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Abstract: Air Handling Units (AHU) are responsible for e�ciently transferring the energy
produced for heating or cooling to the occupant area in the building. This energy transfer
dynamics is modeled as a bilinear system. Such a structure poses problems to develop observers
either with asymptotically vanishing error or with guaranteed error bounds. Takagi-Sugeno
based polytopic models allow modeling of such nonlinear systems as well as to extend the results
from linear system theory. Parameter estimation of such models with guaranteed error bounds
is presented in Bezzaoucha et al. (2013). The present work applies this nonlinear parameter
estimation technique on the energy balance model of a heat exchanger, the key component in
an AHU. Three parameter estimation scenarios are proposed and extension to the theoretical
results in the reference from an implementation point of view are given. Simulation results are
provided to show the feasibility of the approach.
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1. INTRODUCTION

Building energy management is important in the e↵ort to
reduce the overall energy footprint of a country. Faults in
the building HVAC (Heating, Ventilation and Air Con-
ditioning) systems can lead to significant e↵ect on the
energy consumed as well as the occupant comfort. AHUs
are responsible for the transfer of heating or cooling pro-
duced at the source to the rooms and zones that require
conditioning. A number of components in the building
energy system can be modeled through the energy balance
equations similar to that of heat exchanger. For example,
the return air heat recovery or even the occupant area
temperature change could be modeled using a similar
approach.

Di↵erent process and equipment faults (including actua-
tors, sensors) are responsible for reduction in the e�ciency
of the AHU. Classical faults are heat exchanger fouling,
hot water supply valve stuck, supply fan fault, to name
a few. A majority of the works in the fault detection
and diagnosis (FDD) in HVAC systems focuses on the
use of models learned from the measurement data (See
Katipamula and Brambley (2005) and references thereof).
One of the main reasons for this is the bilinear nature of the
dynamics. This makes the overall AHU model complex and
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di�cult to develop model based observers with guaranteed
error bounds.

Takagi-Sugeno (T-S) method based modeling o↵ers an
alternative to the nonlinear representation. For systems
with known di↵erential equations, the sector nonlinearity
approach (Ohtake et al. (2003)) based T-S method allows
for an exact representation of the nonlinear characteristics,
when they are bounded. Given that physical systems have
natural bounds, this is an attractive approach to model
these systems.

In Delrot et al. (2012), a T-S observer was designed con-
sidering unknown inputs of polynomial type. The authors
introduce parameters that are a function of the heat
transfer coe�cient and estimate the variation in these
parameters around the nominal value. However, there is
an inherent assumption that both the hot and cold fluids
have to be the same or almost same characteristics. This
is typically not the case in HVAC systems. In Delmotte
et al. (2013), a polynomial fuzzy observer is proposed
for the uncertain case. The model includes a parameter
that can indicate fouling, as a state of the system without
dynamics. This assumption works well in case of constant
or slowly time-varying nature of parameter, like fouling.
However such guarantees are not applicable in the appli-
cations considered in this paper. This motivated the use
of parameter estimation methods which are not restricted
by this constraint.



The paper is organized as follows: Sec. 2 proposes the
parameter estimation scenarios to be considered and de-
rives the T-S model system matrices for each scenario.
The parameter estimation results from Bezzaoucha et al.
(2013) are summarized in Sec. 3 and its customizations and
extensions for the problems scenarios are discussed. The
Sec. 4 illustrates the results and discusses the inferences.
The concluding remarks and future works are summarized
in Sec. 5.

2. SYSTEM MODELING

The heat exchanger model from the energy balance
adapted from Delrot et al. (2012) is given by the nonlinear
di↵erential equations:
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where,
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: Output/input air temperature (K)
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: Output/input water temperature (K)
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: Air and water mass flow rates (g/s)
C
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: Specific heat capacities (J/g.K)
U
A

: Overall heat transfer coe�cient (J/K)
The following are assumed for the model:

• The mass flow rates of air and water do no undergo
any change inside the heat exchanger.

• The temperature variation is considered in a lumped
form at the end of the heat exchanger.

• There is no heat loss in the transfer through the metal
conductor.

• For the factor�T , as discussed in Delrot et al. (2012),
this paper adopts the value as T

wo

+ T
wi

� T
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.
This factor is considered a better approximation for
�T over others.

• U
A

(t), the heat transfer coe�cient is a time varying
factor. However, it changes very slowly (over weeks)
and hence could be considered constant for problems
where time duration is small.

By making the following definitions for the states and in-
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could be represented as,
ẋ1(t) = ↵1qa(t)(d(t)� x1(t))

+ ↵2aUA
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This can further be represented in a matrix form as,

ẋ(t) = A(x, u)x(t) +B(x, u)u(t) (5)
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The input air temperature is considered as a measured
disturbance since the external weather is not controlled,
but measured.

2.1 Takagi-Sugeno Models

A Takagi-Sugeno model is a polytopic model represented
by (Tanaka and Wang (2004)),
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where z(t) refers to the p premise variable(s), which can be
a function of states and/or inputs, varying over a certain
known sector and leads to 2p submodels. The weighting
functions (µ

i

s) absorb the nonlinearity in the model and
they also satisfy the convex sum property,
rX
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The sector nonlinearity approach allows to define the
weighting functions such that the resultant T-S model
exactly represents the original nonlinear behaviour within
the sector. For a given premise variable z1, enclosed within
the sector of [z11 , z

2
1 ], the membership functions are given

by,
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The weighting functions µ
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(z) are then obtained by nor-
malizing the products of the membership functions of in-
dividual premise variables. For instance, for a system with
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Any nonlinear system could be written in a matrix form
similar to that in (5). The premise variables hence chosen
would replace the corresponding functions of x and u in
the matrices. By replacing these premise variables with
their appropriate sector extremum values, the matrices
A

i

, B
i

, C
i

, D
i

in (6) are obtained.

2.2 T-S Models for Parameter Estimation

The idea of representing T-S models dependent on time
varying parameters is given in Bezzaoucha et al. (2013).
For a T-S system of the type in (6), consider the system
matrices to be time varying A
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time varying parameters. Considering constant output
equation but a↵ected by a measurement noise ⌫(t), this
system is rewritten by the authors as,
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are using
these bounds as given in (7). For more details regarding
the model, refer to Bezzaoucha et al. (2013).



2.3 T-S Models for Heat Exchanger

To represent the heat exchanger model, the premise
variables considered are the mass flow rates z(t) =
[q

a

(t) q
w

(t)] and would replace the mass flow rates in the
matrices in (5). Thus the time varying system matrices are
given by,
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C = [1 0]
D = 0 (10)

for i = 1, 2, 3, 4. The superscript i on the premise vari-
able refers to the corresponding maximum or minimum
value of the premise variable of the ith submodel. As is
evident, the model assumes the temperature of output air
as measured. Given this system model, three parameter
estimation problem scenarios in the AHU are described
and the corresponding system matrices are given below.
The subscript j for matrices Ā and B̄ in (9) are omitted
as n

✓

= 1 in all three cases.

Heat Transfer Coe�cient Estimation The heat ex-
changer surfaces su↵er deposition of unwanted materials
over time. This phenomenon, known as fouling, leads to
reduction of e↵ectiveness of the heat exchanger. Due to
this deposition, the heat transfer coe�cient U
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(t) changes
over a long period of time. This can be analyzed by
constructing a parameter estimator for ✓(t) , U
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Ā =


�↵2a ↵2a

↵2w �↵2w

�

B̆
i

=


↵1z

i

1 0
0 ↵3z

i

2

�
B̄ =


�↵2a ↵2a

↵2w �↵2w

�
(11)

with i = 1, 2, 3, 4.

Water Mass Flow Rate Estimation The mass flow rate of
the water is one of the control inputs used in the industry
to regulate and maintain the output air temperature of
the heat exchanger. The water mass flow rate could be
a↵ected by a number of reasons: a stuck or malfunctioning
valve, a malfunctioning pump, etc. Since the time scale
over which this occurs is considerably small, the heat
transfer coe�cient is considered constant: ↵2wu
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with i = 1, 2.

Air Mass Flow Rate Estimation The mass flow rate of
air is maintained by the fan speed as well as the pressure
balance in the air network. An estimation of the air mass
flow rate as a parameter can potentially point out to
malfunctioning of the fan or problems in the duct. With
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with i = 1, 2.

3. NONLINEAR PARAMETER ESTIMATION FOR
T-S MODELS

This section summarizes the results in Bezzaoucha et al.
(2013) briefly, and then discusses the customization of the
results for the application scenarios. Detailed derivation
of the results should be referred to in the original paper.
For a system defined by (8)-(9), the authors in the original
reference propose an observer with a first order structure
for the parameter estimation, given by,
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obtain a good estimate. The premise variables are assumed
to be known in this work, which is not the case in the
original reference. This however, does not change the steps
to derive the results. Given the presence of µ✓
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observer model, the comparison of the system (8) and
the observer (14) is di�cult. The authors in the original
work avoid this by representing the original system in an
uncertain-like form as,
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where �A(t) and �B(t) are bounded time varying factors
and a function of the di↵erences between the weighting
functions (µ✓
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obtain the observer error dynamics of the form:
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. The problem solved here is to
determine the observer parameters such that the error
is minimized with guaranteed bounds. The time varying
terms of  

ij

(t) are bounded by well known matrix in-
equality results and enables applying the Bounded Real
Lemma on the e↵ective error dynamics. The results are
summarized in Theorem 1 and with the key LMI condition
of (30) in Bezzaoucha et al. (2013).

Customizations To apply the parameter estimation re-
sults to the AHU application problems, a number of cus-



tomizations were applied. Their motivations and details
are summarized as follows:

• L2 gain: The authors in the reference used the Lya-
punov function V (e
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Here, �2 is a block diagonal matrix, each block
defining the sensitivity of the error dynamics to
the particular component of ũ. This leads to an
optimization problem to compute � which bounds

all the blocks in �2 such that �(k)2 < �I (here (k)
corresponds to the block in �2 corresponding to kth
entry in ũ). If all the components of ũ are not in the
same amplitude scale, this step may not achieve its

purpose. A weighted minimization considering �(k)2 <
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adjusting for the amplitude scale, is
one option. This could also be replaced with simply
choosing some or all the L2 gains.

• Parameter estimation observer gains: The parameter
estimation observer structure in (14) could be viewed
simplistically as:
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It is clear that the ratio of the gains, K/⌘, needs to
be large enough for the estimate not to vanish to zero
due to the influence of ⌘. Hence an extra condition
is added such that K/⌘ > ⇢. The choice of ⇢ would
depend on the amplitude range of the parameter to
be estimated and that of the measurement.

• LMI unknowns: The number of unknown variables in
the LMIs is significant. The following parameters are
fixed to scalar values (or constant known matrices) to
reduce the number of variables:
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• Measurement noise: The authors in the original ref-
erence do not consider measurement noise for the
derivation. In this work, the results are extended to
include measurement noise and the derivation steps
follows that in the original work.
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to the symmetric nature. The matrices A and B are given
by,

A , [A11 ... A2p2n✓

]

B , [B11 ... B2p2n✓

]

The observer gains are given by:

⌘
ij

= ⌘0, L
ij

= P�1
0 R

ij

and K
ij

= P�1
1 F

ij

(20)

for i = 1, 2, 3, 4 and j = 1, 2.

The proof for this theorem follows that in the original
reference.

4. SIMULATION RESULTS AND DISCUSSION

In this section, the discussion on the simulation approach,
the results obtained and the inferences are given. A typical
set of inputs and premise variables are shown in Fig. 1.

Fig. 1. Typical inputs and premise variables

All the simulations were run over a 10 hour period with a
sampling interval of 1 minute. It is to be noted that over a
10 hour period, there would be no noticeable change in the
heat transfer coe�cient U

A

(t). However, for illustration
purposes it has been shown to vary over this short time
period. The results are expected to hold with appropriate
time scaling. All Simulations were carried out in MATLAB
with the Yalmip toolbox in conjunction with the LMILab
solver from Mathworks.

As discussed in the previous section, the parameters whose
values were fixed are given in table 1. For the simulation,
the measurement noise added was a zero mean Gaussian
noise with a standard deviation of 1K. The sector bounds
considered for the premise variables and the time varying
parameters for the simulation are given by: U

A

(t) 2
[27, 324] J/K, q

w

(t) 2 [80, 1200] g/s and q
a

(t) 2
[200, 1500] g/s.



Table 1. Simulation parameters
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ˆ✓ =

ˆU
A

ˆ✓ = q̂
w

ˆ✓ = q̂
a

⌘0 10

�4
10

�7
5⇥ 10

�5

⇢ 10

5
10

7
10

6

�
✓

0.01 100 100

�
✓̇

0.01 10 10

�
x

, �
u

0.01 1 1

�
⌫

0.01 1 1

4.1 Results

Heat transfer coe�cient estimation The state and the
parameter estimation results for the heat transfer coef-
ficient estimate problem is given in Fig. 2. The error
characteristics are summarized in table 2. The mean and
standard deviation values given are for the absolute error
over the entire simulation period. The fouling was sim-
ulated through a part of a cosine wave as suggested in
Guomundsson (2008) and follows closely to the physical
characteristics, except the time duration over which it
occurs. This simulation however is expected to follow when
the appropriate corrections are made to account for slow
varying process.

Fig. 2. State and parameter estimates: U
A

estimation

Table 2. Simulation Results: U
A

(t) Estimation

Error Mean (%) Standard Deviation (%)

|e
x1 | 2.4 2

|e
x2 | 1.4 0.4

|e
✓

| 1.1 1.2

Air mass flow rate estimation The air flow rate estima-
tion results along with the corresponding state estimation
are given in Fig 3. The estimation errors’ mean and stan-
dard deviation are given in table 3. As with the previous
case these figures are for a simulation over the 10 hour
period.

Fig. 3. State and parameter estimates: q
a

estimation

Table 3. Simulation Results: q
a

(t) Estimation

Error Mean (%) Standard Deviation (%)

|e
x1 | 0.7 0.32

|e
x2 | 0.57 0.52

|e
✓

| 1.3 1.5

Water mass flow rate estimation The estimated water
mass flow rate along with the estimated states are given in
Fig 4. The mean and standard deviation of the estimation
errors for the entire simulation duration is given in table 4.
It can be seen that there is considerable error in the
parameter estimation in this case. Part of the reason is
due to the initial period of oscillations, but also due to
model characteristics, further details of which follow in
the discussions.

Table 4. Simulation Results: q
w

(t) Estimation

Error Mean (%) Standard Deviation (%)

|e
x1 | 0.22 0.64

|e
x2 | 0.32 1.04

|e
✓

| 17 25

4.2 Discussion

The results presented above illustrate the feasibility of
parameter estimation on a T-S model to multiple practical
scenarios. The simulation lent some observations, which
are discussed below.

The simulation results illustrated that the condition
K

ij

/⌘
ij

> ⇢ is not su�cient. During the initial simulation
period or during sudden changes in the parameter to be es-
timated, the error y(t)�ŷ(t) is significantly high and hence



Fig. 4. State and parameter estimates: q
w

estimation

a high value of K
ij

leads to significant oscillations. This
oscillations could be damped too slowly for a meaningful
response if the ratio (and hence K

ij

) is too high. This
phenomenon could be seen partly in the simulation results
in Fig. 3 and Fig. 4. Given the time varying nature of the
residue, an appropriate observer will have a K

ij

value that
would be adapted with time and residue amplitude.

The simulations were performed with the unit of gram
for mass since kg/s introduced sti↵ness in the mass flow
rate estimation models. Such unit changes or using a sti↵
system compatible odesolver may help in many cases.
A discrete-time observer model can help alleviate this
problem. However, the results in the reference were derived
for the continuous-time models and do not directly extend
to discrete time.

It is apparent from the results that the estimate of q
w

(t) is
the least convincing of the three. This could be understood
by a simple local algebraic observability analysis (see
for example, Sedoglavic (2001)). From (3)-(4), the U

A

(t)
and q

a

(t) estimates can be written as (dropping (t) for
simplicity and considering y = x1),

U
A

=
ẏ � ↵1qa(d� y)

↵2a(u1 + x2 � d� y)

q
a

=
ẏ � ↵2aUA

(u1 + x2 � d� y)

↵1(d� y)

They depend only on ẏ, and the other unknown x2 can be
obtained from (4) without the need for ÿ. However, q

w

is
given by,

q
w

=
ẋ2 + ↵2wUA

(u1 + x2 � d� y)

↵3(u1 � x2)
(21)

The dependence on ẋ2 directly indicates the need for ÿ to
compute q

w

and hence explains the observation of noise
and delay in the estimate of q

w

. One possible approach
to avoid this could be to design the parameter estimation

observer with a filtering mechanism inbuilt to minimize
the e↵ect of the measurement noise.

T-S model based observers have been used for residue gen-
eration for fault detection, isolation and estimation pur-
poses (see for instance, Ichalal et al. (2014)). The results
in this paper suggests that parameter estimation observers
could be used in fault detection in heat exchangers.

5. CONCLUDING REMARKS

In this paper, the nonlinear time varying parameter es-
timation approach in the literature has been adapted for
multiple applications in a heat exchanger model. Detailed
discussions on the extension and implementation of the
existing result in a simulation were given. The simulation
results show the promise of this approach. The main future
works would be in the direction of those discussed in
Sec. 4.2, namely, extending to discrete-time model, adap-
tive observer gains and enabling filtered measurement to
compute residues. From the application perspective, the
system model would be expanded to include rooms and
other AHU component models.
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