

Midterm exam - October 3, 2022 - 1h00

Name firstname:	•••
Diploma (IA2R/M3):	
Instructions:	
1. When necessary, you can answer in French or	r in English.
2. The only material you can consult is your pe	ersonal A4 recto-verso piece of paper.
3. You may use a hand calculator with no comm	nunication capabilities.
4. Marking rule: for each question, +2 points for	or a correct answer and 0 point for a wrong or no answer
5. Good luck!	
List 3 examples of feedback control systems First example: asservissement d'altitude d'un dron Second example: régulation de vitesse d'une voitur Third example: régulation de température d'un fou	e re
Multiple choice questions (there is one correct	answer from the choices only)
Control engineering is applicable to which o	f the following engineering fields?
$\hfill\Box$ Mechanical and aerospace engineering	$\hfill\Box$ Chemical and biomedical engineering
\Box Electrical and civil engineering	■ All of the previous answers
If the differential equation of a system is: $\dot{y}($ then the steady-state gain of the system is:	t) + 0.1y(t) = 0.2u(t)
\square 0.2	
□ 0.1	1 2
If the transfer function of a first-order syste then the time-constant of the system is	m is: $G(s) = \frac{10}{s+5}$
\Box 5 seconds	\Box 1 second
\square $\frac{1}{2}$ seconds	$\blacksquare \frac{1}{5}$ seconds
If the transfer function of a second-order sy	stem is: $G(s) = \frac{1}{0.01s^2 + 0.2s + 1}$
then the damping ratio of the system is \Box 0	■ 1
\Box $\frac{1}{2}$	
If the transfer function of a second-order system its response to a unit step $u(t) = \Gamma(t)$ is	
$\Box \ y(t) = 0.5(e^{2t} - e^{4t})\Gamma(t)$	$ y(t) = 0.5(e^{-2t} - e^{-4t})\Gamma(t) $
$\Box u(t) = (t + 0.5e^{-2t} - 0.5e^{-4t})\Gamma(t)$	

Would you classify the step response from the previous question as

 \square undamped

 \square critically damped

 \Box underdamped

 \blacksquare overdamped

Match each of the zero-pole plots labelled with a number (1 to 3) displayed in Figure 1.1

Figure 1.1: Zero-pole plot of 3 different linear systems

with one of the transfer functions $G_i(s)$ for i = 1, ..., 6 given below

$$G_1(s) = \frac{K(s-3)}{s+3}; \qquad G_2(s) = \frac{K}{s^2+12s+20}; \qquad G_3(s) = \frac{K}{(s+3)(s+6)}$$

$$G_4(s) = \frac{K}{(s+6)^2}; \qquad G_5(s) = \frac{K}{s^2+12s+45}; \qquad G_6(s) = \frac{K}{(s+6-3i)(s-6+3i)}$$
 Your answer: ① - $G_2(s)$ ② - $G_5(s)$ ③ - $G_1(s)$

Match each of the four pole-zero diagrams labelled with a number (1 to 4) with one of the unit step responses labelled with a letter (A to D) displayed in Figure 1.2.

Figure 1.2: Pole-zero diagrams and step responses to be paired

Your answer:

• 3 - B

• 4 - A

From the pole-zero diagram shown in Figure 1.3, the system is

■ stable □ marginally stable □ unstable □ possibly stable □ A Im(s)

Figure 1.3: Pole-zero diagram.

Assuming the system has unit steady-state gain, from the pole-zero diagram shown in Figure 1.3, determine its transfer function: $G(s) = \frac{25}{(s+5)(s^2+2s+5)}$

A system has the following characteristic equation: $s^3 + s^2 + 2s + 24 = 0$. Select the number of roots in the right half of s-plane that the system has:

□ zero □ one □ four

The closed-loop block-diagram for a system is shown in Figure 1.4.

Figure 1.4: Closed-loop block-diagram of a feedback control system

The range of values for k_p that ensures the stability of the closed-loop system is:

 $\square \ 0 < k_p < 2$ $\square \ k_p > 1$ $\square \ k_p > 13$

The block-diagram of a traditional closed-loop feedback system is shown in Figure 1.5 (the correct answer gives 3 points).

Figure 1.5: Block-diagram of a traditional closed-loop feedback system

Derive the closed-loop transfer function: $F_{CL}(s) = \frac{Y(s)}{R(s)}$. Explain how you get it!

$$\begin{split} Y(s) &= G(s)U(s) \\ U(s) &= C(s)\varepsilon(s) \\ \varepsilon(s) &= R(s) - Y_m(s) \\ Y_m(s) &= H(s)Y(s) \\ F_{CL}(s) &= \frac{Y(s)}{R(s)} = \frac{C(s)G(s)}{1 + C(s)G(s)H(s)} \end{split}$$

Some useful properties of the Laplace transform

$$\begin{split} L\left(\alpha x(t) + \beta y(t)\right) = &\alpha X(s) + \beta Y(s) \\ L\left(\dot{x}(t)\right) = &sX(s) - x(0) \\ &\lim_{t \to +\infty} x(t) = \lim_{s \to 0} sX(s) \quad \text{if the limit exists} \end{split}$$

Some Laplace transform pairs

Signal	Laplace transform
$\Gamma(t)$	$\frac{1}{s}$
$e^{-at}\Gamma(t)$	$\frac{1}{s+a}$
$t^n e^{-at} \Gamma(t)$	$\frac{n!}{(s+a)^{n+1}}$

First-order systems

$$G(s) = \frac{K}{1 + Ts}$$

The 2 characteristic parameters of a first order system are:

- K: steady-state gain: $K = \lim_{s \to 0} G(s)$
- \bullet T: time-constant

Characteristic values of a first-order system step response

 $\begin{array}{ll} \text{Rise-time at } 63\% & T_m^{63\%} = T \\ \text{Rise-time at } 95\% & T_m^{95\%} \approx 3T \\ \text{Settling-time at } 5~\% & T_r^{5\%} \approx 3T \end{array}$

Second-order systems

$$G(s) = \frac{K}{\frac{s^2}{\omega_0^2} + 2\frac{z}{\omega_0}s + 1} = \frac{K\omega_0^2}{s^2 + 2z\omega_0s + \omega_0^2}$$

- \bullet K: steady-state gain
- z: damping ratio (z > 0)
- ω_0 : undamped natural frequency

Characteristic values of a underdamped second-order system step response

Value of the first overshoot in % $D_{1\%} = \frac{y(T_{D_1}) - y(+\infty)}{y(+\infty) - y(0)} \times 100 = e^{\frac{-\pi z}{\sqrt{1 - z^2}}} \times 100$ Damping coefficient as a function of D_1 (not in %) $z = \sqrt{\frac{(\ln(D_1))^2}{(\ln(D_1))^2 + \pi^2}}$ Time-instant of the first overshoot $T_{D_1} = \frac{\pi}{\omega_0 \sqrt{1 - z^2}}$ Value of the n^{th} overshoot in % $D_{n\%} = -(-D_1)^n \times 100$ Time-instant of the n^{th} overshoot $T_{D_n} = n T_{D_1}$