
Control Engineering
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Hugues Garnier
Floriane Collin

Midterm exam - October 3, 2022 - 1h00

Name firstname: . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Diploma (IA2R/M3): . . . . . . . . . . . . . . . . . . . . . . . .

Instructions:

1. When necessary, you can answer in French or in English.

2. The only material you can consult is your personal A4 recto-verso piece of paper.

3. You may use a hand calculator with no communication capabilities.

4. Marking rule: for each question, +2 points for a correct answer and 0 point for a wrong or no answer

5. Good luck!

List 3 examples of feedback control systems (1 point per correct answer):

First example: asservissement d’altitude d’un drone

Second example: régulation de vitesse d’une voiture

Third example: régulation de température d’un four

Multiple choice questions (there is one correct answer from the choices only)

Control engineering is applicable to which of the following engineering fields?

� Mechanical and aerospace engineering

� Electrical and civil engineering

� Chemical and biomedical engineering

� All of the previous answers

If the differential equation of a system is: ẏ(t) + 0.1y(t) = 0.2u(t)
then the steady-state gain of the system is:

� 0.2

� 0.1

� 1

� 2

If the transfer function of a first-order system is: G(s) =
10

s+ 5
then the time-constant of the system is

� 5 seconds

� 1
2 seconds

� 1 second

� 1
5 seconds

If the transfer function of a second-order system is: G(s) =
1

0.01s2 + 0.2s+ 1
then the damping ratio of the system is

� 0

� 1
2

� 1

� 2

If the transfer function of a second-order system is: G(s) =
Y (s)

U(s)
=

s

(s+ 2)(s+ 4)
then its response to a unit step u(t) = Γ(t) is

� y(t) =0.5(e2t − e4t)Γ(t)

� y(t) = (t+ 0.5e−2t − 0.5e−4t)Γ(t)

� y(t) = 0.5(e−2t − e−4t)Γ(t)

� y(t) = 0.5(1− e−6t)Γ(t)
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Would you classify the step response from the previous question as

� undamped

� underdamped

� critically damped

� overdamped

Match each of the zero-pole plots labelled with a number (1 to 3) displayed in Figure 1.1

Figure 1.1: Zero-pole plot of 3 different linear systems

with one of the transfer functions Gi(s) for i = 1, . . . , 6 given below

G1(s) =
K(s− 3)

s+ 3
; G2(s) =

K

s2 + 12s+ 20
; G3(s) =

K

(s+ 3)(s+ 6)

G4(s) =
K

(s+ 6)2
; G5(s) =

K

s2 + 12s+ 45
; G6(s) =

K

(s+ 6− 3i)(s− 6 + 3i)

Your answer : 1© - G2(s) 2© - G5(s) 3© - G1(s)

Match each of the four pole-zero diagrams labelled with a number (1 to 4) with one of the
unit step responses labelled with a letter (A to D) displayed in Figure 1.2.

Figure 1.2: Pole-zero diagrams and step responses to be paired

Your answer :

• 1 - D

• 2 - C

• 3 - B

• 4 - A
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From the pole-zero diagram shown in Figure 1.3, the system is

� stable

� unstable

� marginally stable

� possibly stable

Figure 1.3: Pole-zero diagram.

Assuming the system has unit steady-state gain, from the pole-zero diagram shown in Figure

1.3, determine its transfer function: G(s) =
25

(s+ 5)(s2 + 2s+ 5)

A system has the following characteristic equation: s3 + s2 + 2s+ 24 = 0.
Select the number of roots in the right half of s-plane that the system has:

� zero

� two

� one

� four

The closed-loop block-diagram for a system is shown in Figure 1.4.

kp
1

s3 + 3s2 + 5s+ 2
R(s)

+ ε(s) U(s)
Y (s)

−

Figure 1.4: Closed-loop block-diagram of a feedback control system

The range of values for kp that ensures the stability of the closed-loop system is:

� 0 < kp < 2

� kp > 13

� kp > 1

� −2 < kp < 13

The block-diagram of a traditional closed-loop feedback system is shown in Figure 1.5 (the
correct answer gives 3 points).

+
-

R(s)
C(s)

ε(s)
G(s)

U(s) Y (s)

H(s)

Ym(s)

Figure 1.5: Block-diagram of a traditional closed-loop feedback system

Derive the closed-loop transfer function: FCL(s) =
Y (s)

R(s)
. Explain how you get it!

Y (s) = G(s)U(s)

U(s) = C(s)ε(s)

ε(s) = R(s)− Ym(s)

Ym(s) = H(s)Y (s)

FCL(s) =
Y (s)

R(s)
=

C(s)G(s)

1 + C(s)G(s)H(s)
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Some useful properties of the Laplace transform

L (αx(t) + βy(t)) =αX(s) + βY (s)

L (ẋ(t)) =sX(s)− x(0)

lim
t→+∞

x(t) = lim
s→0

sX(s) if the limit exists

Some Laplace transform pairs

Signal Laplace transform

Γ(t)
1

s

e−atΓ(t)
1

s+ a

tne−atΓ(t)
n!

(s+ a)n+1

First-order systems

G(s) =
K

1 + Ts

The 2 characteristic parameters of a first order system are:

• K: steady-state gain: K = lim
s→0

G(s)

• T : time-constant

Characteristic values of a first-order system step response

Rise-time at 63% T 63%
m = T

Rise-time at 95% T 95%
m ≈ 3T

Settling-time at 5 % T 5%
r ≈ 3T

Second-order systems

G(s) =
K

s2

ω2
0

+ 2
z

ω0
s+ 1

=
Kω2

0

s2 + 2zω0s+ ω2
0

• K: steady-state gain

• z : damping ratio (z > 0)

• ω0 : undamped natural frequency

Characteristic values of a underdamped second-order system step response

Value of the first overshoot in % D1% =
y(TD1)− y(+∞)

y(+∞)− y(0)
× 100 = e

−πz√
1− z2 × 100

Damping coefficient as a function of D1 (not in %) z =

√
(ln(D1))2

(ln(D1))2 + π2

Time-instant of the first overshoot TD1 =
π

ω0

√
1− z2

Value of the nth overshoot in % Dn% = −(−D1)n × 100
Time-instant of the nth overshoot TDn = nTD1

4


