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Fault tolerant control

Ideas underlying the contribution

◮ To compute different state estimates of the nonlinear system (represented by a
Takagi-Sugeno model) using a bank of observers fed with different sets of
measurements (here a DOS structure for sensor fault)

◮ To design residual generators able to detect and isolate sensor faults. These
residuals help in computing a “confidence level” in the corresponding state
estimate

◮ To design a fault tolerant control law as a weighted sum of state feedback laws ;
the weights being indexed on the previous “confidence level” (magnitude of the
residual)
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Takagi-Sugeno approach for modeling
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Takagi-Sugeno principle

◮ Operating range decomposition in several local zones.
◮ A local model represents the behavior of the system in a specific zone.
◮ The overall behavior of the system is obtained by the aggregation of the

sub-models with adequate weighting functions.

ξ1(t)

ξ2(t)

ξ1(t)

ξ2(t)

Operating

space

zone 1

zone 2

zone 3

zone 4

Multiple Model representationNonlinear system
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Takagi-Sugeno approach for modeling

The main idea of Takagi-Sugeno approach
◮ Define local models Mi , i = 1..r
◮ Define weighting functions µi (ξ ), 0 ≤ µi ≤ 1
◮ Define an agregation procedure : M = ∑r

i=1 µi (ξ )Mi
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i=1 µi (ξ )Mi

Interests of Takagi-Sugeno approach
◮ Simple structure for modeling complex nonlinear systems.
◮ The specific study of the nonlinearities is not required.
◮ Possible extension of the theoretical LTI tools for nonlinear systems.
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◮ Define local models Mi , i = 1..r
◮ Define weighting functions µi (ξ ), 0 ≤ µi ≤ 1
◮ Define an agregation procedure : M = ∑r

i=1 µi (ξ )Mi

Interests of Takagi-Sugeno approach
◮ Simple structure for modeling complex nonlinear systems.
◮ The specific study of the nonlinearities is not required.
◮ Possible extension of the theoretical LTI tools for nonlinear systems.

The difficulties
◮ How many local models ?
◮ How to define the domain of influence of each local model ?
◮ On what variables may depend the weighting functions µi ?
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Takagi-Sugeno approach for modeling

Obtaining a Takagi-Sugeno model
◮ Identification approach

◮ Choice of premise variables
◮ Choice of the number of modalities of each premise variables
◮ Choice of the structure of the local models
◮ Parameter identification

◮ Transformation of an a priori known nonlinear model
◮ Linearization around some “well-chosen” points

Identification of the weighting function parameters to minimize the output error

◮ Nonlinear sector approach

Rewriting of the model in a compact subspace of the state space







ẋ(t) = f (x(t),u(t))

y(t) = h(x(t),u(t))
⇒







ẋ(t) =
r
∑

i=1
µi(ξ (t))

(
Ai x(t)+Bi u(t)

)

y(t) =
r
∑

i=1
µi (ξ (t))

(
Cix(t)+Di u(t)

)
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Observer based state feedback control law
for Takagi-Sugeno systems
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Observer based state feedback control law

T-S System






ẋ(t) =
r
∑

i=1
µi (ξ (t))(Aix(t)+Biu(t))

y(t) =
r
∑

i=1
µi(ξ (t))Cix(t)
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Hypotheses
◮ The pairs (Ai ,Bi) are controllable
◮ The pairs (Ai ,Ci ) are observable
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T-S System






ẋ(t) =
r
∑

i=1
µi (ξ (t))(Aix(t)+Biu(t))

y(t) =
r
∑

i=1
µi(ξ (t))Cix(t)

Hypotheses
◮ The pairs (Ai ,Bi) are controllable
◮ The pairs (Ai ,Ci ) are observable

Observer based state feedback control law






˙̂x(t) =
r
∑

i=1
µi (ξ (t))(Ai x̂(t)+Biu(t)+Li(y(t)− ŷ(t)))

ŷ(t) =
r
∑

i=1
µi (ξ (t))Ci x̂(t)

u(t) =−
r
∑

i=1
µi (ξ (t))Ki x̂(t) PDC control law (Wang et al., 1996)
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Observer based state feedback control law

State estimation error

e(t) = x(t)− x̂(t)
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Observer based state feedback control law

State estimation error

e(t) = x(t)− x̂(t)

Dynamics of the closed-loop system






ẋ(t) =
r
∑

i=1

r
∑

j=1
µi (ξ (t))µj(ξ (t))

(
(Ai −BiKj )x(t)+BiKje(t)

)

ė(t) =
r
∑

i=1

r
∑

j=1
µi (ξ (t))µj (ξ (t))

(
Ai −LiCj

)
e(t)
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Augmented state

xa(t) = [xT (t) eT (t)]T
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r
∑

j=1
µi (ξ (t))µj (ξ (t))

(
Ai −LiCj

)
e(t)

Augmented state

xa(t) = [xT (t) eT (t)]T

Augmented system

ẋa(t) =
r

∑
i=1

r

∑
j=1

µi (ξ (t))µj(ξ (t))
(

Ai −BiKj BiKj
0 Ai −LiCj

)

xa(t)
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Observer based state feedback control law

Quadratic Lyapunov function

V (xa(t)) = xT
a (t)Pxa(t), P = PT ≥ 0, P =

(
P1 0
0 P2

)
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Observer based state feedback control law

Quadratic Lyapunov function

V (xa(t)) = xT
a (t)Pxa(t), P = PT ≥ 0, P =

(
P1 0
0 P2

)

Derivative of the Lyapunov function

V̇ (xa(t)) = ẋT
a (t)Pxa(t)+xT

a (t)Pẋa(t)

V̇ (xa(t)) = xT
a (t)

(
r

∑
i=1

r

∑
j=1

µi (ξ (t))µj(ξ (t))∆ij

)

xa(t)

∆ij =

(

AT
i P1 +P1Ai −Kj

T BT
i P1 −P1BiKj P1BiKj

Kj
T BT

i P1 AT
I P2 +P2AI −CT

j Li
T P2 −P2LiCj

)
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Observer based state feedback control law

Quadratic Lyapunov function

V (xa(t)) = xT
a (t)Pxa(t), P = PT ≥ 0, P =

(
P1 0
0 P2

)
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V̇ (xa(t)) = ẋT
a (t)Pxa(t)+xT

a (t)Pẋa(t)

V̇ (xa(t)) = xT
a (t)

(
r

∑
i=1

r

∑
j=1

µi (ξ (t))µj(ξ (t))∆ij

)

xa(t)

∆ij =

(

AT
i P1 +P1Ai −Kj

T BT
i P1 −P1BiKj P1BiKj

Kj
T BT

i P1 AT
I P2 +P2AI −CT

j Li
T P2 −P2LiCj

)

Difficulties

∆ij ≤ 0 ⇒ Bilinear Matrix Inequalities

Difficult to solve as it corresponds to a non convex optimization problem!

Didier Maquin (CRAN) New fault tolerant control strategy Papyrus Workshop 11 / 34



Observer based state feedback control law

Redundant descriptor system approach

Idea : to introduce a “virtual” dynamics for u(t)

0× u̇(t) =−
r

∑
i=1

µi (ξ (t))Ki x̂(t)−u(t)
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Observer based state feedback control law

Redundant descriptor system approach

Idea : to introduce a “virtual” dynamics for u(t)

0× u̇(t) =−
r

∑
i=1

µi (ξ (t))Ki x̂(t)−u(t)

New augmented state

x̃(t) = [xT (t) eT (t) uT (t)]T

Augmented system




I 0 0
0 I 0
0 0 0



 ˙̃x(t) =
r

∑
i=1

r

∑
j=1

µi (ξ (t))µj(ξ (t))





Ai 0 Bi
0 Ai −LiCj 0

−Ki Ki −I



x̃(t)

E ˙̃x(t) =
r

∑
i=1

r

∑
j=1

µi (ξ (t))µj(ξ (t))Ãij x̃(t)
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Observer based state feedback control law

Augmented system

E ˙̃x(t) =
r

∑
i=1

r

∑
j=1

µi (ξ (t))µj(ξ (t))Ãij x̃(t)
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Observer based state feedback control law

Augmented system

E ˙̃x(t) =
r

∑
i=1

r

∑
j=1

µi (ξ (t))µj(ξ (t))Ãij x̃(t)

Asymptotic stability

Consider the quadratic Lyapunov function

V (x̃(t)) = x̃T (t)ET Px̃(t), ET P = PT E ≥ 0, P =





P1 0 0
0 P5 0
0 0 P9





Derivative of the Lyapunov function

V̇ (x̃(t)) = ˙̃xT (t)ET Px̃(t)+ x̃T (t)PE ˙̃x(t)

V̇ (x̃(t)) = x̃T (t)
r

∑
i=1

r

∑
j=1

µi (ξ (t))µj(ξ (t))
(

ÃT
ij P +PÃij

)

︸ ︷︷ ︸

Xij

x̃(t)
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Observer based state feedback control law

Asymptotic stability conditions

The derivative of the Lyapunov function is negative provided Xij ≤ 0

Xij =





P1Ai +AT
i P1 0 P1Bi −Fi

T

∗ P5Ai +AT
i P5 −Mi Cj −CT

j Mi
T Fi

T

∗ ∗ −2P9




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Observer based state feedback control law

Asymptotic stability conditions

The derivative of the Lyapunov function is negative provided Xij ≤ 0

Xij =





P1Ai +AT
i P1 0 P1Bi −Fi

T

∗ P5Ai +AT
i P5 −Mi Cj −CT

j Mi
T Fi

T

∗ ∗ −2P9





Solution

The redundant descriptor system approach allows the asymptotic stability conditions
to be expressed using LMI that can be easily solved.
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Relaxed stability conditions : Polya’s theorem

Objective

Reduce the conservativeness of the LMI conditions by Polya’s theorem

Principle

Let us consider the inequality

Xξ ξ =
r

∑
i=1

r

∑
j=1

µi (ξ (t))µj (ξ (t))Xij < 0

Knowing that
(

r

∑
i=1

µi(ξ (t))

)p

=
r

∑
i=1

µi (ξ (t)) = 1

where p is a positive integer, we obtain
(

r

∑
i=1

µi (ξ (t))

)p r

∑
i=1

r

∑
j=1

µi (ξ (t))µj(ξ (t))Xij < 0
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Relaxed stability conditions : Polya’s theorem

Example

For example, choosing p = 1, and r = 2, we obtain an equivalent inequality

Xξ ξ =
2

∑
i1=1

2

∑
i2=1

2

∑
i3=1

µi1 µi2 µi3Xi1 i2 < 0

Consequently, the negativity of Xξ ξ is ensured if

X11 < 0

X22 < 0

X11 +X12 +X21 < 0

X22 +X21 +X12 < 0

• Remark that the negativity of X12 and X21 is not required.

◮ Reduced conditions are obtained by increasing p
◮ Asymptotic necessary and sufficient conditions can be obtained by choosing

p → ∞ (Sala et al. 2007)
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Fault tolerant control

Theorem 1

The observer based control law ensures asymptotic stability of the system, if there
exists symmetric and positive definite matrices P1, P5 and P9 and gain matrices Fi
and Mi such that the following constraints hold

Xii < 0, i = 1, ..., r
Xii +Xji +Xij < 0, i , j = 1, ..., r , i 6= j

where

Xij =





P1Ai +AT
i P1 0 P1Bi −Fi

T

∗ P5Ai +AT
i P5 −Mi Cj −CT

j Mi
T Fi

T

∗ ∗ −2P9





The gains of the observer based controller are derived from the following equations

Ki = P−1
9 Fi , Li = P−1

5 Mi
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Residual generation
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Residual generation

Considered faulty system






ẋ(t) =
r
∑

i=1
µi (ξ (t))(Aix(t)+Biu(t))

y(t) =
r
∑

i=1
µi(ξ (t))(Cix(t)+Gi f (t))
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Residual generation

Considered faulty system






ẋ(t) =
r
∑

i=1
µi (ξ (t))(Aix(t)+Biu(t))

y(t) =
r
∑

i=1
µi(ξ (t))(Cix(t)+Gi f (t))

Residual generator






˙̂x(t) =
r
∑

i=1
µi (ξ (t))(Ai x̂(t)+Biu(t)+Li(y(t)− ŷ(t)))

ŷ(t) =
r
∑

i=1
µi (ξ (t))Ci x̂(t)

r(t) = M(y(t)− ŷ(t))
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Fault tolerant control design
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Fault tolerant control strategy

Description

◮ Use of an observer bank : the k th observer is fed with the input of the system u(t)
and the k th output yk (t) and produces the estimate x̂k (t) ;

◮ The control signal u(t) is a blending of the p observed state feedback controls ;

u(t) =−
r

∑
j=1

p

∑
k=1

hk (r(t))µj(ξ (t))K k
j x̂k (t)

◮ The blending is ensured by the functions hk (r(t)), which are smooth nonlinear
ones satisfying the convex sum property ;

◮ The design of such functions is based on the idea that if the k th sensor is affected
by a fault, the residual rk (t) is non zero then the function hk (r(t)) must be close
to zero in order to minimize the influence of x̂k (t) affected by the k th fault
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Fault tolerant control strategy

u(t) =−
r

∑
j=1

p

∑
k=1

hk (r(t))µj(ξ (t))K k
j x̂k (t)
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Fault tolerant control strategy

Closed loop system

ẋ =
r

∑
i=1

r

∑
j=1

p

∑
k=1

hk(r)µi (ξ )µj (ξ )
(

(Ai −Bi K
k
j )x +BiK

k
j ek

)
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Fault tolerant control strategy

Closed loop system

ẋ =
r

∑
i=1

r

∑
j=1

p

∑
k=1

hk(r)µi (ξ )µj (ξ )
(

(Ai −Bi K
k
j )x +BiK

k
j ek

)

Dynamics of the k th state estimation error : ek
= x − x̂k

ėk =
r

∑
i=1

r

∑
j=1

µi (ξ )µj (ξ )
(

Ai −Lk
i Ck

j

)

ek

where Ck
j is the k th row of the matrix Cj .
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Fault tolerant control strategy

Closed loop system

ẋ =
r

∑
i=1

r

∑
j=1

p

∑
k=1

hk(r)µi (ξ )µj (ξ )
(

(Ai −Bi K
k
j )x +BiK

k
j ek

)

Dynamics of the k th state estimation error : ek
= x − x̂k

ėk =
r

∑
i=1

r

∑
j=1

µi (ξ )µj (ξ )
(

Ai −Lk
i Ck

j

)

ek

where Ck
j is the k th row of the matrix Cj .

Augmented system

(xk
a )

T = [xT (ek)T ]

ẋk
a =

r

∑
i=1

r

∑
j=1

p

∑
k=1

hk(r)µi (ξ )µj (ξ )

(

Ai −Bi K k
j BiK k

j
0 Ai −Lk

i Ck
j

)

xk
a
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Simulation examples

◮ The proposed algorithm of FTC is illustrated by an academic example. Let
consider the nonlinear system represented by two submodels defined by

A1 =





−2 1 1
1 −3 0
2 1 −8



 , A2 =





−3 2 −2
5 −3 0
1 2 −4





B1 =





1
5

0.5



 , B2 =





3
1

−1



 , C =

(
1 1 1
1 0 0

)

◮ The weighting functions µi are defined as follows







µ1(y(t)) =
1− tanh(y2(t))

2

µ2(y(t)) = 1−µ1(y(t))
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Simulation examples

◮ Blending functions for the FTC law

ωk (rk (t)) = exp(−r2
k (t)/σk )

hk (r(t)) =
ωk (rk (t))

∑p
ℓ=1 ωℓ(rℓ(t))

◮ Structure of the control law

u(t) =−
2

∑
k=1

2

∑
j=1

hk(r(t))µj (ξ (t))K k
j x̂k (t)+ ref (t)

ref (t) is a given reference signal.
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First case : sensor additive constant fault
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First case : sensor additive time varying fault
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First case : sensor parametric fault
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First case : sensor parametric fault
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Conclusions and perspectives

Conclusions

◮ Proposition of the design of a fault tolerant control law for nonlinear
systems represented by a Takagi-Sugeno model.

Perspectives
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Perspectives

◮ Study of the unmeasurable premise variable case (ξ (t) = x(t)).

◮ Study of the case where both actuator and sensor faults affect the
system

◮ Extension to robust fault tolerant control (disturbances and
modeling uncertainties).
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Thank you for attention !
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