

Two separate parts for a total of 36 hours

- Digital control
 - 6h of lecture
 - 8 h of tutorials
 - 4h of Labs

Course materials in English

- Lectures
 - Hugues Garnier
- Tutorials/Labs
 - Hugues Garnier
 - Floriane Collin

- State-space control
 - 5h of lecture
 - 6h of tutorials
 - 4h of Labs

- Lectures/tutorials
 Gilles Millérioux
- Labs
 - Hugues Garnier
 - Floriane Collin

Website for the course

• w3.cran.univ-lorraine.fr/hugues.garnier/?q=content/teaching

Navigation

Add content

Add file

33232

Basic page Teaching has been updated.

View Edit

Teaching activities

Since 2018, I have been head of the 3-year engineering programme (see pdf) in *Computer Science, Control Engineering, Robotics, IT Networks (IA2R)* at Polytech Nancy.

where I teach the following courses:

Digital control S6 (3A IA2R FISE)

- Slides for the course
 - Digital control Intro
 - The z-trransform
 - Table of z-transforms
 - Converters & Holds
 - Sampled data systems
 - Discrete-time systems
 - Synthesis of digital controllers
 - Digital PID controllers
- Tutorials
- Labs
 - Files for Lab 1
 - Files for Lab 2
- Exams

Feedback Systems

An Introduction for Scientists and Engineers, K.J. Astrom & R. Murray 2021

pdf version of the book available www.cds.caltech.edu/~murray/books/AM08/pdf/fbs-public_24Jul2020.pdf

See also

- K.J. Åström, B. Wittenmark, *Computer-controlled systems: theory and design* (3rd Ed.), Dover Publications, 2011

Videos available on Youtube Discrete control by *Brian Douglas*

Discrete control #1:

Introduction and overview

3

6

Discrete Control Zero Order Hold!

13:07

Discrete control #2: Discretize! Going from continuous to Brian Douglas

Discrete control #3: Designing for the zero-order hold

Brian Douglas

Brian Douglas

Discrete control #5: The bilinear transform Brian Douglas

Discrete control #6: z-plane warping and the bilinear

Some other resommended videos on Youtube Digital control by *Peter Corke*

Others resources in automatic control Mobile textbook available from *Quanser*

Experience Controls by Quanser

Experience Controls is a free mobile textbook designed to give you real design intuition and relevant skills in a hands-on way in the control systems engineering space.

The textbook app includes:

- 50+ lesson modules covering introductory to advanced concepts
- Interactive simulations of industrial-level controls problems
- Mini-lecture podcasts that summarize key takeaways for each chapter, available in-app or in your preferred podcast player
- End-of-chapter review questions to check your understanding

Reminder - Control Lab 1 S5 Line tracking control for the 3pi+ mobile robot

Reminder - Control Lab 3 S5 PD control of the Altitude for the Tello mini-drone

Lab 1 S6 – Digital control of the yaw for the Tello mini-drone

Reminder - Principle of feedback control

- Designing a control system means inserting:
 - a feedback loop
 - a control element: the controller or regulator

Technology of analogue/digital controllers

Tool: Laplace transform

Differential equation

Micro-controller

Lab platform example: analogue versus digital PID controller for magnetic levitation

Digital control is everywhere

Objectives of the digital control course

- To provide tools and methods for:
 - analyzing digital control, i.e. the problem of using digital computers or micro-controllers in real time to control physical processes
 - modelling and studying the various interactions between analogue and digital components (ADC/DAC)
 - designing and implementing digital PID controllers

Outline of the digital control course

- I. The z-transform
- II. Analogue to digital converter
- III. Sampled systems
- IV. Discrete-time systems
- V. Design and implementation of digital PID controllers