating |λI −ACL| = 0.

9. Show that equating the coefficients of the polynomial (2.22) with the desired polynomial in (2.17)
leads to {

k1 = 2

k2 = 4
(2.23)

2.1.5.2 Determination of the feedback gains with Matlab

Verify all your analytical calculations above by writing the following code in a Matlab script:

Num=[1 1];
Den=[1 1 -2];
roots(Den)
[A,B,C,D]=tf2ss(Num,Den)
eig(A)
Co = ctrb(A,B);
controllability = rank(Co)
P=[-1 -2];
K=place(A,B,P)
Acl=A-B*K
eig(Acl)
Sys_cl=ss(Acl,B,C,D);
kr=1/dcgain(Sys_cl)

2.1.5.3 Simulation of the full state feedback control with Simulink

We will now set up a Simulink model to implement the full state feedback.
Different options are possible to implement the state feedback depending how the open loop state space
model is built. We use 3 different possibilities here.
Reproduce the Simulink diagram given in Figure 2.3.
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Figure 2.3: Different implementations of the full state feedback control with Simulink

Please note the following when you build the 3 different options:

• just enter the letter for the gain matrix, e.g. for the Gain12 block. Double-click on the block
and then set the Gain : A and set the multiplication to Matrix (K*u).
A*u will appear in the middle of the block to indicate the type of multiplication.

• in the third option when you use the State-space model block of Simulink, you need first to
define the State-space block with an artificial identity matrix C = [1 0; 0 1] and D = [0; 0]
to assess the full states to be feedback and set the true C matrix to the states to get the output
variable.

Configure the signal generator and the configuration parameters as shown in Figure 2.4 and Figure 2.5
respectively.
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Figure 2.4: Setting of the signal generator block

Figure 2.5: Setting of the configuration parameters

Build and run the Simulink model. The response of the three scopes should be identical.

2.2 Stabilization of the inverted pendulum by full state feedback

2.2.1 Download of the files required for the lab

1. Download the zipped file Lab2.zip from the course website and save and unzip it in the C:/temp/
folder.

2. Start Matlab.
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3. Important ! By clicking on the browse for folder icon , change the current folder of
Matlab so that it becomes your C:/temp/Lab2/ folder.

4. You should see the different .slx and m. files needed for this Lab.

2.2.2 State-space model of the inverted pendulum

A schematic diagram of the rotary pendulum model is shown in Figure 2.6. The arm has a length of
Lr, a moment of inertia of Jr, and its angle θ increases positively when it rotates counter-clockwise
(CCW). The servo (and thus the arm) should turn in the CCW direction when the control voltage is
positive (Vm > 0).

The pendulum link is connected to the end of the rotary arm. It has a total length of Lp and it center
of mass is at Lp/2. The moment of inertia about its center of mass is Jp. The inverted pendulum angle
α is zero when it is hanging downward and increases positively when rotated CCW.

Figure 2.6: Schematic diagram of the rotary pendulum

2.2.2.1 State-space model of the non-inverted pendulum

The design of the state-space controller is based on a model of the system. There are two approaches
available to determine a mathematical model of a dynamical system:

• Data-driven modelling where a model is determined by using the system response data to an
excitation input (step input for example) ;

• Physics-informed modelling where the equations of motion for the system are developed from the
Physics.

We will used the second approach here. This rotary inverted pendulum system has been widely
studied and as a consequence the physics-informed model has been established and is available.

However, when the QUBE-Servo 2 is used with the pendulum is the up position, the system is unstable
and therefore no experimental open-loop test can be recorded to test the quality of the derived model.
As the model of the inverted and non-inverted pendulum are very close (they only differ with some
minus signs for some coefficients) we will first deal with the non-inverted pendulum.
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If the state vector x of the rotary pendulum system is chosen as

x(t) =
[
θ(t) α(t) θ̇(t) α̇(t)

]T
(2.24)

the linearized state-space model of the rotary pendulum-down system is:

{
ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t)
(2.25)

with

A =
1

JT


0 0 JT 0

0 0 0 JT

0 1
4m

2
pL

2
pLrg −

(
Jp +

1
4mpL

2
p

)
Dr

1
2mpLpLrDp

0 −1
2mpLpg

(
Jr +mpL

2
r

)
1
2mpLpLrDr −

(
Jr +mpL

2
r

)
Dp

 (2.26)

B =
1

JT


0

0

Jp +
1
4mpL

2
p

−1
2mpLpLr

 , C =

[
1 0 0 0

0 1 0 0

]
, D =

[
0

0

]
(2.27)

2.2.2.2 Experimental model validation from step response

It is important that you verified your model for the pendulum-down case with the steps below.

1. In Matlab, run the setup_non_inverted_pend_ss_model.m script. This creates, in the Matlab
workspace, the QUBE-Servo 2 rotary pendulum-down state-space model matrices A,B,C, and
D based on numerical values of the different physical parameters. The A and B matrices should
be displayed in the Command Window. Ensure that the generated matrices match the solution.

A =
0 0 1 0
0 0 0 1
0 149.3 -14.93 4.915
0 -261.6 14.76 -8.614

B =
0
0

49.73
-49.15

2. Open the Simulink model test_non_inverted_pend_ss_model_2_square_wave.slx whose con-
tents is shown in Figure 2.7. It applies for 20s a 0−1V, 1 Hz square wave to the physical inverted
pendulum system and to the physics-based state-space model.
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Figure 2.7: Applies a square wave voltage and displays the measured responses and the simulated model
pendulum responses

3. Place manually the pendulum close to the 0◦ position and click on Monitor & Tune to build and
run the test.
The scope response should be similar to Figure 2.8. Does your model represent the actual
pendulum-down well?
The model of the arm response should display the same characteristics of the measured arm
response, but an offset may be observed due to possible un-modelled dynamics such as the
disturbance introduced by the encoder cable.

Figure 2.8: Step response of the pendulum system.

4. In the Matlab script setup_non_inverted_pend_ss_model.m, the rotary arm viscous damping
coefficient Dr is set to 0.0015N.m.s/rad, and the pendulum viscous damping coefficient is set to
Dp to 0.0005N.m.s/rad.
These parameters were found experimentally to reasonably accurately reflect the viscous damping
of the system due to effects such as friction, when subject to a step response. However, the viscous
damping of each inverted pendulum can vary slightly from system to system. If your model does
not accurately represent your specific pendulum system, try modifying by trial and error the
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damping coefficients Dr and Dp to obtain a more accurate model.

2.2.3 Control performance requirements

The performance requirements and time-domain specifications for balancing the pendulum and for
tracking a rotary arm setpoint are described in Table 2.1.

Requirement Assessment criteria Level
Balance the inverted
pendulum

Position setpoint tracking balanced & stable with no
steady-state error

Motor input voltage limited to [-10V ; +10 V]
Percent Overshoot D1 = 6.8 %
Settling time at 5 % t5%s = 1.5 s
Disturbance rejection Rejection of impulse-type

flick
Table 2.1: Performance requirements for the state-feedback control of the inverted pendulum

Thus, as the rotary arm goes back and forth to track the reference while balancing the pendulum, it
should have a percent overshoot and settling time matching these requirements.

2.2.3.1 Time-domain specifications for higher order systems

The rotary inverted pendulum system has four poles. However, if two of the closed loop poles are
chosen to be closer to the imaginary axis (typically by a factor equal or greater than four) than the
remaining poles, the conjugate poles are considered to be dominant and the system behavior can be
approximated by a second-order system. As depicted in Figure 1.2, poles p1 and p2 are the complex
conjugate dominant poles and are chosen to satisfy the natural frequency, ωn, and damping ratio, ζ,
second-order specifications. Let the conjugate poles be:

p1 = −σ + jωd (2.28)
p2 = −σ − jωd (2.29)

where σ = ζωn and ωd = ωn

√
1− ζ2 is the damped natural frequency. The remaining closed-loop

poles, p3 and p4, are placed along the real axis to the left of the dominant poles, as shown in Figure
2.9.
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Figure 2.9: Desired closed-loop pole locations

2.2.4 Pole placement control design for the inverted pendulum

1. In Matlab, run the setup_inverted_pend_ss_model.m script. This creates, in the Matlab
workspace, the QUBE-Servo 2 rotary pendulum-up state-space model matrices A,B,C, and
D based on numerical values of the different physical parameters. The A and B matrices should
be displayed in the Command Window. Ensure that the generated A and B matrices match the
form given below.

A =
0 0 1 0
0 0 0 1
0 149.3 -14.93 -4.915
0 261.6 -14.76 -8.614

B =
0
0

49.73
49.15

2. Ensure that the open-loop poles of the inverted pendulum are: {0,−28.64, 10.67,−5.57} Note
that the system is unstable because of the positive pole at 10.67.

3. Evaluate the controllability of the rotary inverted pendulum system. Use the ctrb function to
compute the controllability matrix and explain whether or not the system is controllable.

4. The percent overshoot and settling time specifications given translate into the following natural
frequency and damping ratio requirements:

ζ = 0.65

ωn = 4 rad/s

Based on these specifications, find the location of the two dominant poles p1 and p2.
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5. Find the desired characteristic equation if the other poles are placed at p3 = −40 and p4 = −45.

6. Use the pole placement design command in Matlab to find the state-feedback gain, K, required
to place the closed-loop poles to the desired locations. Give the Matlab commands used and the
obtained matrix gain K.

2.2.5 Implementation of the balance control to the rotary inverted pendulum

Figure 2.10: Simulink model used with pole placement-based balance controller

1. Open the balance_inverted_pend_poleplace.slx Simulink model whose contents is shown in
Figure 2.10.

2. Make sure the variable K is set in the Matlab workspace.

3. Set the Signal Generator block to the following:

• Type = Square

• Amplitude = 1

• Frequency = 0.125 Hz

4. Set first the Gain block that is connected to the Signal Generator to 0.

5. Click on Monitor & Tune to build and run the file.

6. When the QUBE-Servo 2 turns green, gently and manually rotate the pendulum in the upright
position until the controller engages. Observe the scopes. The balance state-space control should
work fine. There i so magic here even if this is quite amazing.

7. Once the pendulum is balanced, set the Gain to 30 to make the arm angle go between ±30
degrees. The scopes shown in Figure 2.11 show an example response when using a state feedback
gain of K = [−2 35 − 1 3].
Attach your response of the rotary arm, pendulum, and controller voltage using the control gain
found in the previous Section.

8. Does the rotary arm and pendulum response match the settling time and percent overshoot
specifications given in Table 2.1? If not, give one reason why there is a discrepancy.
Modify the desired closed-loop poles to get better results.

9. Stop the controller.

Note that the encoders only provide measurements for the arm and pendulum angular positions. We
need to also measure or estimate the arm and pendulum velocities in order to perform full state feed-
back. In this lab, we will estimate the two angular speeds from the angular position measures by using
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high-pass filters of the form
50s

s+ 50
already implemented in the Simulink files provided (double-click

on the Rotary Pendulum Interface block to see the high-pass filters).
Computing any variable time-derivatives by using simple numerical approximations should be
AVOIDED. Next year, you will build an observer and estimate the arm and pendulum velocities
from the measurements of arm and pendulum position alone.
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(a) Rotary arm angular position
measurement and setpoint

(b) Pendulum angular position
measurement

(c) Motor input voltage measurement
Figure 2.11: QUBE Servo 2 example rotary pendulum response using default gain
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2.3 Bonus - Implementation of the swing-up and balance control

We will here without studying the theory behing run a Simulink model that swings up and balances
the pendulum on the QUBE Servo 2 rotary pendulum system

1. In Matlab, run the setup_inverted_pend_ss_model.m script. This creates, in the Matlab
workspace, the QUBE-Servo 2 rotary pendulum-up state-space model matrices A,B,C, and
D based on numerical values of the different physical parameters. The A and B matrices should
be displayed in the Command Window. Ensure that the generated A and B matrices match the
form given below.

A =
0 0 1 0
0 0 0 1
0 149.3 -14.93 -4.915
0 261.6 -14.76 -8.614

B =
0
0

49.73
49.15

2. Open the swingup_inverted_pend.slx Simulink model.

3. Check that the swing-up control parameters are set to:

• mu = 50 m/s/J

• Er=30 J

• u_max = 6 m/s2

4. Make sure the pendulum is hanging down motionless and the encoder cable is not interfering
with the pendulum.

5. Click on Monitor & tune to build and run the controller. The pendulum should begin going
back and forth until it swings up to the vertical position.
If not, gently perturb manually the pendulum with your finger.
Click on the Stop button in the Simulink tool bar if the pendulum goes unstable.

6. Stop the controller.

7. Repeat the experiment with your state feedback gain matrix K instead of the matrix gain set in
the given Simulink file.

8. Power OFF the QUBE Servo 2.

2.4 Final note

The techniques used to model, balance, and swing up an inverted pendulum have tremendous carry-
over to other applications. State-space modelling is a mainstay to modeling complex MIMO systems.
State-feedback control is sometimes used in multi degree-of-freedom robot manipulators, quadrotor
systems, aerospace devices. We will further explore its use during the Control engineering labs next
year.
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2.5 Troubleshooting

How to fix the following QUARC license issue that may appear:

• If the following error message appears when using Simulink: "Error occurred while executing
External Mode MEX-file ’quarc_comm’: One of the arguments is invalid."

You will need to re-activate the QUARC License on your computer. Follow the steps below:

. Log out.

. Log in with the following login: .\admin_IA2R

. Ask the lab assistant to enter the password.

. Go to the C:\temp\ directory.

. Double-click on the licence file: Quarc essentials Polytech Nancy.

. Tick both options and save the file.

. Unplug and re-plug the QUBE-Servo 2 to reset the micro-controller.

. Log out the admin account.

. Log in with your student account.

. Start Matlab and Simulink again.
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English to French glossary

bandwidth : bande passante
crane : grue
closed-loop system : système bouclé
cut-off frequency : fréquence (ou pulsation) de coupure
damped frequency : pulsation amortie
damping ratio : coefficient d’amortissement
drag : traînée
feedback : contre-réaction
feedback system : système à contre-réaction
hoisting device : dispositif de levage
impulse response : réponse impulsionnelle
integral wind-up : emballement (de l’action) intégral
input : entrée
gain : gain
heading angle : angle de cap
linear time-invariant (LTI) : linéaire invariant dans le temps
motor shaft : arbre moteur
output : sortie
overdamped : sur-amorti
overshoot : dépassement
pitch : tangage
rise time : temps de montée
road grade : inclinaison de la route
robot arm joint : articulation d’un bras de robot
rool : roulis
root locus : lieu des racines
setpoint : consigne
settling time : temps de réponse
steady-state gain : gain statique
steady-state response : réponse en régime permanent
steering : direction
step response : réponse indicielle
stream : courant
yaw : lacet
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time-delay : retard pur
time-invariant : invariant dans le temps
transient response : réponse transitoire
throttle : accélérateur
undamped : non amorti
undamped natural frequency : pulsation propre non amortie
underdamped : sous-amorti
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