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Problem statement > The TS approach of nonlinear estimation

I Given a discrete-time nonlinear system:

(NLS)

{
xk+1= f (xk , uk )

yk = g(xk , uk )

the goal is to estimate xk from the knowledge of uk and yk

I Using the Nonlinear Sector Appraoch:

(NLS)

{
xk+1= f (xk , uk )

yk = g(xk , uk )
⇒ (TS)

{
xk+1= Ahxk + Bhuk

yk = Chxk + Dhuk

where 0 ≤ hi (ξk ) ≤ 1 and
∑r

i=1 hi (ξk ) = 1 and
∑r

i=1 hi (ξk )Xi = Xh.

I Observer design performed on the T-S system

I Depending on the non-linearities of (NLS)→ ξ(uk ), ξ(yk ), ξ(xk ), . . .
→ ξ may be measurable (MPV) or unmeasurable (UMPV)
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Problem statement > Background on TS observer design

If the premise variable ξk are measurable (i.e. ξ(u, y)): MPV

I T-S observer:

(TSO)

{
x̂k+1= Ahx̂k + Bhuk + Lh(yk − ŷk )

ŷk = Chx̂k + Dhuk

the observer gains Li are determined such that: x̂k → xk

I Observer design:
I state estimation error ek = xk − x̂k obeys to:

ek+1 = (Ah − LhCh)ek

I easily put as an LMI problem and solved:
(Ah − LhCh)T P(Ah − LhCh)− P < 0

I classical relaxation schemes:
(Tuan et al, IEEE TFS, 2001), Polya (Sala & Ariño, FSS, 2007), descriptor
approach (Tanaka et al, IEEE TFS, 2007), Sum-Of-Squares (Tanaka et al.,
IEEE TFS, 2009), . . .
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Problem statement > Background on TS observer design

If the premise variable ξk are unmeasurable (i.e. ξ(x)): UMPV

I T-S observer depending on the estimated premise variable:

(TSO)

{
x̂k+1= Aĥx̂k + Bĥuk + Lĥ(yk − ŷk ))

ŷk = Cĥx̂k + Dĥuk

r∑
i=1

hi (ξ̂k )Xi = Xĥ

I TS system and estimation error are rewritten:
I Lipschitz approach and majoration:

xk+1 = Aĥxk + Bĥuk + δk , with δk Lipschitz in xk
(Bergsten & Palm, FUZZ’IEEE, 2000), (Ichalal et. al., IET CTA, 2010), . . .

I Pseudo-perturbation approach and L2-attenuation or ISS:
xk+1 = Aĥxk + Bĥuk + δk

(Ichalal et. al., IEEE MSC 2012), (Ichalal et. al., IEEE MED, 2012), . . .

I Pseudo-uncertainty approaches and matrix majorations:
xk+1 = (Aĥ + ∆Ak )xk + (Bĥ + ∆Bk )uk

(Ichalal et. al., IEEE CDC 2009), (Ichalal et. al., IEEE MED, 2009), . . .
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Problem statement > Background on nonlinear observers

Some variable changes may ease the observer design

I Nonlinear transformation (Krener & Respondek, SIAM JCO, 1985):

(NLS)

{
xk+1 = f (xk , uk )

yk = g(xk , uk )
⇒

{
zk+1 = Azk + ϕ(uk , yk )

yk = Czk

with zk = Φ(xk ) and dim(xk ) = dim(zk )

I Immersion (Besançon & Ţiclea, IEEE TAC, 2007):

(NLS)

{
xk+1 = f (xk , uk )

yk = g(xk , uk )
⇒ (IS)

{
zk+1 = Azk + ϕ(uk , yk )

yk = Czk

with zk = Φ(xk ) and dim(x) < dim(z)

I the nonlinear part of (IS) ϕ(uk , yk ) depends on accessible signals
I the state of (NLS) can be deduced from the state of (IS)
I the state estimate x̂ is deduced from the extended state estimate ẑ
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Problem statement > The proposed approach

Nonlinear system:

{
xk+1 = f (xk , uk )

yk = Cxk

=⇒ Immersion

Q-LPV system:


zk+1 = A(yk , uk )zk + B(yk , uk )uk︸ ︷︷ ︸

ϕ(uk ,yk )

yk = Czk

=⇒ Nonlinear Sector Transformation

TS system:

{
zk+1 = Ahzk + Bhuk

yk = Czk
with hi (y , u)

=⇒ Observer design for TS MPV system

TS Observer:

{
ẑk+1 = Ahẑk + Bhuk + Lh(yk − ŷk )

ŷk = Cẑk
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Problem statement > A preliminary example

I Given a nonlinear system
(

x1,k+1

x2,k+1

)
=

(
x2,k

−2(x1,k )3 + 2x1,k + 0.3x1,k x2,k + uk

)
yk =

(
0 1
)

xk

I Initialize the augmented state by zk = xk and use yk = z2,k
(

z1,k+1

z2,k+1

)
=

(
z2,k

2z1,k + uk + 0.3z1,k yk

)
+

(
0

−2(z1,k )3

)
yk =

(
0 1
)

zk

I Augment the state with z3,k = z3
1,k ⇒ z3,k+1 = (z2,k )3 = (yk )2z2,k

z1,k+1

z2,k+1

z3,k+1

=

 0 1 0
2 + 0.3yk 0 −2

0 (yk )2 0


z1,k

z2,k

z3,k

+

0
1
0

 uk

yk =
(

0 1 0
)

zk

I Use the nonlinear sector transformation, with MPV ξk = [yk (yk )2]T{
zk+1= Ahzk + Bhuk

yk = Czk
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Problem statement > A preliminary example

I The TS system and TS Observer:{
zk+1= Ahzk + Bhuk

yk = Czk
and

{
ẑk+1= Ahẑk + Bhuk + Lh(yk − ŷk )

ŷk = Cẑk

I Quadratic Lyapunov function: V (ek ) = eT
k Pek

I Solving the LMI in P and Ki for i = 1, . . . , 4, gives the TSO gains:(
−P AT

i P − CT K T
i

PAi − KiC −P

)
< 0⇒ Li = P−1Ki

I State estimates: x̂1,k = ẑ1,k and x̂2,k = ẑ2,k
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Fig. 2. State estimation

set, it may happen that the convex sum property will be
lost in the transient phase and then the stability is no
longer satisfied. By using the proposed approach, even if
the initial conditions are chosen outside of the compact
set (see the example), the convex sum property is always
satisfied because the weighting functions depend only on the
measured variableyk which varies in the domain[0.4,1].

B. Extension to PI observer design

In the previous section, only state reconstruction objective
is considered. The extension to the case of systems affected
by constant or piecewise constant unknown inputs can be per-
formed with the same algorithm. Indeed, since the unknown
input is constant, its dynamic is described asdk+1 = dk which
can be considered as an additional state in the original state
vector. From this assumption, the same algorithm can be used
to transform the system in the form (4) and then by using
the sector nonlinear transformation for the obtained system,
the TS form can be derived which has measurable premise
variables.

Example 2: Let us consider the same chaotic system as
in example 1 affected, in nonlinear manner, by the unknown
input dk as follows




x(1)k+1 = x(2)k

x(2)k+1 =−2
(

x(1)k

)3
+2x(1)k +0.3x(1)k x(2)k + x(1)k dk

yk = x(2)k

(19)

It can be seen that the unknown input is multiplied by the
unmeasured statex(1)k . By using the proposed algorithm, the
following state transformation is obtained




z(1)k

z(2)k

z(3)k

z(4)k


=




x(1)k

x(2)k(
x(1)k

)3

x(1)k dk




(20)

which leads to the rigorously equivalent system




z(1)k+1 = z(2)k

z(2)k+1 =−2z(3)k +2z(1)k +0.3z(1)k z(2)k + z(4)k

z(3)k+1 =
(

z(2)k

)3

z(4)k+1 = z(2)k dk

(21)

which takes the quasi-LPV form

zk+1 =




0 1 0 0
2+0.3yk 0 −2 1

0 (yk)
2 0 0

0 0 0 0


zk +




0
0
0
yk


dk

(22)

yk =
[

0 1 0 0
]

zk (23)

The matrices of the obtained model depend only on the
measured output and by considering the premise variables
ξ (1)

k = yk and ξ (2)
k = (yk)

2, a TS model with measurable
premise variables is obtained in the form





zk+1 =
4
∑

i=1
hi(yk)(Aizk +Bidk)

yk = C zk

(24)

In order to estimate the state vectorzk and the unknown input
dk, the following PI observer can be used





ẑk+1 =
4
∑

i=1
hi(yk)

(
Aiẑk +Bid̂k +Li(yk − ŷk)

)

d̂k+1 = d̂k +
4
∑

i=1
hi(yk)Hi(yk − ŷk)

ŷk = C ẑk

(25)

By considering the state and unknown input estimation errors
ek = zk − ẑk and sk = dk − d̂k, one obtains
[

ek+1

sk+1

]
=

4

∑
i=1

hi(yk)

[
Ai −LiC Bi

HiC I

][
ek+1

sk+1

]
(26)

Then the stability of the system generating the state and un-
known input errors can be studied by the classical Lyapunov
tools developed for TS systems with measurable premise
variables. In figures 3 and 4, both state and unknown input
reconstruction are illustrated. It can be seen that the states
and the unknown input are estimated asymptotically.

III. D ISCUSSIONS

The proposed approach is an answer to the question asked
in the introduction of this paper. From the examples, it can
be seen that it is possible to avoid the unmeasurable premise
variables in the TS model by extending the state vector of
the original system before using the nonlinear sector transfor-
mation. Then, the classical techniques of observer design for
TS systems with measurable premise variables can be used.
The proposed approach is adequate for nonlinear systems
where applying, directly, the sector nonlinear transformation
provides inevitably a TS system with unmeasurable premise
variables. In the following, some points are discussed:
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Main result > Immersion-based observer design algorithm

(Immersion)

[Step 1] - Initialize the new variables: zi,k = xi,k , for i = 1, . . . , dim(x).

[Step 2] - For each new defined variable zl,k , compute zl,k+1.
- What depends on measured signals is included in the Q-LPV

matrices: A(yk , uk ) and B(yk , uk ).
- Remaining non-linearities are defined as new variables zl+...,k .

[Step 3] - If new variables are defined, go to Step 2. Else, go to Step 4

(Observer design)

[Step 4] - Apply the nonlinear sector transformation on the Q-LPV system:
zk+1 = A(yk , uk )zk + B(yk , uk )uk .

[Step 5] - Apply any observer design for TS system with MPV
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Main result > Some extensions

PI Observer design

I If the NLS is affected by slow dynamics unknown inputs (UI) dk

I Include the UI (or the non-linearities depending on it) in the extended
state zk : 

zk+1 = Ahzk + Bhuk + Bd
h dk

(dk+1' dk assumed)

yk = Czk

I Design a Proportional-Integral T-S Observer:
ẑk+1 = Ahẑk + Bhuk + Bd

h d̂k + Lh(yk − ŷk )

d̂k+1= d̂k +Kh(yk − ŷk )

ŷk = Cẑk

Continuous time case

I Roughly speaking, the computation of zi,k+1 in [Step 2] becomes dzi
dt

I For further details, see (Ichalal et. al., IFAC ICONS, 2016)
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Main result > Illustrative Example

I Given a nonlinear system with UI dk :
(

x1,k+1

x2,k+1

)
=

(
x2,k

−2(x1,k )3 + 2x1,k + 0.3x1,k x2,k + x1,k dk

)
yk =

(
0 1
)

xk

I Initialize the augmented state by zk = xk . With yk = z2,k , it follows:
(

z1,k+1

z2,k+1

)
=

(
z2,k

2z1,k + 0.3z1,k y2,k

)
+

(
0

−2(z1,k )3 + z1,k dk

)
yk =

(
0 1
)

zk

I Augment the state with z3,k = z3
1,k and z4,k = x1,k dk .

Then: z3,k+1 = (z2,k )3 = (yk )2z2,k and z4,k+1 = yk dk


z1,k+1

z2,k+1

z3,k+1

z4,k+1

=


0 1 0 0

2 + 0.3yk 0 −2 1
0 (yk )2 0 0
0 0 0 0




z1,k

z2,k

z3,k

z4,k

+


0
0
0
yk

 dk

yk =
(

0 1 0 0
)

zk
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Main result > Illustrative Example

I The nonlinear sector transformation, with ξk = [yk (yk )2]T , leads to:{
zk+1= Ahzk + Bd

h dk

yk = Czk

I The PI TS Observer is designed by stabilizing:(
zk+1 − ẑk+1

dk+1 − d̂k+1

)
=

(
Ah − LhC Bd

h
KhC I

)(
zk − ẑk

dk − d̂k

)
I State and UI estimation : x̂1,k = ẑ1,k , x̂2,k = ẑ2,k , and d̂k = ẑ4,k/ẑ1,k
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Fig. 3. State reconstruction in the presence of unknown input
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• Observer design for TS systems with unmeasurable
premise variables is done by replacing the unmeasured
states involved in the premise variables by the estimated
version. However, a particular attention should be taken
into account on the initial values of the observer which
must be in the compact set where the TS model is
valid in order to ensure that the convex sum property
of the weighting functions is satisfied. Unfortunately, in
some cases, even if the initial conditions of the observer
belong to the compact set, the convex sum property
may be lost in transient phase which may cause the
non negativity of the Lyapunov function variations and
then, the stability is no longer guaranteed. The proposed
approach solves this problem since the premise variables
depend on the measured variables which belong to a
compact set and do not change for different initial
conditions (see the examples 1 and 2).

• As a comparison to existing immersion techniques in
nonlinear systems, these lasts aim to immerse the orig-

inal system in a new state space where the obtained
systems present a particular structure. In addition, the
classical immersion techniques should be invertible in
order to express the states of the original system in
respect to the states of the immersed one. The pre-
sented algorithm aims only to express the system as
a LPV system with parameters depending on measured
variables and without any other particular structure for
the matrices of the LPV. Furthermore, the proposed
algorithm leads to a new state vector containing the
states of the original system, consequently, there is no
need to inversion of the transformation to recover the
original states.

• As for nonlinear sector transformation technique, the
dynamic state extension, presented in this paper, is
not unique. Then, the dynamic state extension should
be judiciously chosen in such a way to preserve the
observability property of the original system which is a
disadvantage compared to existing nonlinear immersion
techniques. Indeed, the immersion techniques transform
the system into an adequate new system with particular
structure ensuring the observability.

• Notice also that the proposed algorithm may present
an infinite number of iterations. For example, let us
consider the system





x(1)k+1 = x(2)k

x(2)k+1 =
(

x(2)k

)2

yk = x(1)k

(27)

By applying the proposed algorithm, the following new
states are obtained

z(3)k =
(

z(2)k

)2

z(4)k =
(

z(2)k

)4

z(5)k =
(

z(2)k

)8

...

(28)

which illustrates that the algorithm presents infinite number
of iterations, then, there is no solution for this system.
However, a solution can be obtained by using our previous
work in [7] by using the algebraic technique.

From these discussions, the proposed algorithm provides a
first solution to the problem of transformation of TS systems
with unmeasurable premise variable into an equivalent TS
system with measurable premise variables of dimension
greater than or equal to the dimension of the original TS
system. As illustrated by the examples, it can provide inter-
esting results. The discussed points above presents research
directions in order to obtain a systematic algorithm to obtain
equivalent TS system with measured premise variables and
preserves some properties of the original system such as
observability and detectability. In addition, it is interesting
to study the conditions under which such a transformation
exists which avoids the infinite number of iterations.

0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1

 

 

x
k
(1) Estimated x

k
(1)

0 0.1 0.2 0.3 0.4 0.5
0

0.5

1

1.5

 

 

x
k
(2) Estimated x

k
(2)

Fig. 3. State reconstruction in the presence of unknown input

0 2 4 6 8 10
−0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

 

 
d

k

Estimated d
k

Fig. 4. Unknown input reconstruction

• Observer design for TS systems with unmeasurable
premise variables is done by replacing the unmeasured
states involved in the premise variables by the estimated
version. However, a particular attention should be taken
into account on the initial values of the observer which
must be in the compact set where the TS model is
valid in order to ensure that the convex sum property
of the weighting functions is satisfied. Unfortunately, in
some cases, even if the initial conditions of the observer
belong to the compact set, the convex sum property
may be lost in transient phase which may cause the
non negativity of the Lyapunov function variations and
then, the stability is no longer guaranteed. The proposed
approach solves this problem since the premise variables
depend on the measured variables which belong to a
compact set and do not change for different initial
conditions (see the examples 1 and 2).

• As a comparison to existing immersion techniques in
nonlinear systems, these lasts aim to immerse the orig-

inal system in a new state space where the obtained
systems present a particular structure. In addition, the
classical immersion techniques should be invertible in
order to express the states of the original system in
respect to the states of the immersed one. The pre-
sented algorithm aims only to express the system as
a LPV system with parameters depending on measured
variables and without any other particular structure for
the matrices of the LPV. Furthermore, the proposed
algorithm leads to a new state vector containing the
states of the original system, consequently, there is no
need to inversion of the transformation to recover the
original states.

• As for nonlinear sector transformation technique, the
dynamic state extension, presented in this paper, is
not unique. Then, the dynamic state extension should
be judiciously chosen in such a way to preserve the
observability property of the original system which is a
disadvantage compared to existing nonlinear immersion
techniques. Indeed, the immersion techniques transform
the system into an adequate new system with particular
structure ensuring the observability.

• Notice also that the proposed algorithm may present
an infinite number of iterations. For example, let us
consider the system





x(1)k+1 = x(2)k

x(2)k+1 =
(

x(2)k

)2

yk = x(1)k

(27)

By applying the proposed algorithm, the following new
states are obtained

z(3)k =
(

z(2)k

)2

z(4)k =
(

z(2)k

)4

z(5)k =
(

z(2)k

)8

...

(28)

which illustrates that the algorithm presents infinite number
of iterations, then, there is no solution for this system.
However, a solution can be obtained by using our previous
work in [7] by using the algebraic technique.

From these discussions, the proposed algorithm provides a
first solution to the problem of transformation of TS systems
with unmeasurable premise variable into an equivalent TS
system with measurable premise variables of dimension
greater than or equal to the dimension of the original TS
system. As illustrated by the examples, it can provide inter-
esting results. The discussed points above presents research
directions in order to obtain a systematic algorithm to obtain
equivalent TS system with measured premise variables and
preserves some properties of the original system such as
observability and detectability. In addition, it is interesting
to study the conditions under which such a transformation
exists which avoids the infinite number of iterations.
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Concluding remarks

+ This work is an attempt to bridge observer design in the MPV / UMPV
cases

+ Any observer design for TS systems with MPV can be used.

+ The immersion in a Q-LPV system is less restrictive than the usual
immersion in state affine or linear systems.

+ The original system state is included in the augmented system state
→ no reverse nonlinear transformation is needed to have x̂ from ẑ.

+ The extension to joint state and UI estimation is easy.

+ The continuous time case can be dealt with similarly.

- The nonlinear systems that can be immersed into Q-LPV systems are
not characterized.
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