

Midterm exam - October 11, 2021 - 1h00

Name firstname:	
Diploma (IA2R/M3) :	
Instructions:	
1. When necessary, you can answer in French or in F	English.
2. The only material you can consult is your persons	al A4 recto-verso piece of paper.
3. You may use a hand calculator with no communic	
4. Marking rule : for each question, +2 points for a co5. Good luck!	
Multiple choice questions (there is one correct answer	er from the choices only)
Which of the following statements is valid for a li	near time-invariant dynamic system?
\Box It is described by an ordinary differential equation	with time-invariant coefficients
\Box Its response to a sinusoid of a given frequency is a	lso a sinusoid of a different frequency
\Box It represents all dynamic behaviors of physical system	tems that exist on earth
Which statement best describes a transfer function	on?
\Box It is a linear differential equation that describes the	e transient response of a system
\Box It is single mathematical function that relates the	input and output Laplace transforms of a system
\Box It represents a dynamic system in state-space	
Which of the following is a characteristic of a firs	t order system?
\Box Its step response has a non-zero slope at the origin	
\Box It can be modelled using a first-order differential e	
☐ It does not exhibit oscillatory behavior when excit	ed
☐ All of the above	(() 10 ()
If the differential equation of a system is : $\dot{y}(t) + 5$ then the steady-state gain of the system is :	y(t) = -10u(t)
	\Box -2
□ 5	\Box -10
If the transfer function of a first-order system is	$G(s) = \frac{0.2}{10.1}$
then the time-constant of the system is	s + 0.1
$\Box \frac{1}{2}$ seconds	$\Box \frac{1}{10}$ seconds
\Box 10 seconds	\square 2 seconds
If the transfer function of a second-order system	is : $G(s) = \frac{2}{s^2 + s + 1}$
then the damping ratio of the system is	3 3 I
$\Box \frac{1}{2}$	\square 2
If the transfer function of a second-order system	is : $G(s) = \frac{Y(s)}{U(s)} = \frac{2}{s(s+2)}$
then its response to a unit step $u(t) = \Gamma(t)$ is	- (-) - (- · -)
$\Box y(t) = (t + 0.5e^{-2t})\Gamma(t)$ \(\D\ y(t) = (t + 0.5 + 0.5e^{-2t})\Gamma(t)	$ y(t) = (1 - e^{-2t})\Gamma(t) $ $ y(t) = (t - 0.5 + 0.5e^{-2t})\Gamma(t) $

Match each of the four given transfer functions $G_i(s)$ for i = 1, ..., 4

$$G_1(s) = \frac{s+0.1}{s^2}; \qquad G_2(s) = \frac{1}{s^2+0.4s+1}; \qquad G_3(s) = \frac{1.3}{s^2+s+1}; \qquad G_4(s) = \frac{2}{s+2}$$

with one of the unit step responses labelled with a Roman number (I to VI) displayed in Figure 1.1.

Figure 1.1: Step responses of 6 different linear systems

If for a closed-loop system, the Laplace transform of the error signal is : $\varepsilon(s)=\frac{8(s+3)}{s+10}$ then the steady-state value of the error $\varepsilon(t)$ is

$$\begin{array}{c} \square \ 3.6 \\ \square \ 2.4 \end{array} \qquad \begin{array}{c} \square \ 1.8 \\ \square \ 0 \end{array}$$

From the pole-zero diagram shown in Figure 1.2, the system is

$$\square$$
 stable \square marginally stable \square unstable \square possibly stable

FIGURE 1.2: Pole-zero diagram.

Assuming the system has unit steady-state gain, determine from the pole-zero diagram shown in Figure 1.2, its transfer function is:

$$G(s) =$$

A system has the following characteristic equation: $s^4 + 2s^3 + 3s^2 + 10s + 8 = 0$. Select the number of roots in the right half of s-plane that the system has:

 \square one \square two \square four

The closed-loop block-diagram for a system is shown in Figure 1.3.

FIGURE 1.3: Closed-loop block-diagram of a feedback control system

The range of values for k_p that ensures the stability of the closed-loop system is:

For the range of values for k_p that ensures the stability of the closed-loop system represented in Figure 1.3, the steady-state error to a unit step reference is:

$$\begin{array}{ccc} \square & 1 & & \square & k_p \\ \square & +\infty & & \square & 0 \end{array}$$

The closed-loop block-diagram for a servo-control system is shown in Figure 1.4.

FIGURE 1.4: Closed-loop block-diagram of a servo-control system

The value for k_p that makes the closed-loop step response to be critically overdamped is (the correct answer gives 3 points):

The closed-loop block-diagram for a servo system with both feedback and feedforward control is shown in Figure 1.5 (the correct answer gives 3 points).

FIGURE 1.5: Closed-loop block-diagram of a servo system with both feedback and feedforward control

Determine the closed-loop transfer function :
$$F_{CL}(s) = \frac{Y(s)}{R(s)} =$$

Some useful properties of the Laplace transform

$$\begin{split} L\left(\alpha x(t)+\beta y(t)\right) = &\alpha X(s)+\beta Y(s) \\ L\left(\dot{x}(t)\right) = &sX(s)-x(0) \\ &\lim_{t\to +\infty} x(t) = \lim_{s\to 0} sX(s) \quad \text{if the limit exists} \end{split}$$

Some Laplace transform pairs

Signal	Laplace transform
$\Gamma(t)$	$\frac{1}{s}$
$r(t) = t\Gamma(t)$	$\frac{1}{s^2}$
$e^{-at}\Gamma(t)$	$\frac{1}{s+a}$

First-order systems

$$G(s) = \frac{K}{1 + Ts}$$

The 2 characteristic parameters of a first order system are :

 $K: \text{ steady-state gain}: K = \lim_{s \to 0} G(s)$

— T: time-constant

Characteristic values of a first-order system step response

 $\begin{array}{ll} \text{Rise-time at } 63\% & T_m^{63\%} = T \\ \text{Rise-time at } 95\% & T_m^{95\%} \approx 3T \\ \text{Settling-time at } 5~\% & T_r^{5\%} \approx 3T \end{array}$

Second-order systems

$$G(s) = \frac{K}{\frac{s^2}{\omega_0^2} + 2\frac{z}{\omega_0}s + 1} = \frac{K\omega_0^2}{s^2 + 2z\omega_0s + \omega_0^2}$$

— K: steady-state gain

— z: damping ratio (z > 0)

— ω_0 : undamped natural frequency

Characteristic values of a underdamped second-order system step response

Value of the first overshoot in %

$$D_{1\%} = \frac{y(T_{D_1}) - y(+\infty)}{y(+\infty) - y(0)} \times 100 = e^{\frac{-\pi z}{\sqrt{1 - z^2}}} \times 100$$

Damping coefficient as a function of D_1 (not in %)

$$z = \sqrt{\frac{(\ln(D_1))^2}{(\ln(D_1))^2 + \pi^2}}$$

Time-instant of the first overshoot

$$T_{D_1} = \frac{\pi}{\omega_0 \sqrt{1 - z^2}}$$

Value of the $n^{\rm th}$ overshoot in %

$$D_{n\%} = -(-D_1)^n \times 100$$

Time-instant of the n^{th} overshoot

$$T_{D_n} = n \, T_{D_1}$$