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Context of the study

I The mission of Institut de Soudure is to create, develop and implement
technological solutions for companies all over the world, in the field of
multi-material joining and associated testing

I Inside Institut de Soudure, the Non-Destructive Testing laboratory is developing
testing and monitoring methods suited to metal, composite or ceramic materials,
the monitoring of facilities in service and the supervision of their ageing process

I This paper focuses on the development of a method for damage detection and
localization in pipeline structures

I These structures are subject to variation of environmental and operational
conditions (EOCs) which have an impact on the collected signals

I The effects of these EOCs could be similar to those produced by damage. This
would result in false warnings. The differentiation between the aforementioned
types of changes is a challenging task.
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Experimental test bench

Tube with 6.4 m length placed in laboratory conditions where temperature fluctuates
between 19˚C and 26˚C during the monitoring period.

FIGURE – Test bench

The used sensor (Ultrasonic Guided Waves - UGW) can excite two separate guided
waves modes which are : torsion and flexion at five different frequencies : 14, 18, 24,
30 and 37 kHz.
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Data collection and preprocessing

I The tube has been monitored during a period of almost 3 months.
I Each week, multiple measurements were scheduled.
I At each measurement, five signals were acquired in the morning and at the

evening in order to capture temperature changes during the day and to
investigate its effects on the collected signals.

FIGURE – Ultrasonic guided wave signal excited with torsion mode (frequency : 14 kHz).
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Data collection and preprocessing

I Damage was created by removing material from the inside of the pipeline in six
increasing steps in order to simulate corrosion growing within the structure.

I At the end of the monitoring period, a total of 236 signals were collected where
207 ones were undamaged and 29 signals were acquired from a damage state.

Monitoring period 3 months
Reference state 207 signals
Damage state 6 increasing defects

(29 signals)
Temperature 19 ˚C→ 26 ˚C

I The excitation signal has been removed by the acquisition system (portion in the
middle of the signal).

I The three echoes with the highest amplitude represent multiple reflections from
the end of the pipe.

I These echoes have to be removed also from the original signal because they are
not useful for damage detection.
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Experimental test bench

FIGURE – Propagation of guided waves

Didier Maquin (CRAN) Damage detection and localization in pipeline 6 / 22



Recorded signal

FIGURE – Torsion mode at 14 kHz
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Temperature effect vs damage occurrence

FIGURE – Right : acquisition at two different temperatures ; left : superposition of a healthy signal
and a faulty signal

Difficulty in differentiating the two causes
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Proposed treatments

First attempt

X Extracting relevant characters→ classification methods

X Using “classic” descriptors in the time, frequency and time-frequency domain
(mean, standard deviation, root mean square, wavelet coefficients, etc.)

X Little available data acquired on structures in default→ use of one-class methods

X One class SVM or Neural Networks
→ Fairly poor discrimination (insufficient with regard to the specifications)
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Chosen solution

Second attempt

X Back to “ordinar” regression methods

X Observation : high reproducibility of the measurement and low noise
measurements

X Temperature is the environmental condition that most influences the acquired
signal

X Establishment of a database of reference signals acquired on a healthy structure
but with temperature variations

X When a new signal is acquired, we try to express it as a linear combination of the
signals of the reference database

X The estimation error is then analyzed and, depending on its amplitude, it is
decided whether it is a signal coming from a healthy structure or from a damaged
structure
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Chosen solution

Mathematically

C ∈ IRm×n : matrix of n reference signals of dimension m

x ∈ IRm : new signal to analyse

Definition of a criterion to be minimized (classical least-squares criterion)

J(θ) = ‖Cθ −x‖22
Search for the optimum

θ̂ = argmin
θ

J(θ)

→ over-learning : even if the estimation error grows
a faulty signal is “correctly” estimated

that’s explained by multiple compensations between the different signals in the
database
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Chosen solution

Observation

If the reference database is exhaustive, a signal acquired with given environmental
conditions should be explained using reference signals acquired according to these
same environmental conditions

In addition, the coefficients of the linear combination should be positive in order to
avoid compensating phenomena.

→ Traditional problem of multiple regression for which the explanatory variables must
be selected among the signals of the database : LASSO method 1 (Least Absolute
Shrinkage and Selection Operator )

Mathematically

Search for the optimum
θ̂ = argmin

θ
(J(θ)+λ‖θ‖1)

s.t. θ ≥ 0

Difficulty : choice of the regularization parameter λ

1. Tibshirani, Regression shrinkage and selection via the lasso, Journal of the Royal Statistical Society. Series
B, 58(1) :267-288, 1996.
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Chosen solution

Observation

All the signals in the reference database are strongly correlated

FIGURE – Image of correlation coefficients of reference signals (PCA)
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Chosen solution

The non-negative least squares method (NNLS) is naturally self-regularizing in the
case of strongly correlated signals

Mathematically

Search for the optimum
θ̂ = argmin

θ
‖Cθ −x‖22

sous θ ≥ 0

→ Classic solution obtained by solving the conditions of Karush, Kuhn and Tucker
(available in most the CACSD software - Matlab, Scilab, R, Python, etc.)

Here, we have chosen to use the active set method 2 because a recursive version of
this method can be easily implemented (details in the communication).

This will be used later for the purpose of localization of damage.

2. Lawson & Hanson, Solving least squares problems. Society for Industrial and Applied Mathematics, 1995.
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Results

FIGURE – Estimation of a signal from a healthy structure
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Results

FIGURE – Estimation error of a signal from a healthy structure
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Results

FIGURE – Estimation error of a signal from a faulty structure
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Results

FIGURE – Quadratic estimation error J(θ̂) for different signals (faulty signals in red)

The values of J(θ̂) increase as the size of damage increases. Thus, J(θ̂) can be used
to assess the severity of damage.
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Damage localization

Problem : how to locate (with a prescribed precision) the position of the damage

Solving this problem is not so simple because the wave propagation is affected by the
presence of the damage and this deformation propagates (it is not a local
phenomenon)

X To determine the position of damage, the sparse estimation is applied on a
sliding window over the signal.

X The window width may influence the final result in terms of precision of
localization ; here it was set initially at forty samples.

X This window was moved by one sample per step and at each step, the quadratic
estimation error is computed using a recursive NNLS algorithm.

Justification : before the wave arrives at position of the damage, it is not distorted
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Damage localization

FIGURE – Quadratic estimation error J(θ̂) depending on the position of the window

Localization result : D = 3±0.41 m for a damage located at 2.6 m from the
actuator/sensor
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Conclusion and perspectives

I A method for damage detection and localization in pipeline structures was
proposed

I It is based on sparse estimation of the measured signals by reference signals
recorded in fault-free situation

I The sparsity induced by the use of NNLS helps to enhance damage detectability
because a damaged signal will have a high estimation error compared to that of
a healthy signal

I The localization of damage was established by implementing a recursive version
of the sparse estimation on a sliding window over the damaged signal

I As a perspective of this work, an update of the database of reference signals
could be considered in the case where these signals present limited variation in
EOCS
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