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Motivations

Context
◮ State and unknown input estimation is an important topic in automatic control and systems

engineering
◮ control
◮ fault diagnosis
◮ encryption/decryption

◮ Nonlinear models are often unavoidable for modelling complex systems (global modelling)
◮ Observer design problem for generic nonlinear models is not straightforward

Proposed strategy
◮ Nonlinear system modelling based on a multiple model representation
◮ Several realisations (architectures) of multiple models can be considered
◮ One among them take into account heterogeneous local models
◮ State and unknown input estimation of nonlinear system based on this multiple model

representation is poorly investigated
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Introduction – philosophy

Basis of multiple model approach: divide and conquer

ξ1(t)

ξ2(t)
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zone 1
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Operating
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Operating

zone 4

Multiple model representationNonlinear system

Multiple model = interpolation of a set of linear
submodels

◮ Appropriate tool for modelling complex
systems

◮ Specific analysis of the system
non-linearity is avoided

◮ Tools for linear systems can partially be
extended to nonlinear systems
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extended to nonlinear systems

How the submodels can be interconnected?
Classic structure

Submodel parameters interpolation

◮ Common state vector for all submodels
◮ Dimension of the submodels must be

identical (homogeneous), e.g.
Takagi-Sugeno multiple model

Proposed structure
Submodel outputs interpolation

◮ A different state vector for each submodel
◮ Dimension of the submodels may be

different (heterogeneous)
◮ Less investigated!!
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Heterogeneous multiple model

Heterogeneous multiple model: multiple model with decoupled state vectors

{

xi (k +1) = Aixi (k)+Bi u(k)+Di w(t)
yi (k) = Ci xi(k)

A collection of submodels ⇔

Disturbances : noise...
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Comments
◮ The multiple model output is given by a

weighted sum of the submodel outputs
◮ Dimension of the submodels can be different !
◮ Good flexibility and generality in the modelling

stage
◮ Modelling systems with variable structure

A collection of submodels ⇔

Disturbances : noise...

An interpolation mechanism ⇔
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Preliminaries and notations

Augmented form of the multiple model

ẋi (t) = Aixi (t)+Bi u(t)+Di w(t) ⇔

y(t) =
L

∑
i=1

µi(ξ (t))Ci xi (t) ⇔

Stability condition

The multiple model stability is ensured by the stability of all submodels (Ã is block diagonal)
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Stability condition

The multiple model stability is ensured by the stability of all submodels (Ã is block diagonal)
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n Ã =



















A1 0 0 0 0

0
. . . 0 0 0

0 0 Ai 0 0

0 0 0
. . . 0

0 0 0 0 AL



















B̃ =



















B1
...

Bi
...

BL



















D̃ =



















D1
...

Di
...

DL



















C̃(t) =
[

µ1(t)C1 . . . µi(t)Ci . . . µL(t)CL
]

µ(t) = µ(ξ (t))

C̃(t) = ∑L
i=1 µi (t)C̃i where C̃i =

[

0 . . . Ci . . . 0
]

Stability condition

The multiple model stability is ensured by the stability of all submodels (Ã is block diagonal)
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n Ã =



















A1 0 0 0 0

0
. . . 0 0 0

0 0 Ai 0 0

0 0 0
. . . 0

0 0 0 0 AL



















B̃ =



















B1
...

Bi
...

BL



















D̃ =



















D1
...

Di
...

DL



















C̃(t) =
[

µ1(t)C1 . . . µi(t)Ci . . . µL(t)CL
]

µ(t) = µ(ξ (t))

C̃(t) = ∑L
i=1 µi (t)C̃i where C̃i =

[

0 . . . Ci . . . 0
]

Stability condition

The multiple model stability is ensured by the stability of all submodels (Ã is block diagonal)

Didier Maquin (CRAN) Heterogeneous multiple models ACD’09 6 / 17



Motivations Multiple model approach Proportional Observer PI Observer PI Unknown Input Observer Conclusions

State estimation

Strategy
◮ Let us consider the heterogeneous multiple model representation of a nonlinear system
◮ Extension of some LTI results to heterogeneous multiple models
◮ Robustness properties of the state estimation with respect to disturbances and unknown

inputs (UI) are investigated
◮ Sufficient conditions for observer design are established on the basis of the Lyapunov

method

Observer structures
◮ Survey of recent results in state estimation strategies based on heterogeneous multiple

models
◮ Different kinds of observers are investigated:

1 Proportional gain observer
2 Proportional-Integral observer for disturbance attenuation (first case)
3 Proportional-Integral observer for unknown input estimation (second case)
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Proportional gain observer design 1/2

Proportional gain observer structure

Proportional gain observer : model of the system with a correction action K̃

˙̂x(t) = Ãx̂(t)+ B̃u(t)− K̃ (y(t)− ŷ(t))

ŷ(t) = C̃(t)x̂(t)

Goal
1 Consider the state estimation error: e(t) = x(t)− x̂ (t)
2 Consider its time-derivative:

ė(t) = (Ã− K̃ C̃(t))e(t)+(D̃ − K̃ W )w(t) where K̃ =
[

K T
1 · · ·K T

i · · ·K T
L

]T
∈ R

n×p

3 Goal: K̃ to be determined such that :

lim
t→∞

e(t) = 0 for ω(t) = 0 and ‖e‖2
2 ≤ γ2 ‖w‖2

2 for w(t) 6= 0 and e(0) = 0

◮ γ is the L2 gain from w(t) to e(t) to be minimised
◮ The convergence of the estimation error in the disturbance-free case is ensured
◮ The robust state estimation in presence of a disturbance is also ensured
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Proportional gain observer design 2/2

Theorem: observer existence conditions

The robust proportional observer is obtained if there exists a matrix P = PT = 0 and a matrix G
solution of the constrained optimisation problem for a given scalar α ≥ 0:

minγ subject to
[

Ai +AT
i + I B

BT −γ̄I

]

< 0 , i = 1, . . . ,L

where Ai = P(Ã+αI)−GC̃i and B = PD̃−GW
The observer gain is K̃ = P−1G and α is the decay rate for exponential convergence of e(t)

Sketch of the proof
1 Consider the following quadratic Lyapunov function:

V (t) = eT (t)Pe(t) P > 0 P = PT

2 Robust constraint are satisfied if:

V̇ (t)+2αV (t) < γ2wT (t)w(t)−eT (t)e(t)

3 See the proceedings for a detailed proof
Didier Maquin (CRAN) Heterogeneous multiple models ACD’09 9 / 17
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Proportional-Integral observer design: first case 1/3

Proportional-Integral observer: justification

◮ Only one degree of freedom K̃ is available to reject disturbances and to improve the
dynamic performances (two antagonist design goals)

◮ The gain K̃ is replaced by two correction actions: proportional and integral
◮ A supplementary integral variable z(t) is introduced:

z(t) =
∫ t

0
y(ξ )dξ ⇒ ż(t) = y(t)

◮ The multiple model in now given

ẋa(t) = Ã1(t)xa(t)+ C̄1B̃u(t)+(C̄1D̃ + C̄2W )w(t) ,

y(t) = C̃(t)C̄T
1 xa(t)+Ww(t) ,

z(t) = C̄T
2 xa(t)

◮ Let us consider the following notations

xa(t) =

[

x(t)
z(t)

]

,Ã1(t) =

[

Ã 0
C̃(t) 0

]

,C̄1 =

[

In
0

]

,C̄2 =

[

0
Ip

]

.
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Proportional-Integral observer design: first case 2/3

Proportional-Integral observer structure
◮ Proportional-Integral observer

˙̂xa(t) = Ã1(t)x̂a(t)+ C̄1B̃u(t)+KP (y(t)− ŷ (t))+KI (z(t)− ẑ(t))

ŷ(t) = C̃(t)C̄T
1 x̂a(t) K̃PProportional action K̃I Integral action

ẑ(t) = C̄T
2 x̂a(t)

◮ Consider the state estimation error: ea(t) = xa(t)− x̂a(t)
◮ Consider its time-derivative:

ėa(t) = (Ãi (t)− K̃P C̃(t)C̄T
1 − K̃IC̄

T
2 )ea(t)+(C̄1D̃ + C̄2W − K̃PW )w(t)

Comments

The PI observer offers two degrees of freedom K̃P and K̃I

1 K̃P can be used to reduce the impact of the disturbance w(t) on ea(t)

2 K̃I can be used to improve the observer dynamics performances
3 PI observer existence conditions are obtained as in the previous case
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ŷ(t) = C̃(t)C̄T
1 x̂a(t) K̃PProportional action K̃I Integral action
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Proportional-Integral observer design: first case 3/3

Theorem: Observer existence conditions

The robust proportional-integral observer is obtained if there exists a matrix P = PT = 0 and a
matrices GP and GI solution of the constrained optimisation problem for a given scalar α ≥ 0:

minγ subject to
[

Ai +AT
i + I B

BT −γ̄I

]

< 0 , i = 1, . . . ,L

where

Ai = P(Ã1 +αI)−GP C̃i C̄
T
1 −GIC̄

T
2 and B = PC̄1D̃ +PC̄2W −GPW

The gains are K̃P = P−1GP and K̃I = P−1GI

Comments
◮ These conditions are similar to the previous ones (the LMI structure is quite similar)
◮ An additional parameter must be found (the integral gain)
◮ Unknown input estimation is not taken into consideration!
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Proportional-Integral unknown input observer design: second case 1/3

Unknown input assumptions
◮ w(t) is now an unknown input (UI) to be estimated instead of a disturbance to be attenuated
◮ This UI can be employed to characterize an actuator failure and/or an abnormal behaviour
◮ The UI w(t) is supposed to be a constant signal, i.e. ẇ(t) = 0

Proportional-Integral unknown input observer
◮ The goal is to generate both state and UI estimations
◮ The proportional-integral unknown input observer is given

˙̂x(t) = Ãx̂(t)+ B̃u(t)+ D̃ŵ(t)+ K̃P (y(t)− ŷ (t)) K̃P Proportional action

˙̂w(t) = K̃I(y(t)− ŷ (t)) K̃I Integral action

ŷ(t) = C̃(t)x̂(t)+W ŵ(t)

where ŵ(t) provides an estimation of the UI w(t)

◮ K̃P is a correction injection term
◮ K̃I is used to UI estimation
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Proportional-Integral unknown input observer design: second case 2/3

Proportional-Integral unknown input observer
◮ Consider now the following augmented state vector:

Σ(t) =

[

e(t)
ε(t)

]

=

[

x(t)− x̂ (t)
w(t)− ŵ(t)

]

∈ R
n+r

◮ Its time-derivative is given by:

[

ė(t)
ε̇(t)

]

=

[

Ã− K̃P C̃(t) D̃− K̃PW
−K̃IC̃(t) −K̃IW

][

e(t)
ε(t)

]

◮ Consider the compact form

Σ̇(t) = (Aa −KaCa(t))Σ(t)

where Aa =

[

Ã D̃
0 0

]

, Ka =

[

K̃P

K̃I

]

, Ca(t) =
[

C̃(t) W
]

◮ PI observer existence conditions are obtained as in the previous case
◮ The augmented PI unknown input observer structure is quite similar to the P observer

structure!
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]

∈ R
n+r

◮ Its time-derivative is given by:

[
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ė(t)
ε̇(t)

]

=

[
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Ã D̃
0 0

]

, Ka =

[

K̃P

K̃I

]

, Ca(t) =
[

C̃(t) W
]

◮ PI observer existence conditions are obtained as in the previous case
◮ The augmented PI unknown input observer structure is quite similar to the P observer

structure!

Didier Maquin (CRAN) Heterogeneous multiple models ACD’09 14 / 17



Motivations Multiple model approach Proportional Observer PI Observer PI Unknown Input Observer Conclusions

Proportional-Integral unknown input observer design: second case 2/3

Proportional-Integral unknown input observer
◮ Consider now the following augmented state vector:

Σ(t) =

[

e(t)
ε(t)

]

=

[

x(t)− x̂ (t)
w(t)− ŵ(t)
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Proportional-Integral unknown input observer design: second case 3/3

Theorem: observer existence conditions
The robust proportional-integral unknown input observer is obtained if there exists a matrix
P = PT = 0 and matrix a Ga solution of the constrained optimisation problem for a given scalar
decay rate α ≥ 0:

Ai +A
T
i < 0 , i = 1, . . . ,L

where

Ai = P(Aa +α I)−GaC̄i and C̄i =
[

C̃i W
]

The observer gain is given by Ka = P−1Ga.

Comments
◮ Disturbance (noise) acting on the system can easily be considered
◮ The UI can be a low frequency signal e.g. slowly varying-time signal
◮ This UI observer can be used for detection and isolation of sensor and actuator failures
◮ UI estimation can be directly employed as a residual signal in a FDI scheme.
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Conclusions

Conclusions
◮ Heterogeneous multiple models are poorly investigated for state estimation and diagnosis
◮ Recent theoretical results on the state and UI estimation based on heterogeneous multiple

models are presented
◮ New robust observer design conditions under LMI forms are proposed
◮ The Proportional, Proportional-Integral and Proportional-Integral Unknown Input observer

are investigated

Perspectives
◮ The conservatism of the proposed LMI conditions must be investigated. How restrictive is

this condition?
◮ A more general class of unknown inputs can be considered by improving the proposed

proportional-integral UI observer
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Thank you!
comments are welcome!

Didier Maquin (CRAN) Heterogeneous multiple models ACD’09 17 / 17


	Motivations
	Multiple model approach
	Proportional Observer
	PI Observer
	PI Unknown Input Observer
	Conclusions

