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Motivations

Context
◮ State estimation can be employed as a source of redundancy for fault diagnosis
◮ Observer design problem for generic nonlinear models is very delicate
◮ To take into consideration the complexity of the system in the whole operating range

(nonlinear models are needed)

Goal
◮ State estimation of a nonlinear system represented by a multiple model
◮ Extension of our previous work to improve the dynamic performances of the observer

Proposed strategy
◮ Multiple model representation of the nonlinear system
◮ Convergence conditions are obtained using the Lyapunov method
◮ Conditions are given under a LMI form
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Introduction – philosophy

Basis of multiple model approach: divide and conquer
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Operating

zone 4

Multiple model representationNonlinear system

Multiple model =interpolation of a set of linear
submodels

◮ Appropriate tool for modelling complex
systems

◮ Specific analysis of the system nonlinearity
is avoided

◮ Tools for linear systems can partially be
extended to nonlinear systems
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Decoupled multiple model structure

Employed structure
Decoupled multiple model: multiple model with local state vectors

{
ẋi(t) = Ai xi (t)+Bi u(t)
yi(t) = Cixi (t)

Comments

Collection of submodels
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ξ (t) : decision variable µi (ξ (t)) : weighting functions

Comments
◮ The multiple model output is given by a weighted sum of the submodel outputs
◮ Dimension of the submodels can be different !
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Preliminaries and notations

Augmented form of the multiple model

ẋi (t) = Aixi (t)+Bi u(t) xi ∈ R
ni

yi (t) = Cixi (t) ⇔

y(t) =
L

∑
i=1

µi(ξ (t))yi (t)

Notations

x(t) =












x1(t)
...

xi (t)
...

xL(t)












∈ R
n Ã =












A1 0 0 0 0

0
. . . 0 0 0

0 0 Ai 0 0

0 0 0
. . . 0

0 0 0 0 AL












B̃ =












B1
...

Bi
...

BL












C̃(t) =
[
µ1(t)C1 . . . µi (t)Ci . . . µL(t)CL

]
µ(t) = µ(ξ (t))
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n Ã =












A1 0 0 0 0

0
. . . 0 0 0

0 0 Ai 0 0

0 0 0
. . . 0

0 0 0 0 AL












B̃ =












B1
...

Bi
...

BL












C̃(t) =
[
µ1(t)C1 . . . µi (t)Ci . . . µL(t)CL

]
µ(t) = µ(ξ (t))

Orjuela, Marx, Ragot, Maquin (CRAN) Decoupled multiple model SAFEPROCESS 2009 6 / 16



Motivations Multiple model approach State estimation Simulation example Conclusions

State estimation

Observer structure
◮ Multiple model representation of a nonlinear system

ẋ(t) = Ãx(t)+ B̃u(t)

y(t) = C̃(t)x(t)

◮ Extension of some LTI results to decoupled multiple models
◮ Proportional gain observer: K̃ is the observer gain

˙̂x(t) = Ãx̂(t)+ B̃u(t)− K̃ (y(t)− ŷ (t))

ŷ(t) = C̃(t)x̂(t)

Goal
◮ Determining the gain matrix K̃ such that the estimation error converges toward zero
◮ Ensuring the observer stability for any combination between the submodels and for any

initial conditions
◮ Dynamic performances of the estimation error must be ensured (e.g. exponential

convergence)
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State estimation

Estimation error analysis
◮ Estimation error:

e(t) = x(t)− x̂ (t)

◮ Estimation error dynamics:

ė(t) = (Ã+ K̃ C̃(t))e(t)

◮ Matrix C̃(t) =
[
µ1(t)C1 . . . µi(t)Ci . . . µL(t)CL

]
can be rewritten as

C̃(t) =
L

∑
i=1

µi (t)C̃i where C̃i =
[
0 . . . Ci . . . 0

]

◮ Finally

ė(t) =
L

∑
i=1

µi (t)(Ã + K̃ C̃i)e(t) = Aobs(t)e(t)

◮ Aobs(t) is a time-varying matrix
◮ Interaction between submodels must be taken into consideration in the observer design!
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ė(t) = (Ã+ K̃ C̃(t))e(t)

◮ Matrix C̃(t) =
[
µ1(t)C1 . . . µi(t)Ci . . . µL(t)CL

]
can be rewritten as

C̃(t) =
L

∑
i=1

µi (t)C̃i where C̃i =
[
0 . . . Ci . . . 0

]

◮ Finally
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ė(t) = (Ã+ K̃ C̃(t))e(t)

◮ Matrix C̃(t) =
[
µ1(t)C1 . . . µi(t)Ci . . . µL(t)CL

]
can be rewritten as

C̃(t) =
L

∑
i=1

µi (t)C̃i where C̃i =
[
0 . . . Ci . . . 0

]

◮ Finally
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Observer design: first strategy

Theorem
The exponential convergence of the estimation error is guaranteed if there exists a symmetric
and positive definite matrix P, a matrix G and a positive scalar α such that:

(Ã+α I)T P +P(Ã+α I)+(GC̃i )
T +GC̃i < 0, i = 1...L

where α is the decay rate. The observer gain is given by K̃ = P−1G.

Comments
1 The choice of the decay rate α is limited because the observability property of matrices Ã

and C̃i is not respected.

Ã =











A1 0 0 0 0

0
. . . 0 0 0

0 0 Ai 0 0

0 0 0
.. . 0

0 0 0 0 AL











and C̃i = [0 . . . Ci . . . 0]

2 Eigenvalues assignment is limited !
3 New observer design conditions must be established
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Observer design: second strategy

New strategy
◮ Introduce a new matrix as follows

C̃0 =
1
L

L

∑
i=1

C̃i =
1
L

[
C1 C2 · · · CL

]
.

◮ Estimation error dynamics

ė(t) = (Ã+ K̃ C̃(t))e(t) =
L

∑
i=1

µi(t)(Ã + K̃ C̃i )e(t)

= (Ã+ K̃
L

∑
i=1

µi (t)(C̃i +C̃0 − C̃0)
︸ ︷︷ ︸

=0

)e(t)

= (Ã+ K̃ C̃0 + K̃
L

∑
i=1

µi (t)(C̃i − C̃0))e(t)

= (Ã+ K̃ C̃0 +
L

∑
i=1

µi(t)K̃ C̄i )e(t) = Aobs(t)e(t) where C̄i = C̃i − C̃0

◮ Aobs(t)e(t) is a constant matrix with an artificial norm-bounded uncertainties due to µi (t)
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ė(t) = (Ã+ K̃ C̃(t))e(t) =
L

∑
i=1
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︸ ︷︷ ︸

=0

)e(t)

= (Ã+ K̃ C̃0 + K̃
L

∑
i=1

µi (t)(C̃i − C̃0))e(t)

= (Ã+ K̃ C̃0 +
L

∑
i=1

µi(t)K̃ C̄i )e(t) = Aobs(t)e(t) where C̄i = C̃i − C̃0

◮ Aobs(t)e(t) is a constant matrix with an artificial norm-bounded uncertainties due to µi (t)

constant term
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Observer design: second strategy

New strategy
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Observer design: new strategy

New proposed theorem

The exponential convergence towards zero of the estimation error is guaranteed if there exists
symmetric and positive definite matrices P and Q, a matrix G and a positive scalar α such that:






P(Ã+αI)+(Ã+αI)T P +GC̃0 +(GC̃0)
T Ḡ ¯̄CT Q

ḠT −Q 0
Q ¯̄C 0 −Q




 < 0

where
Ḡ =

[
G · · · G · · · G

] ¯̄C =
[
C̄T

1 · · · C̄T
i · · · C̄T

L

]T
C̄i = C̃i − C̃0 .

where α is the decay rate and the observer gain is given by K̃ = P−1G.

1 Consider V (t) = eT (t)Pe(t) as Lyapunov function

2 Ensuring the following inequality: ∃α > 0 : V̇ (t)+2αV (t) < 0
3 Using the well known inequality: XF (t)Y +Y T F T (t)XT ≤ XQ−1XT +Y T QY

4 The observability property of matrices Ã and C̃0 is now well respected!!
5 Dynamic performances of the observer can be improved ! (decay rate α is not limited)
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P(Ã+αI)+(Ã+αI)T P +GC̃0 +(GC̃0)
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Simulation example

Multiple model parameters

L = 2 submodels with different dimensions (n1 = 3 and n2 = 2), given by:

A1 =





−2.0 0.5 0.6
−0.3 −0.9 −0.5
−1.0 0.6 −0.8



 , A2 =

[
−0.8 −0.4
0.1 −1.0

]

,

B1 =
[
1.0 0.8 0.5

]T
, B2 =

[
−0.5 0.8

]
,

C1 =

[
0.9 −0.8 −0.5
−0.4 0.6 0.7

]

, C2 =

[
−0.8 0.6
0.4 −0.7

]

.

The weighting functions are

µi(ξ (t)) = ηi (ξ (t))/
L

∑
j=1

ηj(ξ (t)) where ηi (ξ (t)) = exp
(

−(ξ (t)−ci )
2/σ2

)

,

with σ = 0.5 and c1 = −0.25 and c2 = 0.75, ξ (t) is the input signal u(t) ∈ [−1,1].
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Simulation example
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Figure: State estimation errors

Comments
1 Solutions satisfying conditions of the first theorem are not found for a decay rate α > 0.8
2 Solutions satisfying conditions of the new theorem are found for a decay rate α > 0.8
3 Good dynamic performances are obtained using new conditions!
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Simulation example

Application to sensor fault diagnosis: structuring the residual signals
◮ Dedicated Observer Scheme is employed for residual signal generation
◮ An incidence matrix is built
◮ Configuration of residual signals is used for FDI
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Conclusions

Conclusions
◮ State estimation based on a decoupled multiple models is investigated
◮ Originality: the dimension of each submodel may be different (flexibility in the modelling

stage can be provided)
◮ New convergence conditions for state estimation error are proposed
◮ Dynamic performances of the observer are improved in this way
◮ State estimation is employed as a source of redundancy for FDI
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Thank you!
comments are welcome!
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