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Motivations

Motivations

» State and unknown input estimation is an important topic in automatic control and systems
engineering
> control
> fault diagnosis
> encryption/decryption

> Nonlinear models are often unavoidable for modelling complex systems (global modelling)
» Observer design problem for generic nonlinear models is not straightforward
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Motivations

» State and unknown input estimation is an important topic in automatic control and systems
engineering
> control
> fault diagnosis
> encryption/decryption

> Nonlinear models are often unavoidable for modelling complex systems (global modelling)
» Observer design problem for generic nonlinear models is not straightforward

Proposed strategy

> Nonlinear system modelling based on a multiple model representation
» Several realisations (architectures) of multiple models can be considered
» One among them take into account heterogeneous local models

» State and unknown input estimation of nonlinear system based on this multiple model
representation is poorly investigated
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Multiple model approach

Introduction — philosophy

Basis of multiple model approach: divide and conquer

Multiple model = interpolation of a set of linear

&lt)
submodels

» Appropriate tool for modelling complex
. systems
. \ I:: > eratin
. ; L/ o » Specific analysis of the system
] S non-linearity is avoided

zone 4.

e —— ‘ w0 > Tools for linear systems can partially be
Nonlinear system Multiple model representation extended to nonlinear 5ystems
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> Appropriate tool for modelling complex
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zone 4.

‘ w0 > Tools for linear systems can partially be
extended to nonlinear systems

ST e

Nonlinear system Multiple model representation
4

How the submodels can be interconnected?

Classic structure
Submodel parameters interpolation

» Common state vector for all submodels

» Dimension of the submodels must be
identical (homogeneous), e.g.
Takagi-Sugeno multiple model
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How the submodels can be interconnected?

Proposed structure
Submodel outputs interpolation

» A different state vector for each submodel

» Dimension of the submodels may be
different (heterogeneous)

> Less investigated!!
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Heterogeneous multiple model

Heterogeneous multiple model: multiple model with decoupled state vectors

Xi(k+1)
vi(k)

Aix; (k) +Bju(k)+Djw(t)
Cixi(k)

A collection of submodels < {

Disturbances : noise...
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Multiple model approach

Heterogeneous multiple model

Heterogeneous multiple model: multiple model with decoupled state vectors

A collection of submodels < { xi(k+1) = Axi(k)+Bju(k)+Dw(t)
vitk) = C'Xi(k)
Disturbances : noise..
An interpolation mechanism < ykk) = Z Hi(&(k))yi (k) +Ww(t)
E(k) decision variable i (€(k)) : weighting functions

Z“I k))=1 et 0<p(&(k))<1 Vviel, . L Vk

(1) (&)

venooeL 40 » The multiple model output is given by a
weighted sum of the submodel outputs

» Dimension of the submodels can be different !

» Good flexibility and generality in the modelling
stage

» Modelling systems with variable structure
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Multiple model approach

Preliminaries and notations

Augmented form of the multiple model
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Multiple model approach

Preliminaries and notations

Augmented form of the multiple model

)-(i(t):AiXi(t)+BiU(t)+DiW(t) <~ X(t):AX(t)-I—éU(t)-f—liW(t) Xean n= ini
i=1

L
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Multiple model approach
Preliminaries and notatons ... ==

Augmented form of the multiple model

X(t) = Ax(t)+ Bu(t)+ Dw(t) x eR", n= i n;
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Multiple model approach

Preliminaries and notations

Augmented form of the multiple model

X(t) = Ax(t) +Bu(t) +bw(t) x €R", n= i i
i=1

y(k) =C(t)x(t)

Xy (t) AL, 0O 0O 0 O B, D,
: 0 0 0 o0 : :
x(t) = |x{t)|erR™ A=|0 0 A O 0| B=|B| D=|D
: 0 0 o0 0 :
XL(t) 0 0 0 0 A|_ BL DL
Ct)y = [m@®Cy ... wMC ... wp®)C] pt)=mpE{)
Ct) = Y, umC where E=[0 .. G .. 0

Stability condition

The multiple model stability is ensured by the stability of all submodels (A is block diagonal)
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Multiple model approach

State estimation

> Let us consider the heterogeneous multiple model representation of a nonlinear system
» Extension of some LTI results to heterogeneous multiple models

» Robustness properties of the state estimation with respect to disturbances and unknown
inputs (Ul) are investigated

» Sufficient conditions for observer design are established on the basis of the Lyapunov
method
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Multiple model approach

State estimation

> Let us consider the heterogeneous multiple model representation of a nonlinear system
» Extension of some LTI results to heterogeneous multiple models

» Robustness properties of the state estimation with respect to disturbances and unknown
inputs (Ul) are investigated

» Sufficient conditions for observer design are established on the basis of the Lyapunov
method

v
Observer structures

> Survey of recent results in state estimation strategies based on heterogeneous multiple
models

» Different kinds of observers are investigated:
@ Proportional gain observer
Q Proportional-Integral observer for disturbance attenuation (first case)
@ Proportional-Integral observer for unknown input estimation (second case)

N
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\ultiple model approach Proportional Observer )bserve PI Unknown Input Observer Conclusions

Proportional gain observer design 1/2

Proportional gain observer structure

Proportional gain observer : model of the system with a correction action K

%) = AR(t)+Bu(t)-K(y(t)-¥ (1))
C(

y(t) DX (t)

@ Consider the state estimation error: e(t) = x(t) —X(t)
Q Consider its time-derivative:

v

é(t) = (A—KC(t))e(t)+ (D —KW)w(t) where K = [KT ---KT--.KT]" e R™P
© Goal: K to be determined such that :
lime(t) =0 for w(t) =0 and lell3 < y?|lw]j3 for w(t) 0 and e(0) =0

> yisthe £, gain from w(t) to e(t) to be minimised
» The convergence of the estimation error in the disturbance-free case is ensured
» The robust state estimation in presence of a disturbance is also ensured

4
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Proportional Observer

Proportional gain observerdesign2/2 ...

Theorem: observer existence conditions

The robust proportional observer is obtained if there exists a matrix P = PT = 0 and a matrix G
solution of the constrained optimisation problem for a given scalar a > 0:

miny subject to
|:.Ai -I—.AiT +1 B

BT 7VI:|<O |:l,,L

where A; = P(A+ al) GC; and B=PD—-GW
The observer gain is K =P~1G and a is the decay rate for exponential convergence of e(t)

4

Sketch of the proof

@ Consider the following quadratic Lyapunov function:

V() = e'(t)Pet) P>0 P=PT
@ Robust constraint are satisfied if:

V(t)+2aV(t) < yPwT (t)w(t)—e' (t)e(t)

@ See the proceedings for a detailed proof
Didier Maquin (CRAN) Heterogeneous multiple models ACD’'09 9/17



P1 Observer

Proportional-Integral observer design: first case 1/3

Proportional-Integral observer: justification

» Only one degree of freedom K is available to reject disturbances and to improve the
dynamic performances (two antagonist design goals)
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Proportional-Integral observer: justification

» Only one degree of freedom K is available to reject disturbances and to improve the
dynamic performances (two antagonist design goals)

» The gain K is replaced by two correction actions: proportional and integral
» A supplementary integral variable z(t) is introduced:

t .
2) = [y(@e = 20=y©

» The multiple model in now given

Xa(t) = Ag(t)xa(t)+CiBu(t)+(C1D+CoW)w(t) ,
y(t) = C(t)Cxa(t)+Ww(t) ,
z(t) = Cjxa(t)
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P1 Observer

Proportional-Integral observer design: first case 1/3

Proportional-Integral observer: justification

» Only one degree of freedom K is available to reject disturbances and to improve the
dynamic performances (two antagonist design goals)

» The gain K is replaced by two correction actions: proportional and integral
» A supplementary integral variable z(t) is introduced:

t .
2) = [y(@e = 20=y©

» The multiple model in now given

Xa(t) = Ag(t)xa(t)+CiBu(t)+(C1D+CoW)w(t) ,
y(t) = C(t)Cxa(t)+Ww(t) ,
z(t) = Cjxa(t)

> Let us consider the following notations

w0= 0] A0 =[gy o] =[] =[]
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P1 Observer

Proportional-Integral observer design: first case 2/3

Proportional-Integral observer structure

> Proportional-Integral observer

fa(t) = Ag(D)%a(t)+CiBu(t)+Kp (y(t) =¥ (1) +Ki(2(t) - 2(1))
g(t) = C@)C]Ra(t) Kp Proportional action K Integral action
() = Cifalt)

» Consider the state estimation error: ea(t) = Xa(t) — Xa(t)
> Consider its time-derivative:

éa(t) = (A(t)-KeC(t)C] —KiCF)ea(t) +(CLD+CoW —KeW)w(t)
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P1 Observer

Proportional-Integral observer design: first case 2/3

Proportional-Integral observer structure

> Proportional-Integral observer

Ka(t) = Ay(t)Ra(t)+CiBu(t)+Ke (y(t) ¥ (1) +Ki (2(t) - 2(t))
g(t) = C(t)C]Ra(t) Kp Proportional action K Integral action
() = Cifalt)

» Consider the state estimation error: ea(t) = Xa(t) —Xa(t)
» Consider its time-derivative:

Galt) = (A1) —RpCMET —KiC])ea(t)+(C1D+CoW — RpW)w(t)

v

Comments

The PI observer offers two degrees of freedom Kp and K,
@ Kp can be used to reduce the impact of the disturbance w (t) on e4(t)

Q K, can be used to improve the observer dynamics performances
Pl observer existence conditions are obtained as in the previous case

4
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P1 Observer

Proportional-Integral observer design: first case 3/3

Theorem: server existence conditions

The robust proportional-integral observer is obtained if there exists a matrix P =PT =0 and a
matrices Gp and G, solution of the constrained optimisation problem for a given scalar a > 0:

miny subject to
{Ai + AT +1 B

BT _VI}<0, i=1,...,L

where
A =P(Ay+0al)-GpCiC] -G/C] and B=PC;D+PCo,W —GpW

The gains are Kp = P~1Gp and K, = P~1G,

v

Comments

» These conditions are similar to the previous ones (the LMI structure is quite similar)
> An additional parameter must be found (the integral gain)
» Unknown input estimation is not taken into consideration!
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Pl Unknown Input Observer

Proportional-Integral unknown input observer design: second case 1/3 .

Unknown input assumptions
> w(t) is now an unknown input (Ul) to be estimated instead of a disturbance to be attenuated
> This Ul can be employed to characterize an actuator failure and/or an abnormal behaviour
» The Ul w(t) is supposed to be a constant signal, i.e. w(t) =0
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Pl Unknown Input Observer

Proportional-Integral unknown input observer design: second case 1/3 .

Unknown input assumptions

» w(t) is now an unknown input (Ul) to be estimated instead of a disturbance to be attenuated
> This Ul can be employed to characterize an actuator failure and/or an abnormal behaviour
» The Ul w(t) is supposed to be a constant signal, i.e. w(t) =0

v

Proportional-Integral unknown input observer

» The goal is to generate both state and Ul estimations
» The proportional-integral unknown input observer is given

() = AR(@t)+Bu(t)+DW(t)+Kp(y(t)—y(t)) Kp Proportional action
W(t) = K(y(@t)=¥(@)) K Integral action
gty = CORE)+WW(t)

where W (t) provides an estimation of the Ul w(t)
» Kp is a correction injection term
» K, is used to Ul estimation
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Pl Unknown Input Observer

Proportional-Integral unknown input observer design: second case 2/3 .

Proportional-Integral unknown input observer

» Consider now the following augmented state vector:

(1) = {e(t)} _ {x(t) —X(t) } R

()]~ [w(t)—w(t)
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(1) = {e(t)} _ {x(t) —X(t) } R

()]~ [w(t)—w(t)

> lts time-derivative is given by:

)= P[]

Didier Maquin (CRAN) Heterogeneous multiple models ACD’09 14 /17



Pl Unknown Input Observer

Proportional-Integral unknown input observer design: second case 2/3 .

Proportional-Integral unknown input observer

» Consider now the following augmented state vector:

(1) = {e(t)} _ {x(t) —X(t) } R

()] [w(t)—W(t)

> lts time-derivative is given by:

[é(t)] _ {Afﬁaé(t) 57~Rpw} [e(t)]
—KiC(t) -Kw | [&(t)

» Consider the compact form

>(t) = (Aa —KaCa(t))X(t)

where A, — {’1 '5} Ka= [ },ca(t) — &) W]
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Pl Unknown Input Observer

Proportional-Integral unknown input observer design: second case 2/3 .

Proportional-Integral unknown input observer

» Consider now the following augmented state vector:

(1) = {e(t)} _ {x(t) —X(t) } R

()]~ [w(t)—w(t)

> lts time-derivative is given by:
ét)]  [A—KpC(t) D—KpW] [e(t)
ol =g’ aw | )

» Consider the compact form

>(t) = (Aa —KaCa(t))X(t)

where A, = {'g‘ 2] Ka= {K}Z’j ,Ca(t)=[C(t) W]

> Pl observer existence conditions are obtained as in the previous case
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Pl Unknown Input Observer

Proportional-Integral unknown input observer design: second case 2/3 .

Proportional-Integral unknown input observer

» Consider now the following augmented state vector:

(1) = {e(t)} _ {x(t) —X(t) } R

()]~ [w(t)—w(t)

> lts time-derivative is given by:

ét)]  [A—KpC(t) D—KpW] [e(t)
L —KC() -Kw | [&(t)

» Consider the compact form

Z(t) = (Aa —KaCa(t))x(t)
A B ] :
where Ay = {0 0} Ky = L{],ca(t) =[Ct) W]
> Pl observer existence conditions are obtained as in the previous case

» The augmented PI unknown input observer structure is quite similar to the P observer
structure!
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Pl Unknown Input Observer

Proportional-Integral unknown input observer design: second case 3/3 .

Theorem: observer existence conditions

The robust proportional-integral unknown input observer is obtained if there exists a matrix
P =PT =0 and matrix a G, solution of the constrained optimisation problem for a given scalar
decay rate a > 0:

A+AT <0, i=1,...L
where

A =P(Aata)-G,C  and G =[G W]

The observer gain is given by Ko = P~1G,.

» Disturbance (noise) acting on the system can easily be considered
» The Ul can be a low frequency signal e.g. slowly varying-time signal
» This Ul observer can be used for detection and isolation of sensor and actuator failures

» Ul estimation can be directly employed as a residual signal in a FDI scheme.
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Conclusions

Conclusions

Conclusions

» Heterogeneous multiple models are poorly investigated for state estimation and diagnosis

» Recent theoretical results on the state and Ul estimation based on heterogeneous multiple
models are presented

» New robust observer design conditions under LMI forms are proposed

» The Proportional, Proportional-Integral and Proportional-Integral Unknown Input observer
are investigated

v
Perspectives

> The conservatism of the proposed LMI conditions must be investigated. How restrictive is
this condition?

> A more general class of unknown inputs can be considered by improving the proposed
proportional-integral Ul observer
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Conclusions

Thank you!
comments are welcome!
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