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Motivations

Goal
◮ To develop an observer design method for Takagi-Sugeno models subjected to

unknown inputs
◮ To use the proposed observer in a bank of observers for fault detection and

isolation
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◮ To use the proposed observer in a bank of observers for fault detection and

isolation

Context
◮ To take into consideration the complexity of the system in the whole operating

range (nonlinear models are needed)
◮ Observer design problem for generic nonlinear models is very delicate

Proposed strategy
◮ Multiple model representation of the nonlinear system
◮ Design an unknown input observer on the basis of that model
◮ Convergence conditions are obtained using the Lyapunov method
◮ Conditions are given under a LMI form
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Multiple model approach for modeling
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Multiple model approach

◮ Operating range decomposition into several local zones.
◮ A local model represents the behavior of the system in each zone.
◮ The overall behavior of the system is obtained by the aggregation of the

sub-models with adequate weighting functions.

ξ1(t)

ξ2(t)

ξ1(t)

ξ2(t)

Operating

space

zone 1

zone 2

zone 3

zone 4

Multiple model representationNonlinear system
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Multiple model approach

Why using a multiple model?
◮ Appropriate tool for modelling complex systems (e.g. black box modelling)
◮ Tools for linear systems can partially be extended to nonlinear systems
◮ Specific analysis of the system nonlinearity is avoided
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◮ Tools for linear systems can partially be extended to nonlinear systems
◮ Specific analysis of the system nonlinearity is avoided

Takagi-Sugeno model

The considered model is described by the following equations
8

>

<

>

:

ẋ(t) =
N
X

i=1

µi(ξ(t)) (Ai x(t) + Biu(t) + Ri ū(t) + Di)

y(t) = Cx(t)
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The considered model is described by the following equations
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>

<

>

:

ẋ(t) =
N
X

i=1

µi(ξ(t)) (Ai x(t) + Biu(t) + Ri ū(t) + Di)

y(t) = Cx(t)

◮ Interpolation mechanism :
N
X

i=1

µi(ξ(t)) = 1 and 0 ≤ µi(ξ(t)) ≤ 1, ∀t , ∀i ∈ {1, ..., N}

◮ The premise variable ξ(t) is assumed to be measurable
(input u(t) or output y(t)).
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Modeling using a Takagi-Sugeno structure

Two main different approaches
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Two main different approaches
◮ Identification approach

◮ Choice of premise variables

◮ Choice of the number of modalities of each premise variable

◮ Choice of the structure of the local models

◮ Parameter identification
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Modeling using a Takagi-Sugeno structure

Two main different approaches
◮ Identification approach

◮ Choice of premise variables

◮ Choice of the number of modalities of each premise variable

◮ Choice of the structure of the local models

◮ Parameter identification

◮ Transformation of a nonlinear model into a multiple model

8

<

:

ẋ(t) = f (x(t), u(t))

y(t) = Cx(t)
⇒

8

>

>

>

<

>

>

>

:

ẋ(t) =
N

P

i=1
µi (ξ(t))

`

Ai x(t) + Bi u(t) + Di
´

y(t) =
N

P

i=1
µi (ξ(t))Ci x(t)

◮ Exact representation: sector nonlinearity approach
(the premise variables depend on the state of the system)

◮ Linearization of the model around different operating points
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Unknown input observer design
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Structure of the unknown input observer

Model
8

>

<

>

:

ẋ(t) =

N
X

i=1

µi(ξ) (Ai x + Biu + Ri ū + Di)

y = Cx
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Structure of the unknown input observer

Model
8

>

<

>

:

ẋ(t) =

N
X

i=1

µi(ξ) (Ai x + Biu + Ri ū + Di)

y = Cx

Assumption: ū(t) is bounded

‖ū‖ < ρ where ρ is a positive scalar
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Structure of the unknown input observer

Model
8

>

<

>

:

ẋ(t) =

N
X

i=1

µi(ξ) (Ai x + Biu + Ri ū + Di)

y = Cx

Assumption: ū(t) is bounded

‖ū‖ < ρ where ρ is a positive scalar

Observer
8

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

:

˙̂x =

N
X

i=1

µi (ξ)
“

Ai x̂ + Bi u + Ri ˆ̄ui + Di + Gi(y − Cx̂)
”

ˆ̄ui = γWi
`

y − Cx̂
´

ˆ̄u =
N
X

i=1

µi (ξ) ˆ̄ui
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Unknown input observer existence conditions: main result

Theorem

The unknown input observer estimates asymptotically with any desired degree of
accuracy ε > 0, the state of the T-S model, if there exists symmetric positive definite
matrices P and Q and gain matrices Gi and Wi which satisfies the following
constraints:

8

<

:

(Ai − Gi C)T P + P(Ai − Gi C) < −Q

WiC = RT
i P

∀ i ∈ [1, N]

The observer is then completely defined by choosing:

γ ≥
1
2

“

λmin(P
−1Q)λmin(P) ε2

”−1
ρ2

and the unknown input estimation is given by

ˆ̄u = γ
N
X

i=1

µi (ξ) Wi
`

y − Cx̂
´
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Sketch of the proof

Didier Maquin (CRAN) Observers for TS models Safeprocess’2009 11 / 26



Sketch of the proof

(i) Consider the following quadratic Lyapunov function:

V = eT P e

(ii) Express the state estimation error e(t) = x − x̂ and its derivative w.r.t. time

ė =

N
X

i=1

µi (ξ)
“

(Ai − Gi C)e + Ri ū − γRi WiCe
”

(iii) Express the derivative of the Lyapunov function using ė

V̇ =

N
X

i=1

µi(ξ)
“

eT ((Ai − GiC)T P + P(Ai − Gi C))e + 2eT PRi ū − 2γeT PRi WiCe
”

(iv) Use some upper bound properties and guarantee that V̇ < 0

(v) See the proceedings for a detailed proof
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ė =

N
X

i=1

µi (ξ)
“

(Ai − Gi C)e + Ri ū − γRi WiCe
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V̇ =

N
X

i=1

µi(ξ)
“

eT ((Ai − GiC)T P + P(Ai − Gi C))e + 2eT PRi ū − 2γeT PRi WiCe
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Application to automatic steering of vehicle
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Representation of the vehicle model by a T-S model

Coupling model of longitudinal and lateral motions of a vehicle

u̇ = vr − fg +
(fk1 − k2)

M
u2 + cf

v + ar
Mu

δ +
T
M

v̇ = −ur −
(cf + cr )

Mu
v +

(bcr − acf )

Mu
r +

cf δ + T δ

M

ṙ =
(bcr − acf )

Izu
v −

`

b2cr + a2cf
´

Izu
r +

aT δ + acf δ

Iz

Variables in red

u longitudinal velocity,
v lateral velocity,
r yaw rate,

δ steering angle,
T traction and/or braking force
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Representation of the vehicle model by a T-S model

Model parameters

M Mass of the full vehicle 1480 kg

Iz Moment of inertia 2350 kg.m2

g Acceleration of gravity force 9.81 m/s2

f Rotating friction coefficient 0.02

a Distance from front axle to CGa 1.05 m

b Distance from rear axle to CG 1.63 m

cf Cornering stiffness of front tyres 135000 N/rad

cr Cornering stiffness of rear tyres 95000 N/rad

k1 Lift parameter from aerodynamics 0.005 Ns2/m2

k2 Drag parameter from aerodynamics 0.41 Ns2/m2

aCG: Center of gravity
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Representation of the vehicle model by a T-S model

General form of the nonlinear model

ẋ = F (x , w)

y = Cx

where x =

0

@

u
v
r

1

A, w =

 

δ

T

!

and C =

 

1 0 0

0 0 1

!

,

Takagi-Sugeno model

ẋ =
N
X

i=1

µi (y1) (Aix + Biw + Di)

Ai =
∂F
∂x

˛

˛

˛

˛ x=x(i)

w=w(i)

, Bi =
∂F
∂w

˛

˛

˛

˛ x=x(i)

w=w(i)

, Di = F (x (i), w (i)) − Ai x
(i) − Biw

(i)

◮ Membership functions µi (y1) are chosen as triangular functions
◮ The number N of “local models” is chosen by the user (here N = 3)
◮ The operating points around which the linearization is done are optimized.
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Representation of the vehicle model by a T-S model

Takagi-Sugeno model

Ai =

0

@

A11i A12i A13i

A21i A22i A23i

A31i A32i A33i

1

A

A11i =
2 (fk1 − k2) ui

M
−

cf (vi + ari)

Mu2
i

δi , A12i = ri +
cf δi

Mui
, A13i = vi +

acf δi

Mui

A21i =
(cf + cr )

Mu2
i

vi −
(bcr − acf )

Mu2
i

ri − ri , A22i = −
(cf + cr )

Mui
, A23i =

(bcr − acf )

Mui
− ui

A31i =

`

b2cr + a2cf
´

Izu2
i

ri −
(bcr − acf )

Izu2
i

vi , A32i =
(bcr − acf )

Izui
, A33i = −

`

b2cr + a2cf
´

Izui

Bi =

0

B

B

@

cf
vi +ari

Mui

1
M

cf +Ti
M

δi
M

aTi +acf
Iz

aδi
Iz

1

C

C

A

, Di = F (xi , δi , Ti) − Aixi − Bi

»

δi

Ti

–
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Representation of the vehicle model by a T-S model

Takagi-Sugeno model validation
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Figure: δ: steering angle T : traction force
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Representation of the vehicle model by a T-S model

Takagi-Sugeno model validation
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Figure: Membership functions u issued from nonlinear and TS models
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Representation of the vehicle model by a T-S model

Takagi-Sugeno model validation
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Figure: v issued from nonlinear and TS models r issued from nonlinear and TS models
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Fault detection and isolation
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Fault detection and isolation

System model with additive faults

ẋ = F (x , w) + Rm

y = Cx + η

with m =

„

m1

m2

«

, R =

0

@

1 0
0 −1
1 0

1

A , η ∼ N (0, V )

m1 is a piece-wise constant signal with random amplitude.
m2 is a sinusoı̈dal signal
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Fault detection and isolation

Proposed unknow input observer
8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

˙̂x =

3
X

i=1

µi (ξ)
“

Ai x̂ + Biu + Rm̂i + Di + Gi(y − Cx̂)
”

m̂i = γWi
`

y − Cx̂
´

m̂ =

N
X

i=1

µi (ξ) m̂i

Observer parameters

G1 =

0

@

9.22 −3.88
0.45 −1.02

22.51 −11.92

1

A , G2 =

0

@

10.78 −4.10
6.64 0.55

27.38 −16.19

1

A , G3 =

0

@

8.49 −4.83
4.40 1.36
20.27 −17.07

1

A

γ = 78.12, W1 = W2 = W3 =

„

34.14 0
0 −10

«
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Fault detection and isolation

State estimates
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Figure: longitudinal velocity u and lateral velocity v and their estimates
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Fault detection and isolation

Unknown input estimates
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Figure: fault m1 and its estimate fault m2 and its estimate
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Conclusions & Prospects

Conclusions
◮ A method for the estimation of the state and the unknown input of a nonlinear

system has been proposed
◮ The proposed method uses a Takagi-Sugeno model to represent the behaviour

of the nonlinear system
◮ Feasibility of sensor fault detection on a complex nonlinear model has been

shown

Didier Maquin (CRAN) Observers for TS models Safeprocess’2009 25 / 26
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Conclusions
◮ A method for the estimation of the state and the unknown input of a nonlinear

system has been proposed
◮ The proposed method uses a Takagi-Sugeno model to represent the behaviour

of the nonlinear system
◮ Feasibility of sensor fault detection on a complex nonlinear model has been

shown

Futures prospects
◮ On a theoretical point of view

◮ Try to use another Lyapunov function in order to enlarge the stability region
◮ More precise analysis of the noise influence (particularly on the unknown input

estimation)
◮ On a practical point of view

◮ Apply the proposed method on “real data”
◮ Implement the method on a vehicule
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Thank you!
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