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Introduction 

This work:  

 
•  Novel framework for health aware control under component degradation.  
 
 
•  Reinforcement learning based approach:   
 

•  Learn an optimal control policy integrating global system transition data and RUL prediction data. 

•  The RUL prediction generated at each step, is tracked to a desired value of RUL. 

•  Integrated within a cost function à maximized to learn the optimal control.   

•  Presents a novel way of integrating model based methods with data driven techniques. 

•  Also, presents method to integrate Artificial Intelligence for health aware control.  
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Background 

Health Aware control (HAC) à  Control design based upon: 
•  Health of components/system, 
•  Remaining Useful Life (RUL) predictions à Prognostics  of component/system. 
•  Change in System Loading / Operating condition à Assure mission completion, optimal performance, etc. 

 

Challenges   

•  Health predictions generated by degradation model.  
•  Degradation models à usually, unknown or partially known.  
•  RUL model (transition model) not available:  Predictions must be generated using l-step ahead predictions.  

•  Integration of RUL data base with system dynamics for control synthesis.  

•  How to obtain optimal control based upon l-step ahead RUL predictions? 
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Reinforcement Learning: Interaction of controller (Agent) with system (Environment) .  

 

System : Formalized using a Markov Decision process (MDP).   

Based upon controller action (decision) à ‘Reward’(Feedback Signal) is generated by system output.  

The cost (value) associated with a control policy (action) should be maximized.  

 

Objective à maximize the reward received à learn optimal control policy that gives maximum reward 
for all system states.  
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Reward	(Feedback	Signal)	



Problem Formulation 
•  Nonlinear system affine in control in discrete time k 

Corresponding	Author	Email:		mayank-shekhar.jha	[at]	univ-lorraine.fr	
	

6	/14	

1 ( ) ( )k s k k kx f x g x u+ = +

•  Control policy:  ( ) :h X U⋅ → ( )k ku h x=

1 ( , , )k d k kd f d m x+ =•  Degradation Model : Critical component/subsystem  
(chosen a priori). 

•  RULk is generated using a l-step ahead prediction:   
 

 Projecting DM into future over an infinite horizon till 
 failure value Dfail is reached,  
 assuming control action same as    

dk+1 = fd (dk ,m,xk ); xk+1 = fs (xk )+ g(xk )uk
dk+2 = fd (dk+1,m,xk+1); xk+2 = fs (xk+1)+ g(xk+1)uk
!
dk+l = fd (dk+l−1,m,xk+l−1);xk+l = fs (xk+l−1)+ g(xk+l−1)uk

ku

Assumption 1: System states considered observable.  
  
Assumption 2: There exists a admissible control policy so that 
closed loop is asymptotically stable.   
 
  

: GivenfailD



Problem Formulation 
•  Desired end of life (EOL)  

•  Mission/user dependent. 
  

•  Desired RUL at time k can be generated : 

•  The previous l-step ahead prediction produce 

    the actual value of the RUL : 

 

The objective is now to compute an optimal RUL tracking in the framework of Q-learning algorithm 

 

 

•  Reward generation at k :  

 

    Minimize difference                          while assuring minimal energy consumption and system performance. 

 

    Cumulative reward or return (from state and RUL): 

    (discounted cost over infinite horizon) 

 

 7	/14	

* : GivenEOLT

RULk
* =TEOL

* − kTs

RULk

rk+1 = −
1
2
xk
T S xk +uk

TR uk + (RULk
* − RULk )

TP (RULk
* − RULk )( ) = ρ(xk ,RULk ,uk )

*( )k kRUL RUL−
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Q-function (state–action pair) is defined as follows.  

It generates return obtained by applying 

following policy          thereafter.  

 

This approach is clearly linked to dynamic programing approach  

 

Bellman’s equation for Q-function :  

 

 

Bellman optimal equation for Q-functions: 

 

Optimal control is the one that maximizes Q* 

whatever the state considered  

Corresponding	Author	Email:		mayank-shekhar.jha	[at]	univ-lorraine.fr	
	

8	/14	

Problem Formulation 

atku kx
( )kh x Qh (xk ,RULk ,uk ) = rk+1(xk ,RULk ,uk )+γR

h (xk+1,RULk+1,h(xk+1))

Qh (xk ,RULk ,uk ) = ρ(xk ,RULk ,uk )+γQ
h (xk+1,RULk+1,h(xk+1))

Q*(x,u) = ρ(x,u)+γ max
u '
Q*( fs (x,u),u ')

h*(x) = argmax
u∈U

Q*(x,RUL,u)



Q-Learning Algorithm 

•  Using only the observed state transitions and rewards, i.e., data tuples 

 

 

 

 

•  Control action selection : Exploration – Exploitation Routine (Epsilon-greedy strategy) 

 

Exploration : Take a Random control action à Explore what kind of reward an action leads to.  

Exploitation: Take only that action which gives maximum return à Greedy approach, exploit the learnt 
values.     
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(xk ,RULk ,uk , xk+1,RULk+1,rk+1)

Qk+1(xk ,RULk ,uk )= Qk (xk ,RULk ,uk )+αk rk+1 +γ maxu ' Qk (xk+1,RULk+1,u ')

updated estimate
! "##### $#####

−Qk (xk ,RULk ,uk )
current estimate

! "## $##

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

temporal difference
! "######### $#########

uk =

u ∈ random (U) with probability ε (exploration)

u ∈ arg max
u∈U

Q(x,RUL,u)with probability 1-ε (exploitation)

⎧

⎨

⎪
⎪

⎩

⎪
⎪

ε ∈ (0,1) Exploration probability which can be indexed on the number of episodic runs. 



Simulation Study : DC motor with Shaft Wear 

DC Motor Linear Model Discrete time (MDP) 

(State Space à Markov Model, Control input à Decision variable) 

 

Simplified wear model (Archard Equation) :  

Shaft wear as function of shaft speed.    

 

Open Loop Characteristics :  

 Step Input 10V (Maximum) 

 

One Episodic Play (10s of system functioning):  

1000 steps system simulation  

(System data collection)  
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Hwk+1 = Hwk +TsCwωk

ω(t)∈ [0,10−1]rad s−1
( ) [0,0.1]Ai t ∈

( ) [0,10]Vu t ∈

Hwfail = 0.02 (m3/s)	

TEOL = 3.4s 	 Hwfail 	

Ts = 0.01s



Simulation Study : DC motor with Shaft Wear 

Objective: Reach a desired T*EOL=9s by learning a suitable control law from system transition data.  

 

 

 

 

 

Reward:   
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The wear rate Hw reach not more than 0.02 (m3/s) at the end of 900 simulation steps 

rk+1 = −
1
2

ik ωk
⎡
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⎤
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⎡
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ik
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⎤

⎦

⎥
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+10 uk

2 +100 (RULk
* − RULk )

2
⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

•  For Q-learning, a naïve tabular approach is adopted :  State – Action pair table stores Q-value.  
 
•  One	episodic	play		

•  Simulate		DC	motor	model	(generate	system	data)	+	Generate	RUL	predic>on	at	each	step	k,		
•  Generate	reward		
•  Update	Q-value	using	Q-learning	algorithm	

•  Repeat	this	process	(for	number	of	episodic	plays)	un>l	satura>on	(op>mality)	
						of	Q-values	in	Q-table	is	reached	for	all	states.		

	



Results 

•  Total Episodic plays :  3000  

•  Convergence detected: approx. 1500 Episodic plays.  
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Results  

Behavior under learnt Control policy (law) :  
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Degradation levels is restricted to Hwfail value at the 
end of 10s or 1000 simulation steps.  

Desired RUL is reached at the end of 9s of system 
functioning (900 simulation steps).  



Conclusions and Perspectives 

•  Novel framework: Reinforcement learning based optimal control law in face of component 
degradation.  

 

•  Novel integration: Global system transition data (generated by an analytical model that mimics the 
real system) and RUL prediction data to learn optimal control.  

•  Control policy that manages the speed of degradation in a way such that desired RUL is reached.  
 

•  Q-functions do not require model knowledge to learn optimal policy.  

    In absence of accurate dynamics, experience replay (using episodic data iteratively) to attain  

    optimality. 
 

•  An inevitable disadvantage to managing the RUL is that the control is learnt off-line. 

•  It would be interesting to handle non-linear degradation process and hidden system states. 

•  Efficient function approximation for large state spaces.   
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