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Context of the study

I It addresses the problem of multiple fault isolation based on kernel principal
component analysis

I It proposes a sparse fault estimation method to evaluate the so-called
reconstruction-based contribution

I The fault magnitude estimation is formulated as an optimization problem under
nonnegativity and sum-to-one constraints. A multiplicative iterative scheme is
proposed to solve it.

I The effectiveness of the proposed method is demonstrated on the simulated
continuous stirred tank reactor (CSTR) process.
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Basics of Kernel PCA

• Data matrix : n measurement vectors xi collected under normal operation :

X = [x1, · · · ,xn]> ∈ IRn×m

• Nonlinear mapping function from the input space X into the feature space H :

ϕ : X 7→H

xi 7→ ϕi = ϕ(xi ) ∈ IRh

• Matrix gathering the mapped vectors are written as follows :

Φ = [ϕ1, · · · ,ϕn]> ∈ IRn×h

• Empirical covariance matrix :

S =
1

n−1
Φ>Φ
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Basics of Kernel PCA

• The primal formulation of KPCA→ eigenvalue/eigenvector problem :

1
n−1

Φ>Φvi = λi vi i = 1, . . . ,n

vi and λi are the eigenvectors and eigenvalues of the covariance matrix S

• However, ϕ(·) does not need to be explicitly defined

• The Gram matrix K = Φ Φ> is then evaluated from a kernel

κ(xi ,xj ) = ϕ(xi )
>

ϕ(xj )

• In the following, the Gaussian kernel is used :

κ(xi ,xj ) = exp

(
−

(xi −xj )
T (xi −xj )

2c

)
where c is the kernel dispersion parameter.

• The covariance matrix S and 1
n−1 K have the same r non-zero eigenvalues

S =
1

n−1
Φ>Φ
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Basics of Kernel PCA

• Their eigenvectors are related by :

V = Φ>A A =
1√

n−1
U Λ−1/2

U and V are the matrices of the eigenvectors associated to the diagonal matrix of
eigenvalues Λ

• By choosing a number ` of principal components, the feature space is decomposed
into the principal and residual subspaces, spanned respectively by V̂ (the ` first
eigenvectors of V corresponding to the ` largest eigenvalues) and Ṽ (the r − ` last
eigenvectors of V ). The same partitioning is considered for U and Λ.

Fault detection using SPE

• The projection of x onto the residual subspace is evaluated as :

t̃(x) = Ṽ>ϕ(x)

• The corresponding detection index SPE is given by :

SPE(x) = t̃>(x )̃t(x) = 1−κ
>(x)Q̂ κ(x)

where
Q̂ = Â Â> κ(x) = [κ(x1,x), · · · ,κ(xn,x)]>
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Sparse reconstruction-based contribution

Problem position

I Reconstructed observation (assuming known the set R of faulty variables)

zR = x −ΞR fR

where ΞR is the matrix of fault directions with 1 to indicate the faulty variables
and 0 for the other variables.

I Estimation of fault magnitudes

f̂R = argmin
fR

SPE(zR)

I Reconstruction-based contribution of subset R

RBCR = SPE(x)−SPE(ẑR)

where ẑR is the reconstructed observation obtained by replacing f̂R in zR .
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Sparse reconstruction-based contribution

Problem position

I Estimation of fault magnitudes

f̂R = argmin
fR

SPE(zR)

Resolution method

I This minimization problem needs the SPE to be derived with respect to fR

∂SPE(zR)

∂ fR
=−2

c

n

∑
j=1

βj Ξ>R(zR −xj )

with
βj = κ(zR ,xj )ξ

>
j Q̂ κ(zR)

and ξj is the j th column of the identity matrix.
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Sparse reconstruction-based contribution

Solution

f̂R =
n

∑
j=1

α̂j Ξ>R
(
x −xj

)
with

α̂j =
κ(ẑR ,xj )ξ>j Q̂ κ(ẑR)

∑
n
t=1 κ(ẑR ,xt )ξ>j Q̂ κ(ẑR)

, ẑR = x−ΞR f̂R

→ it’s an implicit form as f̂R depends on ẑR which itself depends on f̂R

A solution can be obtained using a iterative fixed-point scheme

Remarks

The estimate f̂R is a linear combination of the differences between training data and
faulty measurement along the reconstruction directions Ξ>R .

The coefficients α̂j , acting as training data contributions to the estimation, could be
positive or negative but their sum is one, which may lead to compensation in the linear
combination.
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, ẑR = x−ΞR f̂R

→ it’s an implicit form as f̂R depends on ẑR which itself depends on f̂R
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, ẑR = x−ΞR f̂R

→ it’s an implicit form as f̂R depends on ẑR which itself depends on f̂R
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Sparse reconstruction-based contribution

Estimation subject to nonnegativity and sum-to-one constraints (reformulation 1)

f̂R = argmin
α

SPE(zR)

with 
zR = x −ΞR fR

fR =
n

∑
j=1

αj Ξ>R (x −xj )

subject to the constraints :
αj ≥ 0, j = 1, . . . ,n

n

∑
j=1

αj = 1

1. M. Kallas, P. Honeine, C. Richard, C. Francis, and H. Amoud, "Non-negativity constraints on the pre-image
for pattern recognition with kernel machines," Pattern Recognition, vol. 46, no. 11, pp. 3066–3080, 2013.
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Sparse reconstruction-based contribution

Estimation subject to nonnegativity and sum-to-one constraints (reformulation)

To solve more easily this fully constrained nonlinear optimization problem, a
procedure similar to that proposed by Lanteri 2 in 2011 is used :

I We introduce the following variable change :

αj =
ωj

∑
n
i=1 ωi

with ωj ≥ 0, j = 1, . . . ,n

I We proceed to the minimization with respect to the new variable ωj , subject to
nonnegativity constraint only, using a component-wise gradient descent,

I We come back to the initial variables αj .

2. H. Lantéri, C. Theys, and C. Richard,"Nonnegative matrix factorization with regularization and sparsity-
enforcing terms," in 4th IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive
Processing (CAMSAP), December 2011.
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Sparse reconstruction-based contribution

Estimation subject to nonnegativity and sum-to-one constraints

The Lagrangian function for nonnegativity constraint problem is then given by :

L (ω,µ) = SPE(zR)−µ
>

ω

At the optimum (ω∗,µ∗), the Karush-Kuhn-Tucker (KKT) conditions reduce to :

ω
∗
j

∂SPE(zR)

∂ωj

∣∣∣∣
ωj =ω∗j

= 0 j = 1, . . . ,n

∂SPE(zR)

∂ωj

∣∣∣∣
ωj =ω∗j

≥ 0 j = 1, . . . ,n

ω
∗
j ≥ 0 j = 1, . . . ,n
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Sparse reconstruction-based contribution

Estimation subject to nonnegativity and sum-to-one constraints

To solve these nonlinear equations, the following gradient descent updating scheme is
defined :

ω
(t+1)
j = ω

(t)
j −η

(t)
j gj

(
ω

(t)
j

)
ω

(t)
j

∂SPE(z(t)
R )

∂ωj

where

η
(t)
j is the step-size which controls the convergence of the algorithm,

gj

(
ω

(t)
j

)
> 0 is a positive function scaling the gradient

This above equation could be re-written as follows :

ω
(t+1)
j = ω

(t)
j m(t)

j

with

m(t)
j = 1−η

(t)
j gj (ω

(t)
j )

∂SPE(z(t)
R )

∂ωj

To avoid an expensive step-size computation for each component of ω, in practice, a
single step-size η(t) is chosen.
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To avoid an expensive step-size computation for each component of ω, in practice, a
single step-size η(t) is chosen.
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Simulation on the CSTR benchmark 3

FIGURE – CSTR scheme

3. S. Yoon and J. F. MacGregor, "Fault diagnosis with multivariate statistical models part i : using steady state
fault signatures," Journal of Process Control, vol. 11, no. 4, pp. 387–400, 2001.
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Simulation on the CSTR benchmark

Assumptions

I The reactor contains well mixed constituents and has constant physical
properties

I A first order reaction is taken into consideration where reactant A is mixed with a
solvent in order to obtain a product B

Model of the CSTR (mass and energy balance)

dCA
dt

=
F
V

CA0−
F
V

CA−k0e−
E

RT CA

V ρCP
dT
dt

= ρCPF (T0−T ) + (−∆Hr )Vk0e−
E

RT CA−
aF b+1

C

FC +
aF b

C
(2ρCCPC)

(T −TC)

V is the volume of the tank, F the input flow rate, ∆Hr the heat of reaction, k0 the reaction
velocity constant, ρ the reaction mixture density, ρC the coolant density, CP the volumetric heat
capacity, CPC the coolant capacity, E the activation energy, R the gas constant, the temperature
T , the cooling water temperature TC , the inlet temperature T0, the coolant flow FC , and the
outlet concentration CA, a and b are constant coefficients.
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Simulation on the CSTR benchmark

I Overall inlet concentration :

CA0 =
CAA FA + CAS FS

FA + FS

with the inlet concentrations CAA and CAS , the solvent flow FS , and the reactant
flow FA.

I T is controlled by FC using a proportional-integral (PI) controller.

I Nine variables are measured for fault detection and isolation process defining an
observation x at each instant with :

x = [TC T0 CAA CAS FS FC CA T FA]>

I A set of 100 observations were used during training, where KPCA is applied
using a Gaussian kernel with c = 0.36.

I 28 principal components were needed to define the KPCA model and a detection
threshold was estimated with a value of 0.21.
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Simulation on the CSTR benchmark

Fault affecting the inlet temperature T0

A step of 1.5K on the inlet temperature T0 starting at instant 51 was added.

0 10 20 30 40 50 60 70 80 90 100

Observations

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
P

E
 v

a
lu

e

FIGURE – Detection of fault on the inlet temperature T0
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Simulation on the CSTR benchmark

Fault affecting the inlet temperature T0

Cumulative RBC (sum of RBC over the 50 faulty observations).
SPE after reconstruction of T0 : 0.08 (< 0.21).
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FIGURE – Cumulative RBC for fault affecting T0
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Simulation on the CSTR benchmark

Fault affecting the temperature T
A step of 1K on the temperature measurement T starting at instant 51 was added.
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FIGURE – Cumulative RBC for fault affecting T

Among the nine reconstructed va-
riables, variable 6, FC has the hi-
gher contribution.

The SPE evaluated after the re-
construction of FC is equal to 0.82
that is greater to the threshold 0.21.

We cannot conclude that the fault
occurs on FC .

→ it’s necessary to seek a combination of different variables for which the SPE after
reconstruction is less than the threshold
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Simulation on the CSTR benchmark

Fault affecting the temperature T
A step of 1K on the temperature measurement T starting at instant 51 was added.

I The fault on T has a complex effect, indeed T is controlled by a PI regulator.

I The increase of the temperature measurement involves an increase of the
coolant flow FC .

I However, the real temperature inside the reactor is less than the one needed for
a normal operation.

I In consequence, the concentration CA of the product at the output increases too.

In conclusion, the three variables T , FC and CA are affected by the considered sensor
fault.

By reconstructing simultaneously these three variables, the corresponding SPE (after
reconstruction) falls down to 0.07 (which is clearly under the given threshold).

This result shows the importance of reconstructing more than one variables.
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Simulation on the CSTR benchmark

I This result can be advantageously compared with that of Alcala and Quin 3

I The used indicators are not exactly the same ; they used an average RBC using
the square of the estimated fault magnitude

I Based on their analysis, it could have been enough to reconstruct the coolant
flow FC (which is not the correct decision, i.e. isolation of fault)

I In case of fault with complex effect, the fault isolation will be subject to a
structural-functional analysis of the system in order to determine the candidate
subsets of variables to be reconstructed.

3. C.F. Alcala and S.J. Qin, "Reconstruction-based contribution for process monitoring with kernel principal
component analysis," Industrial & Engineering Chemistry Research, vol. 49, no. 17, pp. 7849-7857, 2010.
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Conclusion and perspectives

I A sparse fault estimation method to evaluate the reconstruction-based
contribution for multiple fault isolation has been developed

I The fault magnitude estimation, formulated as an optimization problem under
nonnegativity and sum-to-one constraints, is solved using a multiplicative iterative
scheme

I A toy example (issued from the literature dedicated to that subject) based on a
CSTR model illustrates the effectiveness of the proposed method

I A future work will aim at determining the useful potential reconstruction directions
in order to handle the combinatorial nature of multiple fault isolation
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