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Objective of diagnosis and fault tolerant control

Actuator fault tolerant control of nonlinear systems
» Fast fault estimation (diagnosis)

» Fault accommodation
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Proposed strategy

» Takagi-Sugeno representation of nonlinear systems
» Observer-based fault tolerant control design
» Extension of the existing results on linear systems

» Relaxed design conditions with Polya’s theorem
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@ Takagi-Sugeno principle
@ Takagi-Sugeno model

Didier Maquin (CRAN) New fault tolerant control strategy Systol'10 3/22



Outline

0 Takagi-Sugeno approach for modeling
@ Takagi-Sugeno principle
@ Takagi-Sugeno model

@ Fault tolerant control design

Didier Maquin (CRAN) New fault tolerant control strategy

Systol'10

3/22



Outline

0 Takagi-Sugeno approach for modeling
@ Takagi-Sugeno principle
@ Takagi-Sugeno model

@ Fault tolerant control design

e Relaxed stability conditions : Polya’s theorem

Didier Maquin (CRAN) New fault tolerant control strategy

Systol'10

3/22



Outline

0 Takagi-Sugeno approach for modeling
@ Takagi-Sugeno principle
@ Takagi-Sugeno model

@ Fault tolerant control design
e Relaxed stability conditions : Polya’s theorem

e Numerical example

Didier Maquin (CRAN) New fault tolerant control strategy Systol'10 3/22



Outline

0 Takagi-Sugeno approach for modeling
@ Takagi-Sugeno principle
@ Takagi-Sugeno model

@ Fault tolerant control design
e Relaxed stability conditions : Polya’s theorem
e Numerical example

e Conclusions

Didier Maquin (CRAN) New fault tolerant control strategy Systol'10 3/22



Takagi-Sugeno approach for modeling ]
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Takagi-Sugeno principle —.

» Operating range decomposition in several local zones.
» A local model represents the behavior of the system in a specific zone.

» The overall behavior of the system is obtained by the aggregation of the
sub-models with adequate weighting functions.

&t &t

Operating \ |:>

space

&(t) &(t)
Nonlinear system Multiple Model representation
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Takagi-Sugeno approach for modeling —.

The main idea of Takagi-Sugeno approach
» Define local models M;, i=1.r
» Define weighting functions 1;(§), 0<p <1
» Define an agregation procedure : M = 5 1 (&)M;
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Takagi-Sugeno approach for modeling

The main idea of Takagi-Sugeno approach

» Define local models M;, i=1.r

» Define weighting functions (§), 0<py <1

» Define an agregation procedure : M = 5 1 (&)M;
Interests of Takagi-Sugeno approach

» Simple structure for modeling complex nonlinear systems.

» The specific study of the nonlinearities is not required.
» Possible extension of the theoretical LTI tools for nonlinear systems.

v

The difficulties

» How many local models ?

» How to define the domain of influence of each local model ?

» On what variables may depend the weighting functions ; ?
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Takagi-Sugeno approach for modeling

Obtaining a Takagi-Sugeno model

» Linearisation of an existing nonlinear model around operating points
R. Murray-Smith, T. A. Johansen, Multiple model approaches to modelling and control. Taylor & Francis,
1997.

» Direct identification of the model parameters
K. Gasso, Identification des systeme dynamiques non linéaires : Approche multimodeéle, Ph.D., Institut
National Polytechnique de Lorraine, France, 2000.

» Nonlinear transformations of an existing nonlinear model
A.M. Nagy, G. Mourot, B. Marx, G. Schutz, J. Ragot, Model structure simplification of a biological
reactor, 15th IFAC Symp. on System Identification, SYSID’09, 2009
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Takagi-Sugeno model

Basic model

x(t) = Z i (€ (1)) (Aix(t) +Biu(t))
y(t) = Cx (1)

e Interpolation mechanism Z Hi(€(t))=1and 0 < p(&(t)) <1,vt,Vie{l,..r}

e The premise variable E(t) are measurable (like u(t), y(t)).
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Takagi-Sugeno model

Basic model

{ X(0) = 5 w(E0) Ax()+Bu(t)
(1) =Cx(t)

e Interpolation mechanism Z Hi(€(t))=1and 0 < p(&(t)) <1,vt,Vie{l,..r}

e The premise variable E(t) are measurable (like u(t), y(t)).

A faulty system

{ X¢ (t) = Z Hi (& (1)) (Aixs (1) +Bi(u(t)+f(1)))
yi(t) = fo ()
o f(t) represents the fault vector (to be detected and accommodated).
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Takagi-Sugeno model

Two kinds of actuator faults are considered :
» External signal : us(t) = u(t)+f(t)
» Internal signal : ug(t) = (In, — y)u(t) with y=diag (y1,¥2, - ¥n,)
y. = 1 = total failure of the i actuator

y. = 0 = the i actuator is healthy
¥ €]0, 1[= loss of effectiveness of the ith actuator
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Takagi-Sugeno model 4.

Two kinds of actuator faults are considered :
» External signal : us(t) = u(t)+f(t)
» Internal signal : ug(t) = (In, — y)u(t) with y=diag (y1,¥2, - ¥n,)
y. = 1 = total failure of the i actuator

y. = 0 = the i actuator is healthy
¥ €]0, 1[= loss of effectiveness of the ith actuator

» Al. the faults are assumed to have norm bounded first time derivative

Hf(t)H <fimax, 0 <fimax <o

» A2.rank(CBj) =ny
» A3. Total actuator failures are not considered, i.e. y; € [0 1]
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Fault tolerant control design ]
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Fault tolerant control

{ X (t) = iélﬂi(f(t))(Ain (1) +Bi(u(t) +f(1)))
yi(t) = Cx¢(t)
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Fault tolerant control 4.

Faulty system

X (t) = iélﬂi(f(t))(Aixf (1) +Bi(u(t) +f(1)))
yi(t) = Cx¢(t) )

Objectives
» Simultaneous and fast estimation of the state x¢(t) and the fault f(t)

» Design of a control law based on a state feedback such as the state of the system
converges asymptotically to zero if the fault is constant or to a small ball around
the origin when f(t) is time varying with norm bounded first time-derivative
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!!
Fault tolerant control

{Xdﬂ=i i (€ (1)) (Aix¢ () + B (u(t) + (1))
yi(t) = Cx¢(t)

v

» Simultaneous and fast estimation of the state X¢(t) and the fault f(t)

» Design of a control law based on a state feedback such as the state of the system
converges asymptotically to zero if the fault is constant or to a small ball around
the origin when f(t) is time varying with norm bounded first time-derivative

QIM-

v

Fault tolerant control law

()= =)~ 5 w(E RSO
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Fault tolerant control law

()= =)~ 5 w(& WK
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.
Fault tolerant control ciean

Fault tolerant control law

()= =)~ 5 w(EOKHO

Structure of the proposed observer

()= 5, (&) (048 () + (1) + Liey (1)
91(1) = C (1)
f(0=T 5 (&) (0)+ ey (1)

ey (t) = ys(t) =i (t)
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Fault tolerant control 4.

Fault tolerant control law

()= =)~ 5 w(EOKHO

% (1) = iélui(ff (1)) (A% (1) + B (u(t) + (1)) + Liey (1))
ys (1) = CX¢ (t)

f(0=T 5 (&) (0)+ ey (1)

ey (t) = ys(t) =i (t)

This observer can be considered as an improvement of the classical Pl observer :
convergence is proved even in non constant fault situation.

K. Zhang, B. Jiang, and V. Cocquempot. Adaptive observer-based fast fault estimation. International Journal of
Control, Automation, and Systems, 6(3) :320-326, 2008.
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Fault tolerant control

r
ex(t) = Z i (&5 (1)) (Piex(t) +Biet(t))
| o
x(t) = ZZ Hi (& (1)) 1 (& (1)) (Zipxe (t) + Bier + BiKjex)
where
ex(t) = x(t)—%(t)
er(t) = f(t)—f()
» = A-LC
Eij = Ai—Bin
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Fault tolerant control

bu(t) = Z (& (1)) (Brex(t) + Biey (1))
X(t) = ii (& (1)) k(& (1)) (Zipxe (t) +Bier +BiKjex)
where
ex(t) = x¢(t)—%(t)
ef(t) = f(t)—f(t)
& = A-LC
Eij = Ai—Bin

» The stability of the system with observer based actuator fault tolerant control is
studied by Lyapunov theory using a quadratic function.

V() = ()P (t )"‘el(t)PZeX(t)"‘%ef(t)r_lef(t)

» The notion of ISS stability is also used in order to define the radius of the
convergence ball around the origin in the case of time varying faults.
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Fault tolerant control 4.

Main result

Given positive scalars o and 3, if there exists symmetric and positive definite matrices
X e RN Py, e RMN G e R =M (with ng = ny) and matrices M; € R™*" and N; € R"™" and a

positive scalar n solution to the optimization problem
min n st

I BTP,—FC
. n . 2 >0
(BTP,—FiC)
0
0
B

Sj  BM Bi O

x 2B 0 Bl

2= * * -2l O | <0
* * * QK
* * * * \U,J

Sj = XAT +XA; —BiM; =M B, @ =ATP,+P,A —N;C-CTN]

1 1 1
= —— (AP —CTNT)B;, Wy =—= (BP2By+B] P2B)) +-6

then the state of the system x(t), the state estimation error and the fault estimation error e (t)
are bounded. Furthermore, if f;ax = 0, these variables converge asymptotically to zero. The
3 i =M 2L

gains of the observer and the fault tolerant control are given by F;, L; =P, IN; and K;

v
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Relaxed stability conditions : Polya’s theorem 4.

Objective

Reduce the conservativness of the LMI conditions by Polya’s theorem

Let us consider the inequality

Agg =

i (&) ki (E(t))A; <0

M-
M-

j
Knowing that

(zu. t)))p 3 HEw) =1

where p is a positive integer, we obtain

(z (e t))) S S HEOMED)A, <0

i=1j=1
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” » )
Relaxed stability conditions : Polya’s theorem

For example, choosing p = 1 we obtain an equivalent inequality

2 2 2
S > > My Hp i Aii, <0

i1=1iy=1i3=1

Consequently, the negativity of Ag is ensured if

A < O
Ny < O
Apn+Ap+An < 0
Dp+Ay+A < 0

e Remark that the negativity of A1, and A, is not required.

=
> Less conservative conditions are obtained by increasing p
» Asymptotic necessary and sufficient conditions can be obtained by chosing p — o

> In Sala et al., 2007 an approach is proposed to evaluate a finite value of p which garantees
the asymptotic necessary and sufficient conditions with a given accuracy.
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Relaxed stability conditions : Polya’s theorem

Theorem with p = 3

Given positive scalars o and 3, if there exists symmetric and positive definite matrices
Z e R™N P, e R™N G e R (with nf = ny) and matrices M; € R"*" and N; € R"™*™ and a
positive scalar n solution to the optimization problem

min n st

I B P, —F;
. n . i P2 iC -0
(Bi Pz—FiC) r]l

2 <0, i=1,..r

32 +2i+2; <0, i,j=1,..1,i #]

32+ 2 +32; +3Z; <0, i,j=1,.r,i #]

6.9; +3=@ij + 32ik +3jS + 39 +ij + ij <0

ij,k=1,.,rji<j<k

39+ 33“' T Ggij T ngi + 39 +32

+32 +3Z; <0,

ij,k=1,..,ri<j<k
the state of the system x(t), the state estimation error ey (t) and the fault estimation error e (t)
are bounded. The gains of the observer and the fault tolerant control are given by Fj, L; = PglNi
and K; = MiL%fil.
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Numerical example

» Let us consider the nonlinear system defined by :

0 1 0 1
Al—<17,2941 o)’ A2—(3.5361 o)’

0 0
Bl—( ~17.65 ) BZ—( ~17.63 ) c=l
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Numerical example

» Let us consider the nonlinear system defined by :

0 1 0 1
Al—<17,2941 o)’ A2—(3.5361 o)’

0 0
Bl—( ~17.65 ) BZ—( ~17.63 ) c=l

» The weighting functions L; are defined as follows

» The fault f(t) is time varying and defined by

0 t <20
F(t) = 1.4sin(t)+21 20<t <50
7.5sin(2t)4+7.5 50<t<70
—0.88u(t) 70 <t <100
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First case : classic control law

r
The first simulation is performed with a classic control law u(t) = 5 1 (&(t))KiX(t).
i=1

—X 1(t)
—_— xz(t)

0.5

-05 I I I I I I I I I
0 10 20 30 40 50 60 70 80 90 100

t(s)

FIGURE: System states with classical control
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Second case : proposed FTC law

In the second simulation, the proposed FTC law u(t) = —f(t) — % i (E(1))KiXe (t) is
i=1

used
0.5
— X,
— %,
0 [f
os ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
0 10 20 30 40 50 60 70 80 90 100

t(s)

25

— 1
= estimated f(t)

20

15

10

.
0 10 20 30 40 50 60 70 80 90 100
(s)

FIGURE: Fault tolerant control : states of the system (top) — fault and its estimation (bottom)
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Conclusions and perspectives 4.

Conclusions

> Active fault tolerant control law for nonlinear systems represented
by a Takagi-Sugeno structure.
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Fast state and fault estimation
Fault tolerant control

The problem of FTC design is expressed via an optimization
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Conclusions and perspectives 4.

Conclusions

> Active fault tolerant control law for nonlinear systems represented
by a Takagi-Sugeno structure.

» Fast state and fault estimation
» Fault tolerant control

» The problem of FTC design is expressed via an optimization
problem subject to LMI (Linear Matrix Inequality) constraints.

> Reduced LMI conditions with Polya’s theorem.

» Study of the unmeasurable premise variable case (&(t) = x(t)).

» Study of the case where both actuator and sensor faults affect the
system

» Extension to robust fault tolerant control (disturbances and
modeling uncertainties).
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