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Abstract— Variable Air Volume (VAV) based Heating Venti-
lation and Air Conditioning (HVAC) systems are common in
large non-residential buildings. The dynamic model of a VAV
system along with the Air Handling Unit (AHU) and the zones
has a nonlinear characteristic. In this paper, a nonlinear model
based joint state and parameter observer is proposed to estimate
the VAV damper position in such systems. First, a Takagi-
Sugeno (T-S) equivalent model for the AHU-VAV-Zone model
is obtained using sector nonlinearity approach. The damper
position estimation problem is then posed as a time varying
parameter estimation problem. A procedure based on existing
literature results on T-S joint state and parameter estimation
is implemented. Simulation results show the effectiveness of
this approach. A bank of observers based approach is then
described that can help in detecting and isolating VAV damper
faults in the system using the state and parameter estimates.

I. INTRODUCTION

Building energy optimization is increasingly becoming an
important problem in the overall context of energy footprint
of a country. The large non-residential buildings form a key
part of this challenge. Variable Air Volume (VAV) based
systems supplied by an Air Handling Unit (AHU) are popular
in such buildings to maintain a constant temperature in the
occupant zones by varying the supplied air volume. The
dampers which enable this action are prone to getting stuck
and that could lead to both reduction in comfort of the
occupants as well as loss of energy.

Model-based approaches are popular in fault diagnosis of
systems. The AHU-VAV-Zones combination has a nonlin-
ear characteristic, specifically, a bilinear structure. Takagi-
Sugeno (T-S) models are suitable for such mildly nonlinear
systems. Sector nonlinearity based derivation of T-S models
[1] can represent nonlinear characteristics exactly, if the
range of values over which the states and inputs of the
systems vary is within a known sector [2].

An unknown input observer for polynomial type inputs is
designed in [3], for detection of fouling in heat exchangers.
The authors assume a specific symmetry in the physical
characteristics (the temperature of inlet of hot fluid is equal
to that of outlet of cold fluid and vice versa). In [4], a T-S
model based polynomial fuzzy observer is designed for the
same problem of fouling detection in heat exchangers. This
approach requires the unknown parameter is either constant
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or has very slow dynamics. In a damper position estimation
scenario such limitations would not hold.

To mitigate this problem, an approach that follows the
results in [5] is proposed. In that paper, the authors rewrite
the system matrices with time varying parameters into two
terms, one containing the terms dependent on the unknown
parameter and another not dependent on it. The only as-
sumption required is that the parameters vary within a known
range of values. In the problem considered in this paper, the
damper position estimation, this assumption is reasonable.
The same sector nonlinearity approach is used to represent
the unknown time varying parameter and estimated.

The contributions of this paper and the organization is
summarized as follows:

• Derive a system model for the AHU-VAV-Zones com-
bination with a focus on estimation scenario. (Sec. II).

• Derive the T-S models for the AHU-VAV-Zones model
using sector nonlinearity approach. Extend this T-S
model to that of a T-S model with an unknown time
varying parameter (Sec. III).

• Propose an implementation tailored version of the re-
sults in literature for a joint state and parameter estima-
tion (Sec IV).

• Propose systematic algorithmic steps to implement joint
state and parameter estimation (Sec IV).

• Illustrate how to connect the joint state and parameter
estimation results with fault detection in VAV dampers
using bank of observers (Sec. V).

II. SYSTEM MODEL

A. Models from first principles

A schematic of the system considered is given in Fig. 1.

Fig. 1. Schematic of the system under consideration



The following are the points to be noted for the model:

• Only two zones are considered for the system, though
this could be easily extended to any number of zones
supplied by a single AHU.

• The VAV boxes have an internal control loop that
adjusts the damper position based on the deviation of
zone temperature from the set point.

• The two zone temperatures are measured along with the
air mass flow rate qa.

• The mass flow rate of water (qw) is the manipulated
variable. The water temperature is considered constant
and known.

• Further the overall heat transfer coefficient of the heat
exchanger, UA(t), is assumed constant, since fouling
takes place over a very long period of time.

• The heat exchanger is assumed extract air from the en-
vironment, which is also the same ambient temperature
outside the walls of the zone.

In the AHU, the dynamics of heat exchanger are modeled
using the energy balance approach, inspired by that in [3]:

dTao(t)

dt
=

qa(t)

Ma
(Tai(t) − Tao(t)) +

UA
2CpaMa

∆T (t)

dTwo(t)

dt
=

qw(t)

Mw
(Twi(t) − Two(t)) −

UA
2CpwMw

∆T (t) (1)

where,
Tao, Tai : output/input air temperature (K)
Two, Twi : output/input water temperature (K)
qa, qw : air and water mass flow rates (g/s)

Cpa, Cpw : specific heat capacities (J/g.K)
Mw, Ma : mass of the water with metal and air (kg)
UA : overall heat transfer coefficient (J/K)
∆T : Two + Twi − Tao − Tai (approximation)

The zone models were derived based on an energy balance
approach and inspired by the thermal modeling (see for e.g.,
[6], [7]) and given by:

C1
dT1(t)

dt
= q1(t)Cpa(Tao(t)− T1(t)) +K12(T2(t)− T1(t))

+K1amb(Tai(t)− T1(t)) +Kd2d2(t) (2)

C2
dT2(t)

dt
= q2(t)Cpa(Tao(t)− T2(t)) +K21(T1(t)− T2(t))

+K2amb(Tai(t)− T2(t)) +Kd3d3(t) (3)

where, q1, q2 are the air mass flow rate into each zones. The
known, measured or forecast disturbances like occupancy,
solar radiation are combined and represented as d2 and d3.
C1, C2 are the corresponding zone capacitance. The gains
K12, K21, K1amb, K2amb correspond to the heat transfer
coefficient offered by a wall or a window that remains
between the zone temperature and the other zone and the
zone and the external environment respectively. Kd2 and Kd3

represent the general resistance offered for the exchange of
thermal energy between objects in the room with the air. The
values are computed following the approach in [6].

The modeling of the VAV boxes and other components
on the air flow rate path is simplified by the following
assumptions:

• The control loop in VAV terminal boxes have a negli-
gible time constant compared to that of the AHU and
the zones and the actuator actions are instantaneous.

• Let β1 and β2 be ratios of the air flow rate into each
zone. The air mass balance gives,

q1(t) = β1qa(t), q2(t) = β2qa(t)

β1 + β2 = 1 (4)

• The fan dynamics are ignored, while the fan speed and
hence qa(t), is measured.

With these assumptions in place, the overall model of the
AHU-VAV-Zone combination could be given as (time is
dropped for simplicity),

ẋ1 = α1qa(d1 − x1) + α2au(Twi + x2 − d1 − x1) (5)
ẋ2 = α3u(Twi − x2)− α2wu(Twi + x2 − d1 − x1) (6)
ẋ3 = α4β1qa(x1 − x3) + α5(x4 − x3)

+ α6(d1 − x3) + α7d2 (7)
ẋ4 = α8(1− β1)qa(x1 − x4) + α9(x3 − x4)

+ α10(d1 − x4) + α11d3 (8)

where the state and the input variables are defined as,

x1 , Tao, x2 , Two, x3 , T1, x4 , T2

u , qw, d1 , Tai

and the constants αis as,

α1 ,
1

Ma
, α3 ,

1

Mw
, α2au ,

UA

2CpaMa
, α2wu ,

UA

2CpwMw

α4 ,
Cpa

C1
, α5 ,

K12

C1
, α6 ,

K1amb

C1
, α7 ,

Kd1

C1
,

α8 ,
Cpa

C2
, α9 ,

K21

C2
, α10 ,

K2amb

C2
, α11 ,

Kd3

C2

III. TAKAGI-SUGENO MODELS

A. Takagi-Sugeno equivalent model
A Takagi-Sugeno model is a polytopic model represented

by [2],

ẋ(t) =

2p∑
i=1

µi(z(t))(Aix(t) +Biu(t))

y(t) =

2p∑
i=1

µi(z(t))(Cix(t) +Diu(t)) (9)

where z(t) refers to the p premise variable(s), which can be
function of states and/or inputs, varying over a certain known
sector and leads to 2p submodels. The weighting functions
(µi) absorb the nonlinearity in the model and they also satisfy
the convex sum property,

2p∑
i=1

µi(z(t)) = 1, 0 ≤ µi(z(t)) ≤ 1,∀t,∀i ∈ {1, 2, ...2p}

To obtain the T-S equivalent model of the AHU-VAV-Zones
system in the polytopic form, the equations (5)-(8) are
written in state space form as,

ẋ(t) = A(t)x(t) +Bu(t)u(t) +Bd(t)d(t) +BTTwi

y(t) = Cx(t) +Hν(t) (10)



where, the premise variables to be considered for this prob-
lem are z1(t) , qa(t) and z2(t) , x2(t). Here, the time
dependence (t) of the matrices is implicit as they depend
on variables that time-varying. These premise variables are
assumed to be within a sector, zj ∈ [zminj zmaxj ]. ν(t) is
the measurement noise and H its distribution matrix. Given
that the AHU water output temperature is not measured, this
is an unmeasured premise variable. The matrices in (10) are
given by,

A(t) = [A1(t) A2(t) A3(t)]

where,

A1(t) =


−α1z1(t)− α2au α2au

α2wu −α2wu

α4β1z1(t) 0
α8(1− β1)z1(t) 0



A2(t) =


0
0

−α4β1z1(t)− α5 − α6

α9



A3(t) =


0
0
α5

−α8(1− β1)z1(t)− α9 − α10

 (11)

Bu(t) =


0

α3(Twi − z2(t))
0
0

 , BT =


α2au

−α2wu

0
0



Bd(t) =


α1z1(t)− α2au 0 0

α2wu 0 0
α6 α7 0
α10 0 α11


C =

[
0 0 1 0
0 0 0 1

]
(12)

To obtain the model of the form (9), the matrices’ entries of
z1(t) and z2(t) are replaced with the corresponding sector
extremum values corresponding to the submodel i, i.e., zminj

or zmaxj . The membership functions are obtained by,

µ1
i (zj(t)) =

zj(t)− zminj

zmaxj − zminj

, µ2
i (zj(t)) =

zmaxj − zj(t)
zmaxj − zminj

and the weighting functions are obtained through the product
of these membership functions for the corresponding ex-
tremum values. More details on this could be obtained from,
say [2].

B. Models for T-S parameter estimation

The T-S model obtained from (12) can be sufficient if the
parameter β1 is known. However, there are a couple of points
to note about its characteristic:

• The β1 parameter is unknown and time varying because
the VAV damper positions determine the actual flow
rates into each zone. This action is dependent on the
local temperature controller.

• When there is a fault in the VAV damper position, say
a damper stuck fault, the variation or lack of thereof in
the estimated parameter β1 can be used to detect, isolate
and estimate the fault.

In such a scenario, the estimation of β1(t) is necessary.
This leads to an observer design requirement which can do
simultaneous state and parameter estimation. This problem
can be mapped to the results in [5], where a T-S system of
type (9), with time varying Ai(t), Bi(t) depending upon nθ
time varying parameters, is rewritten as,

ẋ(t) =

2p∑
i=1

2nθ∑
j=1

µzi (z(t))µ
θ
j (θ(t))(Aijx(t) +Biju(t))

y(t) = Cx(t) +Hν(t) (13)

with

Aij = Ăi +

nθ∑
k=1

θmk Āk

Bij = B̆i +

nθ∑
k=1

θmk B̄k (14)

where θk ∈ [θ1
k, θ

2
k] and the weighting functions µθj are

obtained using the sector extremum values of θ following
the same process of obtaining the weighting functions for
the T-S models. The index j in (13) is a combination of the
two indices m = 1, 2 and k in (14).

For the application problem scenario, there is one un-
known parameter β1 ∈ [β1

1 , β2
1 ] which affects only the

state matrix. Hence, the corresponding representation for
(14) would be, Aij = Ăi + βj1Āi, where j = 1, 2 and βj1
corresponds to either the minimum of maximum value of
the parameter. The system matrices corresponding to (13)
are given by,

Ăi =
[
Ă1
i Ă2

i Ă3
i

]
where,

Ă1
i =


−α1z

i
1 − α2au α2au

α2wu −α2wu

0 0
α8z

i
1 0



Ă2
i =


0
0

−α5 − α6

α9

 , Ă3
i =


0
0
α5

−α8z
i
1 − α9 − α10



Āi =


0 0 0 0
0 0 0 0

α4z
i
1 0 −α4z

i
1 0

−α8z
i
1 0 0 α8z

i
1



B̆ui =


0

α3(Twi − zi2)
0
0

 , B̆di =


α1z

i
1 − α2au 0 0
α2wu 0 0
α6 α7 0
α10 0 α11


and B̄ui = 04×1, B̄di = 04×3 with BT and C remaining
unchanged from (12). zi1 and zi2 refer to the values of the
premise variables corresponding to the ith submodel.



IV. VAV DAMPER POSITION ESTIMATION

A. T-S joint state and parameter estimation

In this section, a modified version of the T-S joint state
and parameter estimation result is derived. Only an outline
of the proof is given as it closely follows the details in [5].
For a system defined by (13)-(14), a joint state and parameter
observer with a first order structure is envisaged,

˙̂x(t) =

2p∑
i=1

2nθ∑
j=1

µzi (z)µ
θ
j (θ̂)[Aij x̂(t) +Biju(t)

+ Lij(y(t)− ŷ(t))]

˙̂
θ(t) =

2p∑
i=1

2nθ∑
j=1

µzi (z)µ
θ
j (θ̂)[Kij(y(t)− ŷ(t))− ηθ̂(t)]

ŷ(t) = Cx̂(t) (15)

where Lij and Kij are the gains to be computed to obtain a
good estimate. The gain matrix η is fixed a priori as discussed
later. To obtain the error dynamics, the system model in (13)
is converted to an uncertain-like representation (see for e.g.,
[8]), so that both system and observer depend on the same
weighting functions. This gives an error dynamics of the
form,

ėa(t) =

2p∑
i=1

2nθ∑
j=1

µzi (z)µ
θ
j (θ̂)[Φijea(t) + Ψij(t)ũ(t)] (16)

where ea(t) , [ex(t) eθ(t)]
T combines the error dy-

namics of both the states and the parameter, with ũ ,[
x(t) θ(t) θ̇(t) u(t) ν(t)

]T
, and,

Φij =

[
Aij − LijC 0
−KijC −η

]
Ψij(t) =

[
∆A(t) 0 0 ∆B(t) −LijH

0 η I 0 −KijH

]
(17)

The uncertain terms ∆A(t) and ∆B(t) are functions of
the difference between the known and estimated weighting
functions (µj(θ) − µj(θ̂)). The problem is now reduced to
finding observer gains such that the error will decay and
the effect from the external inputs ũ is minimized with
guaranteed bounds. Bounded Real Lemma (BRL) [9] is
used to obtain the sufficient conditions for (16) to be stable
and bounded. Considering a quadratic Lyapunov function,
V (t) = eT (t)Pe(t), P = PT , the following inequality needs
to hold,

V̇ (t) + eT (t)e(t)− ũT (t)Γ2ũ(t) < 0 (18)

where Γ2 corresponds to the matrix with block entries Γk2 and
k refers to the corresponding component in ũ. This leads to,

2p∑
i=1

2nθ∑
j=1

µi(z)µj(θ̂)

[
ea(t)
ũ(t)

]T [
ΦTi P + PΦi + I PΨi(t)

ΨTi (t)P −Γ2

] [
ea(t)
ũ(t)

]

However, this application of BRL requires the error dynamics
to have constant matrices. The uncertain terms in Ψij(t) in
(17) depend on weighting functions which are time varying
but follow the convex sum property. Hence well known

matrix theory results could be applied to obtain a bound for
them.

Further, the application of the BRL leads to bilinear terms
involving the positive definite matrix P and the observer
gains. This problem is solved in two steps. First, the matrix
is restricted to have a diagonal structure, P = diag(P0, P1),
then the bilinear terms are replaced with a new variable, such
that Rij = P0Lij and Fij = P1Kij . This leads to a Linear
Matrix Inequality (LMI) condition which is summarized in
the following theorem.

Theorem 1: There exists a robust state and parameter ob-
server of type (15) for the T-S time varying parameter system
(13)-(14) with a bounded gain of Γ = [Γx Γθ Γθ̇2 Γu2 Γν2 ]T

from ũ(t) to ea(t), if there exists P0 = PT0 > 0, P1 =
PT1 > 0, λ1, λ2 > 0, Fij , Rij such that (for i = 1, .., 2p and
j = 1, .., 2nθ ),

T11 T12 0 0 0 0 −RijIν P0A P0B
∗ T22 0 ηP1 P1 0 −FijIν 0 0
∗ ∗ T33 0 0 0 0 0 0
∗ ∗ ∗ −Γθ2 0 0 0 0 0

∗ ∗ ∗ ∗ −Γθ̇2 0 0 0 0
∗ ∗ ∗ ∗ ∗ T55 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ −Γν2 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ −λ1I 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −λ2I


< 0

where, T11 = P0Aij +ATijP0−RijC−CTRTij +Inx , T12 =
−CTFTij , T22 = −2ηP1 + 1, T33 = −Γx2 + λ1E

T
AEA and

T55 = −Γu2 +λ2E
T
BEB . The entry ‘∗’ refers to the transpose

of the corresponding symmetric element in the matrix. The
matrices A and B are given by,

A ,
[
A11 ... A2p2nθ

]
, B ,

[
B11 ... B2p2nθ

]
The observer gains are given by:

Lij = P−1
0 Rij and Kij = P−1

1 Fij (19)

for i = 1, .., 2p and j = 1, .., 2nθ .

The proof of this theorem follows that in [5].

B. Algorithm for VAV damper position estimation

The implementation of the theorem in the previous section
requires a number of numerical aspects to be taken care
of. This would be in the form of additional constraints that
can ensure that the obtained observer gains are appropriate
for the application problem. In this section, the experiences
of the implementation for this AHU-VAV-Zones model is
summarized in the form of algorithmic steps.

• Choose η in (17). The gain matrix is chosen such that
its eigen values are comparable to the eigenvalues of
the matrix Φij in (17). This may need to go through
iterations as the eigenvalues of Φij are not known
beforehand. Simplest way is choosing a diagonal matrix
with appropriate eigen values.

• Choose Γk2 values in (18). This is primarily to reduce
the number of variables for which the LMI is solved.

• Enforce P0 > P0init and P1 > P1init for sufficiently
large P0init and P1init. This would ensure that P−1

0 and



P−1
1 are not close to singular and make the computation

of the observer gains Kij and Lij unreliable.
• To ensure that there is a balance between the gains Kij

and η, an additional LMI constraint is considered as,

Fij > ρP1η (20)

where ρ is chosen such that the observer first order
characteristic would not let the estimation vanish to zero
due to the effect of η. ρ shall be a diagonal matrix of
different values depending upon the amplitude levels of
each unknown parameter θ.

C. Simulation results

To illustrate the methodology, a simulation of the AHU-
VAV-Zones system combination was executed in MATLAB.
The yalmip [10] LMI parser was used along with the lmilab
solver in the LMI toolbox for solving the LMI feasibility
problem. The system model parameters were derived to
be reasonably representative and not accurate. The heat
exchanger component was designed based on steady state
analysis of the model after fixing some of the variables. The
zone models were obtained considering zones of dimensions
3×5×4 and 3×4×4 (m). The sector maximum and minimum
vales of premise variables and the unknown time varying
parameters are given in the Table I(a). It is to be noted that
the parameter β1 was scaled by 100 to allow for a reasonably
close scale for the parameters and states of the observer.
The simulation parameters that were chosen for the LMI
feasibility problem are given in the Table I(b). The results are

TABLE I
SIMULATION AND MODEL PARAMETERS

(a) Sector Min and Max Values
Parameter Min Max

z1 0.16 kg/s 1.6 kg/s
z2 293 K 368 K
β1 0 100

(b) Simulation parameters
Parameters Values

η 10−4

ρ 105

Γθ2 0.1

Γθ̇2 0.1
Γx2 0.1I4
Γu2 0.1
Γν2 0.1

shown in Figures 2 and 3. The inputs used to generate these
results are shown in Fig 4. The error statistics of the observer
estimates are summarized in Table II. It is clear that the main

TABLE II
SIMULATION RESULTS: β1(t) ESTIMATION

Error Mean (%) Standard Deviation (%)
|ex1 | 0.04 0.4
|ex2 | 0.07 0.55
|ex3 | 0.03 0.3
|ex4 | 0.03 0.3
|eθ| 10.9 18.34

error deviation on the estimated parameter is at the initial
periods of the simulation. It was observed that by dropping
the first few estimates, the standard deviation came down by
5%. The other significant behaviour is the noisy estimate.

Fig. 2. Estimated and actual states

Fig. 3. Estimated and actual parameter β

Fig. 4. Various inputs used for the simulation



While this could be partially mitigated through filtering the
estimate, a more inclusive approach by embedding this into
the observer would be interesting.

V. FAULT DIAGNOSIS USING BANK OF
OBSERVERS

This section outlines a strategy to use the estimated β1

parameter to detect and isolate a VAV damper stuck fault.
The proposed strategy is illustrated in Fig. 5. Given the
relationship between β1 and β2 in (4), the two observers,
’Obs1’ and ’Obs2’ provide a redundant estimate. Both these
observers have the same structure, except for the system
matrix changes to reflect the parameter being estimated.
However, this redundancy is useful in a fault detection
scenario. To analyze the feasibility of β1 (or β2) estimation,
consider the equations (7)-(8), from the observer’s perspec-
tive, with y1 = x3 and y2 = x4, summarized as,

ẏ1 = f1(β̂1, qa, x̂1, y1, y2, d1, d2) (21)

ẏ2 = f2(β̂1, qa, x̂1, y1, y2, d1, d3) (22)

which are two nonlinear equations with two unknowns in
β̂1 and x̂1. Theoretically, this allows for determining the
two unknowns when there is no noise and the simulation
results agree with this. Hence this estimation could be used to
generate residuals for detecting and isolating damper faults.

To generate the residuals using β̂i (i = 1, 2), computation
of these parameters from the actual measurements and the
knowledge of control loop configuration is required. In a
typical VAV set up, the temperature control would have two
control loops. The outer loop would use the difference in
the measured temperature (Ti) and the set point (T SP

i ) to
generate an air flow rate set point for the inner control loop.
This controller would then compute a damper position and
drive the actuator. If the control loop configuration is known,
an estimate for the damper position and hence the parameter
βi could be obtained. This is indicated in the figure as βSP

i .
The residuals hence generated could detect as well as isolate
the fault to a particular zone.

The illustration of this strategy would involve inclusion
of control loops in the model and would be dealt with in
another paper. More details on T-S model based strategies
for residual generation, fault diagnosis etc., could be referred
to in [11].

Fig. 5. Bank of Observers for residue generation

VI. CONCLUDING REMARKS

The paper illustrated a methodology to implement a pa-
rameter estimation strategy for a nonlinear system of T-S
type. The application of this strategy was shown through
simulation of a AHU-VAV-Zones model. A proposal on how
to use this estimation for fault detection purposes was given.
Based on the results and discussion, an obvious extension is
to illustrate a complete fault detection and isolation for the
discussed problem. Further, the following could be explored:

• An adaptive Kij value can allow for an optimal transient
and steady state response for parameter estimation.

• VAV dampers with only ON/OFF or a limited number
of positions will mean β1(t) takes discrete values and
correspondingly need a hybrid T-S observer.

• Noise reduction through pre-filtering the measurement
data or by adding specific LMI constraints that could
limit the rate of change of estimated parameter.

REFERENCES

[1] Hiroshi Ohtake, Kazuo Tanaka, and Hua O Wang. Fuzzy modeling via
sector nonlinearity concept. Integrated Computer-Aided Engineering,
10(4):333–341, 2003.

[2] Kazuo Tanaka and Hua O Wang. Fuzzy control systems design and
analysis: a linear matrix inequality approach. John Wiley & Sons,
2004.

[3] Sabrina Delrot, Thierry Marie Guerra, Michel Dambrine, and François
Delmotte. Fouling detection in a heat exchanger by observer of
Takagi–Sugeno type for systems with unknown polynomial inputs.
Engineering Applications of Artificial Intelligence, 25(8):1558–1566,
2012.

[4] François Delmotte, Michel Dambrine, Sabrina Delrot, and Sylvain
Lalot. Fouling detection in a heat exchanger: A polynomial fuzzy
observer approach. Control Engineering Practice, 21(10):1386–1395,
2013.

[5] Souad Bezzaoucha, Benoı̂t Marx, Didier Maquin, and José Ragot.
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