
Control engineering
Problems n◦1
H. Garnier
F. Collin

Laplace transform, transfer function and block-diagram analysis
of linear time-invariant (LTI) dynamic systems

Exercise 1.1 - Laplace transform of an exponential signal
Consider the following signal:

x(t) = e−atΓ(t), a = 1

1.1.a. Recall the usual name of Γ(t) and its definition.

1.1.b. Plot the signal x(t).

1.1.c. Is the signal x(t) causal ? Justify your answer.

1.1.d. What is the role of Γ(t) in the definition of x(t).

1.1.e. Determine the Laplace transform of x(t) from the definition integral.

Exercise 1.2 - Laplace transform of a delayed impulse function
Consider the following signal:

y(t) = δ(t− τ), τ > 0

1.2.a. Recall the usual name of δ(t) and its definition.

1.2.b. Plot the signal y(t).

1.2.c. Determine the Laplace transform of y(t) by using the Laplace transform properties (see Appendices).

Exercise 1.3 - Inverse Laplace transform
Determine the inverse Laplace transform of:

Y (s) =
2

(s+ 3)(s+ 5)

Exercise 1.4 - Solution of differential equations
Solve the following differential equations using the Laplace transform:

1.4.a.
ẏ1(t) = −2y1(t), y1(0) = 1

1.4.b.
ẏ2(t) + 2y2(t) = Γ(t), y2(0) = 1

1.4.c.

ÿ3(t) + 10ẏ3(t) + 16y3(t) = 10δ(t), ẏ3(0) = y3(0) = 0

Exercise 1.5 - Transfer function of a mechanical system
Consider a mechanical suspension system shown in Figure 1.1 constituted of a mass, a damper and a spring
having a damping and stiffness coefficient of b and k respectively.
The differential equation of this mechanical system relating the vertical position y(t) of the mass (system output)
and the external force u(t) (system input) applied to the system is:

mÿ(t) + bẏ(t) + ky(t) = u(t)

1.5.a. Determine the transfer function G(s) = Y (s)
U(s) and represent the system in the form of a block diagram.
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Figure 1.1: Mechanical system.

1.5.b. Give the system order, the steady-state gain, the pole(s) and zero(s) of the transfer function.

Exercise 1.6 - Equivalent transfer function of simple closed-loop block-diagram
Consider the closed-loop block diagram displayed in Figure 1.2.
Derive its equivalent transfer function T (s) = Y (s)

R(s) .

+
-

R(s)
C(s)

ε(s)
G(s)

U(s) Y (s)

H(s)

Ym(s)

Figure 1.2: Classical block-diagram of a simple closed-loop feedback system

Exercise 1.7 - Transfer function of a simple closed-loop block-diagram. A case study
Consider the closed-loop block diagram displayed in Figure 1.3.
Determine its equivalent transfer function T (s) = Y (s)

R(s) .

+
-

R(s) 1

s

ε(s) 10

s+ 5

U(s) Y (s)

1

s+ 1

Ym(s)

Figure 1.3: Case study of a simple closed-loop feedback system
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Control engineering
Problems n◦2
H. Garnier
F. Collin

Step responses of important systems & System identification from step response
test

Exercise 2.1 - Step response of a first-order system
Consider the system described by the transfer function

G(s) =
Y (s)

U(s)
=

2

1 + 10s

1. Determine the steady-state gain K, the time-constant T and the pole.

2. Recall the unit step response and calculate its slope at the origin.

3. Calculate the rise-times T 63%
m and T 95%

m as well as the settling-time T 5%
r .

4. Without any calculation, plot precisely the step response and indicate on it its characteristic parameters
calculated above.

Exercise 2.2 - Step response of a first-order plus time-delay system
Consider a first-order system having a steady-state gain of 2, a time-constant of 10 seconds and a pure time-delay
of 20 seconds.

1. Give the system transfer function G(s).

2. Without any calculation, plot precisely the unit step response and indicate on it its characteristic param-
eters given above.

Exercise 2.3 - Step response of a dynamical system
Consider a system whose dynamic behavior is governed by the following differential equation:

ÿ(t) + 2ẏ(t) + 10y(t) = 10u(t) with ẏ(0) = 0, y(0) = 0

1. Determine the transfer function G(s) = Y (s)
U(s) of the system.

2. Determine the order of the system, the steady-state gain K, the damping ratio z, the undamped natural
frequency ω0, the poles and zeros.

3. Conclude about the type of step response: critical, overdamped or underdamped.

4. Calculate the values of the first and second overshoot D1% and D2%, the times of the first and second
overshoot tD1

and tD2
.

5. Plot the step response and indicate on it the characteristic parameters computed above.
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Exercise 2.4 - Dominant behavior identification of a thermal system from step response test
Consider the temperature response y(t) (in ◦Celsius) to a step input (u(t) = 35 × Γ(t − 20)) of a dynamic
thermal system plotted in Figure 2.1.

Figure 2.1: Step and temperature response of the thermal system

1. Propose a transfer function model form G(s) for the system. Explain your choice.

2. Determine the numerical values of the different parameters of your chosen G(s).

3. Deduce, from your identified transfer function model G(s), the differential equation of the system.

Exercise 2.5 - Identification of a mechanical suspension system from step response test
Consider the position response y(t) of a mechanical suspension system to a unit step input (u(t) = Γ(t)) plotted
in Figure 2.2.

Figure 2.2: Response of a mechanical system to a unit step input
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1. Propose a transfer function model form G(s) for the system. Explain your choice.

2. Determine the numerical values of the different parameters of your chosen G(s).

3. Deduce, from your identified transfer function model G(s), the differential equation of the system.

Exercise 2.6 - Step response analysis
Figure 2.3 shows the unit step responses of five different linear time-invariant (LTI) systems. Pair each of the
5 step responses to one of the 7 transfer functions below. Explain your answers.

G1(s) =
0.1

s+ 0.1
; G2(s) =

4

s2 + 2s+ 4
; G3(s) =

0.5

s2 − 0.1s+ 2

G4(s) =
−0.5

s2 + 0.1s+ 2
; G5(s) =

1

s+ 1
; G6(s) =

4

s2 + 0.8s+ 4

G7(s) =
2

s2 + s+ 3

You can use Matlab to verify your solutions.

Figure 2.3: Step responses of different LTI systems
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Control engineering
Problems n◦3
H. Garnier
F. Collin

Stability and steady-state error analysis

Exercise 3.1 - Stability from the system poles
Determine the poles and zeros of the LTI systems described by the transfer functions below. Conclude about
their stability:

G1(s) =
2

s+ 2
; G2(s) =

2

s2 + 3s+ 2
; G3(s) =

1

s2 + 2s+ 2

G4(s) =
2

s2 + 4
; G5(s) =

2

s(s+ 2)
; G6(s) =

2

s2(s+ 2)

G7(s) =
2(s2 − 2s+ 2)

(s+ 2)(s2 + 2s+ 2)
; G8(s) =

200

(s+ 2)(s2 − 2s+ 2)

Exercise 3.2 - Links between system poles and step responses
Pair the step responses and pole-zero diagrams in Figure 3.1. Give your solutions so that the pairs of plots that
belong to the same system is written in the form Pole-zero-letter–Step-response-letter.

Figure 3.1: Pole-zero diagrams and step responses of different LTI systems. In the pole-zero diagram, imaginary
and real parts have equal scaling, x marks poles, and o marks zeros.
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Exercise 3.3 - Stability analysis by using the Routh-Hurwitz criterion
Study the stability of the LTI systems having the characteristic equations below. Specify, in case of instability,
the number of unstable poles:

a) s3 − 25s2 + 10s+ 450 = 0

b) s3 + 25s2 + 450 = 0

c) s3 + 25s2 + 10s+ 450 = 0

d) s3 + 25s2 + 10s+ 50 = 0

Exercise 3.4 - Elevator control system for supertall building
Yokohama’s 70-floor Landmark Tower was completed in 1993 and it is still the tallest building in the Greater
Tokyo Area with a height of 293m. Its elevators operate at a peak speed of 45 km/h! To reach such a
speed without inducing discomfort in passengers, the elevator accelerates for longer periods, rather than more
precipitously. Going up, it reaches full speed only at the 27th floor; it begins decelerating 15 floors later. The
result is a peak acceleration similar to that of other skyscraper elevators–a bit less than a tenth of the force
of gravity. Admirable ingenuity has gone into making this safe and comfortable. Special ceramic brakes had
to be developed; iron ones would melt. Computer-controlled systems damp out vibrations. The lift has been
streamlined to reduce the wind noise as it speeds up and down.

The closed-loop block-diagram for the control of the elevator’s vertical position is shown in Figure 3.2.

kp + 1
1

s(s2 + 3s+ 3)
R(s)

+ ε(s) U(s)
Y (s)

−

Figure 3.2: Vertical position control system for an elevator

1. Determine the range of values for kp that ensures the stability of the control vertical position system.

2. By using the final value theorem, calculate the expected steady-state error for a step reference of amplitude
A as a function of kp.

Exercise 3.5 - Mobile robot steering control
The block diagram of the steering control system for a mobile robot is shown in Figure 3.3, where R(s) and
Y (s) represent the Laplace transform of the desired and measured heading angle respectively.

kps+ ki
s

1

Ts+ 1
R(s)

+ ε(s) U(s)
Y (s)

−

Figure 3.3: Block diagram of the steering control system for a mobile robot

1. Express the steady-state error in terms of R(s), kp, ki and T .

2. When kp > 0 and ki = 0, determine the steady-state error for a step reference input r(t) = AΓ(t).

3. When kp > 0 and ki > 0, determine the steady-state error for a step reference input r(t) = AΓ(t).

4. When kp > 0 and ki > 0, determine the steady-state error for a ramp reference input r(t) = AtΓ(t).
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Control
engineering n◦4

H. Garnier
F. Collin

Cruise control of a vehicule

Automatic cruise control is an excellent example of a feedback control system found nowadays in most vehicles.
The purpose of the cruise control system is to track the desired speed set by the driver and to maintain the
vehicle speed constant despite external disturbances, such as changes in wind or road grade. This is usually
accomplished by measuring the vehicle speed, comparing it to the desired or reference speed, and automatically
adjusting the throttle according to a control law.

Figure 4.1: Forces acting on a car

We consider here a simple model of a vehicle represented in Figure 4.1. The vehicle, of mass m, is acted on
by a driving force, f(t) (in N) which represents the force generated at the road/tire interface and φ(t) (in rad)
denotes the angle of the road with the horizontal axis.
For this simplified model it is assumed that we can control the force f(t) directly and will neglect the dynamics
of the powertrain, tires, etc., that go into generating the force. The resistive forces due to rolling resistance and
wind drag, are assumed to vary linearly with the vehicle velocity, v(t) (in m/s) through the damping coefficient
b, and act in the direction opposite the car motion.
Summing forces in the horizontal direction and applying Newton’s second law, we arrive at the following
differential equation:

mv̇(t) + bv(t) = f(t)−mg sin(φ(t)) (1)

where g is the acceleration due to gravity.
For this problem, we assume that the physical parameters of the system are:

m = 1000 kg; b = 100 Ns/m; g = 10 m/s2

1. Modelling

1.a. Define the output y(t), the input u(t) and the disturbance variable d(t) and their unit.
1.b. Is the model describing the vehicle dynamics linear? Explain your answer.
1.c. Assuming that the slope remains small, linearize the model.
1.d. Let Y (s), U(s) and D(s) denote the Laplace transforms of y(t), u(t) and d(t) respectively. Show

that equation (1) can be written in the Laplace domain as:

Y (s) = G(s)U(s) +GD(s)D(s)

where G(s) =
K

1 + Ts
and GD(s) =

KD

1 + Ts
.

Express the value of the two steady-state gains K and KD along with the time-constant T in terms
of m, b and g.

1.e. Compute the poles of each model and conclude about the stability of both transfer function.
1.f. Represent the system in the form of a block-diagram.
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In the following study, we will assume first that the road is flat φ(t) = 0 and therefore that there is no
disturbance acting on the control loop. The performance specification for the cruise control in response
to a step on the speed setpoint are the following:

• Settling-time at 5 % ≤ 10 s

• Overshoot ≤ 10%

• Steady-state error ≤ 2%

2. Proportional feedback (P) control
Let R(s) denote the Laplace transform of the speed reference (or setpoint) r(t). We want to drive at a
constant speed of r(t) = 25Γ(t) (25 m/s = 90 km/h).

2.a. We choose first to implement a simple feedback proportional (P) controller where the throttle is
automatically adjusted according to the following control law:

u(t) = kpε(t) where kp > 0

ε(t) = r(t)− y(t)

Determine the controller transfer function C(s) =
U(s)

ε(s)
.

2.b. Represent the closed-loop block diagram of the cruise control.

2.c. Calculate the open-loop FOL(s) and closed-loop transfer function FCL(s).

2.d. Determine the range of values for kp that ensures the stability of the closed-loop P control.

2.e. By using the final value theorem, determine the steady-state error

lim
t→+∞

ε(t) = lim
t→+∞

(r(t)− y(t))

in terms of kp for the following setpoint r(t) = 25Γ(t) (25 m/s = 90 km/h).

2.f. Compute the steady-state error when kp=900. Is the requirement for the steady-state error satisfied?

2.g. Determine the value of kp to satisfy the performance specification. What are the practical limits to
this proportional gain value and therefore this simple P control.

3. Proportional and integral (PI) feedback control

3.a. We now choose to implement a proportional integral (PI) controller, given by the following transfer
function:

C(s) = kp +
ki
s

=
kps+ ki

s

3.b. Determine the new open-loop FOL(s) and closed-loop transfer function FCL(s).

3.c. Determine the range of values for kp and ki that ensures the stability of the closed-loop PI control.

3.d. By using the final value theorem, determine the steady-state error

lim
t→+∞

ε(t) = lim
t→+∞

(r(t)− y(t))

for the following setpoint r(t) = 25Γ(t) (25 m/s = 90 km/h).

3.e. By neglecting the presence of the zero, determine the value of kp and ki to have a percent overshoot
of D1% = 10 % and a settling time at 5% equal to T 5%

r = 10s. The following formula could be useful:

z =

√
(ln(D1))2

π2 + (ln(D1))2

ω0 ≈
3

T 5%
r z
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4. Adaptive cruise control
Adaptive cruise control (ACC) is an intelligent form of cruise control with "automatic distance control"
that slows down and speeds up automatically to keep pace with the car in front of you.

The driver sets the desired speed, just as with traditional cruise control, then a radar sensor watches for
traffic ahead, locks on to the car in a lane, and instructs the car to stay 2 to 4 seconds behind the car
ahead.
Regardless of the technology, ACC should work day and night, but its abilities are hampered by heavy
rain, fog, or snow.

Adaptive cruise control is one of 20 terms used to describe its functions.

4.a Look on the Internet and find out 5 alternative names given to adaptive cruise control.

4.b Look on youtube to find and watch a short video presenting how adaptive cruise control works.
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Control engineering
Problems n◦5
H. Garnier
F. Collin

Temperature control for battery systems

Exercise 5.1 - Empirical PID tuning rules
Several tuning rules are available for determining the PID controller parameter values when the system can
be approximated as a first-order plus time-delay transfer function model determined from an open-loop step
response (See Appendix). The proposed rules address different design specifications such as disturbance rejection
or setpoint tracking mode.

1. The temperature response θ(t) of a continuous-time thermal process to a step input (u(t) = 35×Γ(t−20))
when there is no disturbance has been recorded and is plotted in Figure 5.1.

Figure 5.1: Step and temperature response of a thermal system

From the step response, determine the numerical parameter values of a first-order transfer function plus
time-delay model (Exercise 2.4 revisited!).
We assume in the following that the thermal system can be reasonably well modeled by the first-order
plus delay transfer function model

G(s) =
1

1 + 140s
e−10s

2. Find the PI controller that results by applying the Ziegler-Nichols tuning rules to the process when the
design specification is disturbance rejection.

3. Find the PI controller that results by applying the Chien-Hrones-Reswick tuning rules to the process when
the design specification is setpoint tracking.

Exercise 5.2 - Temperature control
Extreme temperature changes result in many failures of electronic circuits or battery systems. Temperature
control feedback systems can reduce the change of temperature by using a heater to overcome outdoor low
temperatures. The analysis aims at illustrating some of the control tuning and performance issues associated
with temperature control.

1. System modelling
The differential equation model of the thermal system takes the following form

T
dθ(t)

dt
+ θ(t) = Ku(t− τ) +KDd(t) (1)
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where

- θ(t) is the temperature in ◦Celsius

- u(t) is the heating power in % such that u(t) ∈ [0− 100%]

- d(t) represents the effects of a cold airstream

1.a. Define the output, the input and the disturbance variable.

1.b. Let Θ(s), U(s) and D(s) denote the Laplace transforms of θ(t), u(t) and d(t) respectively. Show that
equation (1) can be written in the Laplace domain as:

Θ(s) = G(s)U(s) +GD(s)D(s)

where G(s) =
Ke−τs

1 + Ts
and GD(s) =

KD

1 + Ts
.

1.c. Represent the system in the form of a block diagram. We assume in the following that the numerical values
of the model parameters are:

• K = 1

• T = 140 s
• τ = 10 s
• KD = 0.5

2. Performance analysis of a PI feedback control in servo mode
We suppose first that there is no disturbance (d(t) = 0). The block diagram of the temperature servo-control is
displayed in Figure 5.2.

C(s) G(s)
Θr(s) + ε(s) U(s) Θ(s)

−

Figure 5.2: Block-diagram of the temperature control in servo mode

The design specifications for the temperature control in servo mode (or setpoint tracking mode) are the following:

• the steady-state error in response to a step on the temperature setpoint should be zero.

• the closed-loop system response to a step setpoint should be critically overdamped. No overshoot is
tolerated.

The controller is chosen to be a PI controller of the following ideal form:

C(s) = Kp
1 + Tis

Tis

As the time-delay τ is much smaller than the time-constant T , the following approximation can be made

e−τs =
1

eτs
≈ 1

1 + τs

The transfer function model of the system then becomes

G(s) =
K

(1 + τs)(1 + Ts)

When the system can be well approximated as an overdamped second-order transfer function model with two
different time-constants, one approach to design the PI controller consists in setting the integral time-constant
value Ti to compensate the dominant (larger) time-contant of the system (T here). This PI tuning rule is known
as the compensation method of the dominant time-constant of the system.
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2.a. The design of the PI controller is chosen such that the dominant time-constant of the system is compensated
which results in setting the integral action Ti = T . With this setting for Ti, determine the open-loop
transfer function FOL(s) in terms of K, Kp, τ , T .

2.b. Express the closed-loop transfer function FCL(s) in terms of K, Kp, τ , T .

2.c. Determine the range of values for Kp that ensures the stability of the feedback control system.

2.d. Calculate the steady-state tracking error in response to a step θr(t) = AΓ(t), i.e. :

lim
t→+∞

ε(t) = lim
t→+∞

(θr(t)− θ(t))

2.e. Determine the value for Kp that makes the closed-loop transfer function to have a damping ratio of z = 1.

2.f. Compare the designed PI controller with the one obtained by applying the empirical Chien-Hrones-Reswick
tuning rules obtained in Exercise 5.1.

3. Performance analysis of a PI feedback control in regulation mode
We now investigate the performance of the feedback control in presence of a disturbance d(t).
The design specifications for the temperature control in regulation mode (setpoint set to a constant value) are
the following:

• the closed-loop system should be able to reject a constant cold airstream.

The controller is chosen to be a PI controller of the following ideal form:

C(s) = Kp
1 + Tis

Tis

Let us assume that the temperature setpoint now equals to zero (θr(t) = 0). The block-diagram of the regulation
control is displayed in Figure 5.3. The PI controller C(s) is the one that results from the dominant time-constant
compensation method.

C(s) G(s)

GD(s)

0 + ε(s) U(s) + Θ(s)

−

D(s)

+

Figure 5.3: Block-diagram of the feedback control in regulation mode

3.a. Show that Θ(s) can be written as:
Θ(s) = FD(s)D(s)

where FD(s) =
GD(s)

1 + C(s)G(s)

3.b. Express the transfer function FD(s) in terms of K, Kp, τ , T .

3.c. At time-instant t0, a constant stream of cold air is acting on the system. Compute the steady-state value
of the temperature θ(t) in response to a step d(t) = αΓ(t− t0), i.e.

lim
t→+∞

θ(t)

3.d. Conclude about the ability of the PI feedback control to reject a constant stream of cold air.
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Control
engineering n◦6

H. Garnier
F. Collin

Positional control of a DC servo-motor

One of the most common devices for actuating a control system is DC motors. A DC motor is any of a class of
rotary electrical motors that converts direct current electrical energy into mechanical energy. Small DC motors
are commonly used in tools, toys, appliances and in computer-related equipment such as disk drives or printers.
Larger DC motors are currently used in propulsion of electric vehicles, robot systems, elevators, cranes and
hoisting devices. Large DC motors are also widely used in the industry such as in drives for steel rolling mills.
DC motors that are used in servo systems are called DC servo-motors. In DC servo-motors, the rotor inertias
have been made very small. They are frequently used in robot control systems and other angular position or
speed control system.
We study the angular position (positional) control of a DC servo-motor in this problem as they appear for each
rotary joint of robotic arms such as the Canadarm2 as shown in Figure 6.1 for example.

Figure 6.1: Astronaut Stephen Robinson anchored to the end of Canadarm2 during STS-114, 2005. By NASA
- http://spaceflight.nasa.gov/gallery/images/shuttle/sts-114/html/s114e6647.html

1. DC servo-motor modelling
The inductance in the armature circuit of a DC servo-motor is usually small and can therefore be neglected.
In this case, the motor voltage-to-angular position transfer function for the DC servo-motor takes the following
form

G(s) =
Θ(s)

U(s)
=

K

s(1 + Ts)
(1)

- Θ(s) = L [θ(t)], where θ(t) is the angular position of the motor shaft in rad;

- U(s) = L [u(t)], where u(t) is the applied motor voltage in V;

- K is the motor gain in rad/(V.s);

- T is the motor time-constant in second.

1.a. Define the input and the output of the DC servo-motor and their unit.

1.b. From equation (1), it can be seen that the transfer function involves a pure integrator term 1
s . The transfer

function model can also be seen as the cascade of a pure integrator and a simple first-order model.
It is indeed well-known that the angular velocity ω(t) is the time-derivative of the angular position θ(t)

ω(t) =
dθ(t)

dt
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Both variables are linked in the Laplace domain by a pure integrator (or pure derivator) so that (1) can
be expressed as:

Θ(s)

U(s)
=

Θ(s)

Ω(s)
× Ω(s)

U(s)
=

1

s
× K

1 + Ts
(2)

Ω(s) = L [ω(t)], where ω(t) is the motor angular velocity (or speed) in rad/s.
From the analysis above, complete the block-diagram in Figure 6.2.

. . .

. . .

. . .

. . .

U(s) Ω(s) Θ(s)

Figure 6.2: Block-diagram of the DC motor

1.c. Identifying a system having a pure integrator from a step response is tricky since the response is diverging.
The angular position response (in rad) to a step input of amplitude 2V sent to the motor voltage is plotted
in Figure 3(a). The response of the motor starts out slowly due to the time constant, but once that is
out of the way the motor position ramps at a constant velocity. It is easier when the motor speed is
also measured to identify the response between the motor speed and the input voltage since the voltage-
to-angular velocity transfer function has the well-known first-order model form whose parameters can be
easily estimated from the step response (the a priori knowledge about the pure integrator is then added
in the final model):

Ω(s)

U(s)
=

K

1 + Ts
, (3)

The angular velocity response (in rad/s) to a step input of amplitude 2V sent to the motor voltage is
plotted in Figure 3(b). From the step response plot, determine the parameters of the first-order model.

(a) Angular position response (b) Angular velocity response

Figure 6.3: Angular position and velocity responses to a step motor input voltage

The performance requirements for the angular position control design are described in Table 1.

Requirement Assessment criteria Level
Control the position position reference tracking No steady-state error

motor input voltage limited to the range [-5V ; +5 V]
Settling time at 5 % As short as possible
Overshoot less than or equal to 5%
Disturbance rejection Rejection of load effects

Table 1: Performance requirements for angular position control
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We assume in the following that the numerical values of the model parameters are:

- K = 23 rad/(V.s);

- T = 0.2 s

2. Servo-motor control using simple proportional feedback

Figure 6.4 shows a simple proportional feedback configuration of the positional servo system. This basic
configuration has been used in industry for many years.

Kp
K

s(1 + Ts)

Θr(s) + ε(s) U(s) Θ(s)

−

Figure 6.4: Block-diagram of the simple proportional feedback configuration of the positional servo system

2.a. Determine the open-loop transfer function FOL(s) in terms of K, Kp and T .

2.b. Express the closed-loop transfer function FCL(s) in terms of K, Kp and T .

2.c. Determine the range of values for Kp that ensures the stability of the feedback control system.

2.d. Calculate the steady-state tracking error in response to a step θr(t) = AΓ(t), i.e. :

lim
t→+∞

ε(t) = lim
t→+∞

(θr(t)− θ(t))

2.e. Determine the value for Kp that makes the closed-loop transfer function to have a damping ratio of√
2

2
.

2.f. Calculate the percent overshoot, the peak time and settling time at 5 % (see abacus in the Appendix).
Plot the shape of the closed-loop P control response to a unit step setpoint. Are the performance
requirements satisfied?

3. Servo-motor control using proportional and derivative feedback

We now consider the performance of a proportional and derivative (PD) control which involves a velocity
feedback loop as shown in Figure 6.5. This control system represents a high-speed, high precision positional
servo system. The positional servomotor systems of this type are used frequently in today’s angular
position control systems.

+
-

Θr(s)
Kp

ε(s)
+

-

Up(s) K

s(1 + Ts)

Θ(s)

Kds

Figure 6.5: Block-diagram of the PD feedback configuration of the positional servo system

3.a. What is the advantage of implementing the derivative term on the output rather than on the error
signal ε(s)?

3.b. Determine the internal closed-loop transfer function Fi(s) =
Θ(s)

Up(s)
in terms of K, Kd and T .

3.c. Plot the simplified closed-loop block-diagram.

3.d. Determine the closed-loop transfer function FCL(s) in terms of K, Kp, Kd and T .

3.e. Determine the range of values for Kp and Kd that ensure the stability of the feedback control system.
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3.f. Calculate the steady-state tracking error in response to a step θr(t) = AΓ(t), i.e. :

lim
t→+∞

ε(t) = lim
t→+∞

(θr(t)− θ(t))

3.g. Determine the value for Kp and Kd that make the closed-loop transfer function step response to
have a percent overshoot of 4.3 % and a settling time at 5% of 0.05s (see abacus in the Appendix).

3.h. Calculate the peak time and plot the shape of the closed-loop PD control response to a unit step
setpoint. Are the performance requirements satisfied? Compare your plot with the closed-loop PD
control response to a unit step setpoint displayed in Figure 6.6.

3.i. In practice, a pure derivative cannot be implemented because it will give very large amplification of
the measurement noise. The gain of the derivative term must thus be limited at high frequencies.
This is usually done by approximating the pure derivative term as

Tds ≈
Tds

1 +
Tds

N

(4)

The low-pass filter transfer function on the right approximates the pure derivative well at low
frequencies but the gain is limited to N at high frequencies. N is typically chosen in the range 3 to 20.

Modify the block-diagram of the closed-loop control to make appear the low pass-filter.

Figure 6.6: Closed-loop P and PD control responses to a unit step setpoint. Both controls satisfy the overshoot
requirement but the PD control response is much faster.
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Appendices

Useful properties of the Laplace transform

Some useful properties which have found practical use in Control Engineering are summarized below.

Property signal Laplace transform

linearity ax(t) + by(t) aX(s) + bY (s)

time-delays x(t− τ) e−τsX(s)

convolution y(t) = h(t) ∗ u(t) Y (s) = H(s)U(s)

differentiation ẋ(t) sX(s)− x(0)

ẍ(t) s2X(s)− sx(0)− ẋ(0)

integration
∫ t
0
x(τ)dτ

X(s)

s

initial value theorem lim
t→0+

x(t) = lim
s→+∞

sX(s)

final value theorem lim
t→+∞

x(t) = lim
s→0

sX(s) if the limit exists
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Some Laplace transform pairs

Signal Laplace transform

δ(t) 1

Γ(t)
1

s

r(t) = tΓ(t)
1

s2

t2Γ(t)
2

s3

e−atΓ(t)
1

s+ a

tne−atΓ(t)
n!

(s+ a)n+1

cos(ω0t)Γ(t)
s

s2 + ω2
0

sin(ω0t)Γ(t)
ω0

s2 + ω2
0

e−at cos(ω0t)Γ(t)
s+ a

(s+ a)2 + ω2
0

e−at sin(ω0t)Γ(t)
ω0

(s+ a)2 + ω2
0
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A few important transfer functions

First-order systems
G(s) =

K

1 + Ts

The 2 characteristic parameters of a first order system are:

• K: steady-state gain
K = lim

s→0
G(s)

• T : time-constant

Characteristic values of a first-order system step response

Rise-time at 63% T 63%
m = T

Rise-time at 95% T 95%
m ≈ 3T

Settling-time at 5 % T 5%
r ≈ 3T

Second-order systems

G(s) =
K

s2

ω2
0

+ 2
z

ω0
s+ 1

=
Kω2

0

s2 + 2zω0s+ ω2
0

The 3 characteristic parameters of a second-order system are:

• K: steady-state gain

• z : damping ratio (z > 0)

• ω0 : undamped natural frequency

Characteristic values of a underdamped second-order system step response (z < 1)

Value of the first overshoot in % D1% = e

−πz√
1− z2 × 100

Time-instant of the first overshoot TD1
=

π

ω0

√
1− z2

Value of the nth overshoot in % Dn% = −(−D1)n × 100
Time-instant of the nth overshoot TDn

= nTD1

Pseudo-period Tp =
2π

ω0

√
1− z2

Settling-time at 5 % T 5%
r ≈ 3

ω0z
for z ≈ 0.707

This can lead to a rough estimate if z 6= 0.707.
Use then the abacus given next page
for a better estimate obtained from the formula below

Settling-time at x % T x%r =

ln

(
100

x
√

1− z2

)
ω0z

Rise-time (100%) T 100%
m =

π − acos(z)
ω0

√
1− z2
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Figure 6.7: Abacus plotting the product of the undamped natural frequency ω0 by the settling time at 5%,
T 5%
r , versus the damping ratio z for second-order system step response.
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Model identification from step responses

Identification of a first-order model

G(s) =
K

1 + Ts

Figure 6.8: Step response of a first-order system

From the step response displayed in Figure 6.8, it is necessary to determine the steady-state gain K and
the time constant T . The procedure is as follows:

1. Find the final and initial values of the response and of the step. Deduce K from:

K =
y(+∞)− y(0)

u(+∞)− u(0)

2. Find y(T 5%
r ), deduce from it T 5%

r then T :

T =
T 5%
r

3
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Identification of a second-order underdamped model

G(s) =
K

s2

ω2
0

+ 2
z

ω0
s+ 1

=
Kω2

0

s2 + 2zω0s+ ω2
0

Figure 6.9: Step response of a second-order system

From the step response displayed in Figure 6.9, it is necessary to determine the steady-state gain K, the
damping ratio z and the undamped natural frequency ω0. The procedure is as follows:

1. Find the final and initial values of the response and of the step. Deduce K from:

K =
y(+∞)− y(0)

u(+∞)− u(0)

2. Find the final and initial values of the response and that of the first overshoot y(tD1
). Deduce from

it D1, then z:

D1 =
y(TD1

)− y(+∞)

y(+∞)− y(0)

z =

√
(ln(D1))2

(ln(D1))2 + π2

3. Find the time-instant of the first overshoot TD1
. Deduce from it ω0:

ω0 =
π

TD1

√
1− z2
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Identification of a first-order plus time-delay model by the Broïda method
Broïda has suggested to approximate the underdamped step response of any n-th order system by a
first-order plus time-delay model

G(s) =
Ke−τs

1 + Ts

Figure 6.10: Underdamped step response of any n-th order system approximated by a first-order plus time-delay
model

From the step response displayed in Figure 6.10, it is necessary to determine the steady-state gain K, the
time-constant T and the pure time-delay τ . The procedure is as follows:

1. Find the final and initial values of the response and of the step. Deduce K from:

K =
y(+∞)− y(0)

u(+∞)− u(0)

2. Find y(T 28%
m ) and y(T 40%

m ), deduce T 28%
m and T 40%

m then calculate :

τ = 2, 8T 28%
m − 1, 8T 40%

m

T = 5, 5
(
T 40%
m − T 28%

m

)
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PID tuning by using empirical rules

A PID controller defined in its so-called ideal form is defined as:

C(s) = Kp

1 +
1

Tis
+

Tds

1 +
Td
N
s

 = Kp +Ki
1

s
+Kd

s

1 +
Td
N
s

(1)

The individual effects of these three Kp, Ki and Kd parameters appearing in (1) on the closed-loop
performance of stable plants are summarized in Table 1 below.

Tuning of the PID controller by using the Ziegler-Nichols rules

Assume a continuous-time process is reasonably well modeled by the first-order plus time-delay transfer
function model:

G(s) =
Ke−τs

1 + Ts

Several tuning rules are available for determining the PID controller parameter values. The proposed rules
address different design specifications such as load disturbance rejection or setpoint tracking.

The most popular tuning rules are those attributed to Ziegler-Nichols. Their aim is to provide satisfactory
load disturbance rejection.

Table 2 shows the Ziegler-Nichols rules for P, PI, or PID controllers defined in its so-called ideal form (see
(1)).

Controller type Kp Ti Td

P
T

Kτ

PI 0.9
T

Kτ
3τ

PID 1.2
T

Kτ
2τ 0.5τ

Table 2: Ziegler-Nichols disturbance rejection tuning rules for a first-order-plus delay model determined from
an open-loop step response

Tuning of the PI controller by using the Chien-Hrones-Reswick rules

As previously said, the Ziegler-Nichols rule aim is to provide satisfactory disturbance rejection. For
setpoint tracking (or servo control), it can be advantageous to use the empirical rules suggested by
Chien-Hrones-Reswick which are given in Table 3 for P, PI, and PID controllers in their ideal form (see
equation (1)).
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Controller type Kp Ti Td

P 0.3
T

τ

PI 0.35
T

τ
1.2T

PID 0.6
T

τ
T 0.5T

Table 3: Chien-Hrones-Reswick setpoint tracking tuning rules for a first-order-plus delay model determined
from an open-loop step response

English to French glossary

bandwidth : bande passante
crane : grue

closed-loop system : système bouclé
cut-off frequency : fréquence (ou pulsation) de coupure

damped frequency : pulsation amortie
damping ratio : coefficient d’amortissement

drag : traînée
feedback : contre-réaction

feedback system : système à contre-réaction
hoisting device : dispositif de levage

impulse response : réponse impulsionnelle
integral wind-up : emballement (de l’action) intégral

input : entrée
gain : gain

heading angle : angle de cap
linear time-invariant (LTI) : linéaire invariant dans le temps

motor shaft : arbre moteur
output : sortie

overdamped : sur-amorti
overshoot : dépassement
rise time : temps de montée

road grade : inclinaison de la route
robot arm joint : articulation d’un bras de robot

root locus : lieu des racines
setpoint : consigne

settling time : temps de réponse
steady-state gain : gain statique

steady-state response : réponse en régime permanent
steering : direction

step response : réponse indicielle
stream : courant

time-delay : retard pur
time-invariant : invariant dans le temps

transient response : réponse transitoire
throttle : accélérateur

undamped : non amorti
undamped natural frequency : pulsation propre non amortie

underdamped : sous-amorti
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