Actuator Fault diagnosis: H_∞ framework with relative degree notion

D. Ichalal, B. Marx, D. Maquin and J. Ragot

4th IFAC International Conference on Intelligent Control and Automation Sciences
June 3rd 2016, Reims, France
Table of contents

1 Introduction and problem statement

2 H_∞ Residual Generator with relative degree consideration

3 Simulation example

4 Conclusion and perspectives
Consider the linear system

\[\dot{x} = Ax +Ef \]
\[y =Cx \]

where \(x \in \mathbb{R}^n \) is the state vector, \(f \in \mathbb{R} \) is the fault signal and \(y \in \mathbb{R} \) is the output signal.

Objective

The objective is to detect or estimate the fault \(f \) from the measurement \(y \).
Problem statement

When the system is affected by a perturbation d, the so-called H_-/H_∞ which consists in computing a residual generator

$$\begin{cases}
 \dot{\hat{x}}(t) = A\hat{x}(t) + L(y(t) - \hat{y}(t)) \\
 \hat{y}(t) = C\hat{x}(t) \\
 r(t) = M(y(t) - \hat{y}(t))
\end{cases}$$

with gains L and M in order to satisfy

- Stability of $(A - LC)$
- Minimization of the effect of d on r
- Maximization of the sensitivity of f on r

This is a min/max problem
Problem statement

In order to transform the min/max problem on a simple min problem, a virtual residual generator is defined as follows

\[r_e = r - f = MCe - f \]

where \(e = x - \hat{x} \). Then the system generating the state estimation error is given by

\[
\begin{align*}
\dot{e}(t) &= (A - LC) e(t) + Ef(t) \\
r_e(t) &= MCe(t) - f(t)
\end{align*}
\]

In standard \(H_\infty \) framework, the matrices \(L \) and \(M \) should be determined in such a way to satisfy the following constraints

\[
\begin{align*}
\lim_{t \to +\infty} r_e(t) &= 0 & \text{if } f(t) = 0 \\
\|r_e(t)\|_2 &< \gamma \|f(t)\|_2 & \text{if } f(t) \neq 0
\end{align*}
\]
Problem statement

A solution can be found by solving an optimization problem under LMI constraints (SISO case)

\[
\begin{align*}
\min_{P,K,M} \gamma \\
\text{s.t.} \quad \left(\begin{array}{ccc}
A^T P + PA - C^T K^T - KC & PE & C^T M^T \\
E^T P & -\gamma & -1 \\
MC & -1 & -\gamma
\end{array} \right) < 0 \quad (1)
\end{align*}
\]

where \(P = P^T > 0 \). After solving the optimization problem, the matrices of the residual generator are obtained by \(L = P^{-1} K \) and \(M \) is obtained directly. The attenuation level is given by \(\gamma \).
Problem statement

If the previous optimization problem is solved, then one has:

\[
\begin{pmatrix}
-\gamma & -1 \\
-1 & -\gamma
\end{pmatrix} \prec 0
\] (2)

which leads to \(\gamma > 1 \).

Then the best value for \(\gamma \) is \(1 + \epsilon \) where \(\epsilon \) is a positive small number.
H_∞ Residual Generator with relative degree consideration

Let us consider the system

$$\dot{x} = Ax + Ef$$
$$y = Cx$$

where the relative degree is r. This means that

$$y^{(r)}(t) = CA^r x(t) + CA^{r-1} Ef(t)$$

Now, let us consider the new output $\tilde{y}(t)$ defined by

$$\tilde{y}(t) = \begin{pmatrix} y(t) \\ \dot{y}(t) \\ \vdots \\ y^{(r)}(t) \end{pmatrix} = \begin{pmatrix} C \\ CA \\ \vdots \\ CA^r \end{pmatrix} x(t) + \begin{pmatrix} 0 \\ 0 \\ \vdots \\ CA^{r-1} E \end{pmatrix} f(t)$$
The system with the new generated output becomes

\[
\begin{align*}
\dot{x}(t) &= Ax(t) + Ef(t) \\
\hat{y}(t) &= \hat{C}\hat{x}(t) + Rf(t)
\end{align*}
\]

The proposed residual generator is

\[
\begin{align*}
\dot{\hat{x}}(t) &= A\hat{x}(t) + L(\hat{y}(t) - \hat{\hat{y}}(t)) \\
\hat{\hat{y}}(t) &= \hat{\hat{C}}\hat{x}(t) \\
r(t) &= M(\hat{y}(t) - \hat{\hat{y}}(t))
\end{align*}
\]
If there exist a symmetric and positive definite matrix P, gain matrices K and M and a positive scalar γ solution to the following optimization problem

$$\min_{P,K,M} \gamma$$

s.t.

$$\begin{pmatrix}
A^T P + PA - \tilde{C}^T K^T - K \tilde{C} & PE - K \tilde{C} & \tilde{C}^T M^T \\
E^T P - \tilde{C}^T K^T & \tilde{C}^T M^T - 1 & -\gamma \\
M \tilde{C} & MR - 1 & -\gamma
\end{pmatrix} < 0$$

The gain L of the residual generator is obtained from the equation $L = P^{-1}K$. The attenuation level γ describes the sensitivity of $r(t)$ with respect to $f(t)$. The smallest is γ the greatest is the sensitivity.
H∞ Residual Generator with relative degree consideration

The negativity of (10) implies that

$$\begin{pmatrix} -\gamma & R^T M^T - 1 \\ MR - 1 & -\gamma \end{pmatrix} < 0$$

which is equivalent to

$$\gamma^2 > \left(R^T M^T - 1\right) \left(MR - 1\right)$$

Since this paper considers only systems with single fault and single output, the term \(MR - 1\) is just a scalar, it follows

$$\gamma > MR - 1 \quad (3)$$

Since \(R\) has full column rank due to the relative degree, it is then possible to chose \(M\) such that \((MR - 1) \to 0\). Thus, the parameter \(\gamma > 0\) may takes values small than 1 which enhance the residual sensitivity with respect to the fault compared to the classical approach where \(\gamma > 1\).
H_∞ Residual Generator with relative degree consideration (MIMO case)

Under the observability of the pair (C, A) and the relative degree vector $\{r_1, ..., r_{ny}\}$, the residual generator exists if there exist a symmetric and positive definite matrix P, a gain matrix K and a positive scalar γ solution to the following optimization problem

$$\min_{P, K, M} \gamma$$

s.t.

$$\begin{pmatrix}
A^T P + PA - \tilde{C}^T \tilde{K}^T - \tilde{K} \tilde{C} & PE - \tilde{K} \tilde{C} & \tilde{C}^T \tilde{M}^T \\
E^T P - \tilde{C}^T \tilde{K}^T & -\gamma I_{nf} & R^T \tilde{M}^T - I_{nf} \\
\tilde{M} \tilde{C} & \tilde{M} R - I_{nf} & -\gamma I_{nf}
\end{pmatrix} < 0$$

The gain L of the residual generator is obtained from the equation $L = P^{-1} K$. The attenuation level γ describes the sensitivity of $r(t)$ with respect to $f(t)$. The smallest is γ the greatest is the sensitivity.
Notice that the theorem considers the worst case. However, with a simple analysis on the system error dynamics, it can be concluded that: If the condition

\[
\text{rank}\left(\begin{bmatrix} \tilde{C} & \tilde{R} \\ 0 & I_{nf} \end{bmatrix}\right) = \text{rank}\left(\begin{bmatrix} \tilde{C} & \tilde{R} \end{bmatrix}\right)
\]

Then there exists a matrix \(M \) such that

\[
\begin{cases}
M\tilde{C} = 0 \\
M\tilde{R} = I_{nf}
\end{cases}
\]

Consequently, the error dynamics becomes

\[
\begin{cases}
\dot{e}(t) = (A - \tilde{L}\tilde{C})e(t) + (E - L\tilde{R})f(t) \\
\dot{r}(t) = 0
\end{cases}
\]

Then \(r = f \).
If the rank condition above is not satisfied but if
\[\text{rank} \left(\begin{bmatrix} \tilde{R} \\ I_{nf} \end{bmatrix} \right) = \text{rank} \left(\tilde{R} \right), \text{rank} \left(\begin{bmatrix} E \\ \tilde{R} \end{bmatrix} \right) = \text{rank} \left(E \right) \]

Then there exist matrices M and L such that
\[
\begin{align*}
L\tilde{R} &= E \\
M\tilde{R} &= I_{nf}
\end{align*}
\]

and in addition, the matrix L stabilizes the matrix $A - LC$, the error dynamics becomes
\[
\begin{align*}
\dot{e}(t) &= \left(A - \tilde{L}\tilde{C} \right) e(t) \\
r_e(t) &= M\tilde{C}e(t)
\end{align*}
\]

Then r converges asymptotically to f.
Simulation example

Consider the system with the matrices

\[A = \begin{pmatrix} 0 & 1 \\ -1 & -2 \end{pmatrix}, \quad E = \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \quad C = \begin{pmatrix} 1 & 0 \end{pmatrix} \]

The system is observable and the output \(y(t) \) have a relative degree 2 with respect to the fault \(f(t) \).

For the classical approach, solving the optimization problem under the LMI constraint (1) leads to the following solution

\[P = 10^4 \times \begin{pmatrix} 2.082 & -0.0009 \\ -0.0009 & 0.0000 \end{pmatrix}, \quad L = 10^6 \times \begin{pmatrix} 0.0009 \\ 1.9286 \end{pmatrix}, \quad M = -9.2522, \gamma = 1.001 \]
Simulation example

Figure: Fault and residual signal (classical approach)
Simulation example

With the proposed approach, one has

\[P = \begin{pmatrix} 1.1417 & 0 \\ 0 & 1.1417 \end{pmatrix}, \]

\[L = 10^3 \times \begin{pmatrix} 0.0005 & 0 & 0 \\ 0.0010 & 1.0005 & 0.0010 \end{pmatrix}, \quad M = \begin{pmatrix} 1 & 2 & 1 \end{pmatrix} \]

and \(\gamma \) is around \(10^{-11} \) (the rank conditions are satisfied.)
Simulation example

Figure: Fault and residual signal (proposed approach)
Simulation example

Figure: Residual signals (Comparison)
Conclusion and perspectives

Conclusions

- H_∞ Residual Generator with relative degree consideration
- Rank conditions for exact, asymptotic and bounded fault estimation error convergence

Perspectives

- Including the perturbation affecting the system (Use of Sobolev space and norms)
- Extension to LPV systems
Thank you for your attention