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Motivations

Objective of diagnosis and fault tolerant control

Actuator fault tolerant control of nonlinear systems
◮ Fast fault estimation (diagnosis)
◮ Fault accommodation
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Motivations

Objective of diagnosis and fault tolerant control

Actuator fault tolerant control of nonlinear systems
◮ Fast fault estimation (diagnosis)
◮ Fault accommodation

Difficulties
◮ Taking into account the system complexity in a large operating range
◮ Actuator faults

Proposed strategy
◮ Takagi-Sugeno representation of nonlinear systems
◮ Observer-based fault tolerant control design
◮ Extension of the existing results on linear systems
◮ Relaxed design conditions with Polya’s theorem
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Takagi-Sugeno approach for modeling
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Takagi-Sugeno principle

◮ Operating range decomposition in several local zones.
◮ A local model represents the behavior of the system in a specific zone.
◮ The overall behavior of the system is obtained by the aggregation of the

sub-models with adequate weighting functions.
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Multiple Model representationNonlinear system
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Takagi-Sugeno approach for modeling

The main idea of Takagi-Sugeno approach
◮ Define local models Mi , i = 1..r
◮ Define weighting functions µi (ξ ), 0 ≤ µi ≤ 1
◮ Define an agregation procedure : M = ∑ µi (ξ )Mi
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◮ Define local models Mi , i = 1..r
◮ Define weighting functions µi (ξ ), 0 ≤ µi ≤ 1
◮ Define an agregation procedure : M = ∑ µi (ξ )Mi

Interests of Takagi-Sugeno approach
◮ Simple structure for modeling complex nonlinear systems.
◮ The specific study of the nonlinearities is not required.
◮ Possible extension of the theoretical LTI tools for nonlinear systems.
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◮ Define local models Mi , i = 1..r
◮ Define weighting functions µi (ξ ), 0 ≤ µi ≤ 1
◮ Define an agregation procedure : M = ∑ µi (ξ )Mi

Interests of Takagi-Sugeno approach
◮ Simple structure for modeling complex nonlinear systems.
◮ The specific study of the nonlinearities is not required.
◮ Possible extension of the theoretical LTI tools for nonlinear systems.

The difficulties
◮ How many local models ?
◮ How to define the domain of influence of each local model ?
◮ On what variables may depend the weighting functions µi ?
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Takagi-Sugeno approach for modeling

Obtaining a Takagi-Sugeno model
◮ Linearisation of an existing nonlinear model around operating points

R. Murray-Smith, T. A. Johansen, Multiple model approaches to modelling and control. Taylor & Francis,

1997.

◮ Direct identification of the model parameters
K. Gasso, Identification des système dynamiques non linéaires : Approche multimodèle, Ph.D., Institut

National Polytechnique de Lorraine, France, 2000.

◮ Nonlinear transformations of an existing nonlinear model
A.M. Nagy, G. Mourot, B. Marx, G. Schutz, J. Ragot, Model structure simplification of a biological

reactor, 15th IFAC Symp. on System Identification, SYSID’09, 2009
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Takagi-Sugeno model

Basic model






ẋ(t) =
r
∑

i=1
µi (ξ (t))(Aix(t)+Biu(t))

y(t) = Cx(t)

• Interpolation mechanism
r
∑

i=1
µi (ξ (t)) = 1 and 0 ≤ µi (ξ (t))≤ 1, ∀t , ∀i ∈ {1, ..., r}

• The premise variable ξ (t) are measurable (like u(t), y(t)).
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y(t) = Cx(t)

• Interpolation mechanism
r
∑

i=1
µi (ξ (t)) = 1 and 0 ≤ µi (ξ (t))≤ 1, ∀t , ∀i ∈ {1, ..., r}

• The premise variable ξ (t) are measurable (like u(t), y(t)).

A faulty system






ẋf (t) =
r
∑

i=1
µi (ξf (t))(Aixf (t)+Bi(u(t)+f (t)))

yf (t) = Cxf (t)

• f (t) represents the fault vector (to be detected and accommodated).
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Takagi-Sugeno model

Two kinds of actuator faults are considered :
◮ External signal : uf (t) = u(t)+ f (t)
◮ Internal signal : uf (t) = (Inu − γ)u(t) with γ = diag (γ1,γ2, · · ·γnu )







γi = 1 ⇒ total failure of the i th actuator
γi = 0 ⇒ the i th actuator is healthy
γi ∈]0 , 1[⇒ loss of effectiveness of the i th actuator
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◮ Internal signal : uf (t) = (Inu − γ)u(t) with γ = diag (γ1,γ2, · · ·γnu )







γi = 1 ⇒ total failure of the i th actuator
γi = 0 ⇒ the i th actuator is healthy
γi ∈]0 , 1[⇒ loss of effectiveness of the i th actuator

Assumptions
◮ A1. the faults are assumed to have norm bounded first time derivative

∥

∥

∥
ḟ (t)

∥

∥

∥
≤ f1max , 0 ≤ f1max < ∞

◮ A2. rank(CBi) = nu

◮ A3. Total actuator failures are not considered, i.e. γi ∈ [0 1[
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Fault tolerant control design
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Fault tolerant control

Faulty system






ẋf (t) =
r
∑
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

ẋf (t) =
r
∑

i=1
µi (ξ (t))(Aixf (t)+Bi(u(t)+ f (t)))

yf (t) = Cxf (t)

Objectives
◮ Simultaneous and fast estimation of the state ẋf (t) and the fault f (t)
◮ Design of a control law based on a state feedback such as the state of the system

converges asymptotically to zero if the fault is constant or to a small ball around
the origin when f (t) is time varying with norm bounded first time-derivative
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yf (t) = Cxf (t)

Objectives
◮ Simultaneous and fast estimation of the state ẋf (t) and the fault f (t)
◮ Design of a control law based on a state feedback such as the state of the system

converges asymptotically to zero if the fault is constant or to a small ball around
the origin when f (t) is time varying with norm bounded first time-derivative

Fault tolerant control law

u(t) =−f̂ (t)−
r

∑
i=1

µi (ξf (t))Ki x̂f (t)
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Fault tolerant control

Fault tolerant control law

u(t) =−f̂ (t)−
r

∑
i=1

µi (ξf (t))Ki x̂f (t)

Structure of the proposed observer










































˙̂xf (t) =
r
∑

i=1
µi (ξf (t))(Ai x̂f (t)+Bi (u(t)+ f̂ (t))+Liey (t))

ŷf (t) = Cx̂f (t)

˙̂f (t) = Γ
r
∑

i=1
µi (ξf (t))Fi(ėy(t)+σey (t))

ey (t) = yf (t)− ŷf (t)
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





































˙̂xf (t) =
r
∑

i=1
µi (ξf (t))(Ai x̂f (t)+Bi (u(t)+ f̂ (t))+Liey (t))

ŷf (t) = Cx̂f (t)

˙̂f (t) = Γ
r
∑

i=1
µi (ξf (t))Fi(ėy(t)+σey (t))

ey (t) = yf (t)− ŷf (t)

This observer can be considered as an improvement of the classical PI observer :
convergence is proved even in non constant fault situation.

K. Zhang, B. Jiang, and V. Cocquempot. Adaptive observer-based fast fault estimation. International Journal of

Control, Automation, and Systems, 6(3) :320-326, 2008.
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Fault tolerant control

ėx (t) =
r

∑
i=1

µi (ξf (t))(Φi ex(t)+Bief (t))

ẋf (t) =
r

∑
i=1

r

∑
j=1

µi (ξf (t))µj(ξ (t))
(

Ξijxf (t)+Bief +BiKjex
)

where

ex(t) = xf (t)− x̂f (t)

ef (t) = f (t)− f̂ (t)

Φi = Ai −LiC

Ξij = Ai −BiKj
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Fault tolerant control

ėx (t) =
r

∑
i=1

µi (ξf (t))(Φi ex(t)+Bief (t))

ẋf (t) =
r

∑
i=1

r

∑
j=1

µi (ξf (t))µj(ξ (t))
(

Ξijxf (t)+Bief +BiKjex
)

where

ex(t) = xf (t)− x̂f (t)

ef (t) = f (t)− f̂ (t)

Φi = Ai −LiC

Ξij = Ai −BiKj

◮ The stability of the system with observer based actuator fault tolerant control is
studied by Lyapunov theory using a quadratic function.

V (t) = xT
f (t)P1xf (t)+eT

x (t)P2ex(t)+
1
σ

ef (t)Γ
−1ef (t)

◮ The notion of ISS stability is also used in order to define the radius of the
convergence ball around the origin in the case of time varying faults.
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Fault tolerant control

Main result
Given positive scalars σ and β , if there exists symmetric and positive definite matrices
X ∈ R

n×n, P2 ∈ R
n×n, G ∈ R

nf ×nf (with nf = nu) and matrices Mi ∈ R
nu×n and Ni ∈ R

n×ny and a
positive scalar η solution to the optimization problem

min η s.t .
(

η I BT
i P2 −FiC

(

BT
i P2 −FiC

)T η I

)

> 0

Qij =











Sij BiMj Bi 0 0
∗ −2βX 0 β I 0
∗ ∗ −2β I 0 β I
∗ ∗ ∗ Ωj Rij
∗ ∗ ∗ ∗ Ψij











< 0

Sij = XAT
i +XAi −Bi Mi −MT

i BT
i , Ωj = AT

i P2 +P2Ai −NiC −CT NT
i

Rij =−
1
σ
(AT

j P2 −CT NT
j )Bi , Ψij =−

1
σ

(

BT
i P2Bj +BT

j P2Bi

)

+
1
σ

G

then the state of the system x(t), the state estimation error and the fault estimation error ef (t)
are bounded. Furthermore, if f1max = 0, these variables converge asymptotically to zero. The
gains of the observer and the fault tolerant control are given by Fi , Li = P−1

2 Ni and Ki = MiX
−1.
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Relaxed stability conditions : Polya’s theorem

Objective

Reduce the conservativness of the LMI conditions by Polya’s theorem

Principal
Let us consider the inequality

∆ξ ξ =
r

∑
i=1

r

∑
j=1

µi (ξ (t))µj (ξ (t))∆ij < 0

Knowing that
(

r

∑
i=1

µi (ξ (t))

)p

=
r

∑
i=1

µi(ξ (t)) = 1

where p is a positive integer, we obtain
(

r

∑
i=1

µi(ξ (t))

)p r

∑
i=1

r

∑
j=1

µi(ξ (t))µj (ξ (t))∆ij < 0
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Relaxed stability conditions : Polya’s theorem

Principal
For example, choosing p = 1 we obtain an equivalent inequality

2

∑
i1=1

2

∑
i2=1

2

∑
i3=1

µi1 µi2 µi3∆i1 i2 < 0

Consequently, the negativity of ∆ξ ξ is ensured if

∆11 < 0

∆22 < 0

∆11 +∆12 +∆21 < 0

∆22 +∆21 +∆12 < 0

• Remark that the negativity of ∆12 and ∆21 is not required.

⇒

◮ Less conservative conditions are obtained by increasing p

◮ Asymptotic necessary and sufficient conditions can be obtained by chosing p → ∞
◮ In Sala et al., 2007 an approach is proposed to evaluate a finite value of p which garantees

the asymptotic necessary and sufficient conditions with a given accuracy.
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Relaxed stability conditions : Polya’s theorem

Theorem with p = 3

Given positive scalars σ and β , if there exists symmetric and positive definite matrices
X ∈ R

n×n, P2 ∈ R
n×n, G ∈ R

nf ×nf (with nf = nu) and matrices Mi ∈ R
nu×n and Ni ∈ R

n×ny and a
positive scalar η solution to the optimization problem

min η s.t .
(

η I BT
i P2 −FiC

(

BT
i P2 −FiC

)T η I

)

> 0

Qii < 0, i = 1, ...,r

3Qii +Qij +Qji < 0, i , j = 1, ...,r , i 6= j

3Qii +Qjj +3Qij +3Qji < 0, i , j = 1, ...,r , i 6= j

6Qii +3Qij +3Qik +3Qji +3Qki +Qjk +Qkj < 0

i , j ,k = 1, ...,r , i < j < k

3Qii +3Qjj +6Qij +6Qji +3Qik +3Qki

+3Qjk +3Qkj < 0,

i , j ,k = 1, ...,r , i < j < k

the state of the system x(t), the state estimation error ex(t) and the fault estimation error ef (t)
are bounded. The gains of the observer and the fault tolerant control are given by Fi , Li = P−1

2 Ni

and Ki = MiX
−1.
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Numerical example

◮ Let us consider the nonlinear system defined by :

A1 =

(

0 1
17.2941 0

)

, A2 =

(

0 1
3.5361 0

)

,

B1 =

(

0
−17.65

)

, B2 =

(

0
−17.63

)

, C = I2

◮ The weighting functions µi are defined as follows
{

µ1(ξ (t)) = 1− 2
π |x1(t)|

µ2(ξ (t)) = 1−µ1(ξ (t))

◮ The fault f (t) is time varying and defined by

f (t) =















0 t ≤ 20
1.4sin(t)+21 20 ≤ t ≤ 50

7.5sin(2t)+7.5 50 ≤ t ≤ 70
−0.88u(t) 70 ≤ t ≤ 100
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First case : classic control law

The first simulation is performed with a classic control law u(t) =
r
∑

i=1
µi (ξ (t))Ki x̂(t).

0 10 20 30 40 50 60 70 80 90 100
−0.5

0

0.5

t(s)

x
1
(t)

x
2
(t)

F IGURE: System states with classical control
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Second case : proposed FTC law

In the second simulation, the proposed FTC law u(t) =−f̂ (t)−
r
∑

i=1
µi (ξ (t))Ki x̂f (t) is

used

0 10 20 30 40 50 60 70 80 90 100
−0.5

0

0.5

t(s)

x
1
(t)

x
2
(t)

0 10 20 30 40 50 60 70 80 90 100
−5

0

5

10

15

20

25

t(s)

f(t)
estimated f(t)

F IGURE: Fault tolerant control : states of the system (top) – fault and its estimation (bottom)

Didier Maquin (CRAN) New fault tolerant control strategy Systol’10 20 / 22



Conclusions and perspectives

Conclusions

◮ Active fault tolerant control law for nonlinear systems represented
by a Takagi-Sugeno structure.

Perspectives

Didier Maquin (CRAN) New fault tolerant control strategy Systol’10 21 / 22



Conclusions and perspectives

Conclusions

◮ Active fault tolerant control law for nonlinear systems represented
by a Takagi-Sugeno structure.

◮ Fast state and fault estimation

Perspectives

Didier Maquin (CRAN) New fault tolerant control strategy Systol’10 21 / 22



Conclusions and perspectives

Conclusions

◮ Active fault tolerant control law for nonlinear systems represented
by a Takagi-Sugeno structure.

◮ Fast state and fault estimation

◮ Fault tolerant control

Perspectives

Didier Maquin (CRAN) New fault tolerant control strategy Systol’10 21 / 22



Conclusions and perspectives

Conclusions

◮ Active fault tolerant control law for nonlinear systems represented
by a Takagi-Sugeno structure.

◮ Fast state and fault estimation

◮ Fault tolerant control

◮ The problem of FTC design is expressed via an optimization
problem subject to LMI (Linear Matrix Inequality) constraints.

Perspectives

Didier Maquin (CRAN) New fault tolerant control strategy Systol’10 21 / 22



Conclusions and perspectives

Conclusions

◮ Active fault tolerant control law for nonlinear systems represented
by a Takagi-Sugeno structure.

◮ Fast state and fault estimation

◮ Fault tolerant control

◮ The problem of FTC design is expressed via an optimization
problem subject to LMI (Linear Matrix Inequality) constraints.

◮ Reduced LMI conditions with Polya’s theorem.

Perspectives

Didier Maquin (CRAN) New fault tolerant control strategy Systol’10 21 / 22



Conclusions and perspectives

Conclusions

◮ Active fault tolerant control law for nonlinear systems represented
by a Takagi-Sugeno structure.

◮ Fast state and fault estimation

◮ Fault tolerant control

◮ The problem of FTC design is expressed via an optimization
problem subject to LMI (Linear Matrix Inequality) constraints.

◮ Reduced LMI conditions with Polya’s theorem.

Perspectives

Didier Maquin (CRAN) New fault tolerant control strategy Systol’10 21 / 22



Conclusions and perspectives

Conclusions

◮ Active fault tolerant control law for nonlinear systems represented
by a Takagi-Sugeno structure.

◮ Fast state and fault estimation

◮ Fault tolerant control

◮ The problem of FTC design is expressed via an optimization
problem subject to LMI (Linear Matrix Inequality) constraints.

◮ Reduced LMI conditions with Polya’s theorem.

Perspectives

◮ Study of the unmeasurable premise variable case (ξ (t) = x(t)).
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Conclusions

◮ Active fault tolerant control law for nonlinear systems represented
by a Takagi-Sugeno structure.

◮ Fast state and fault estimation

◮ Fault tolerant control

◮ The problem of FTC design is expressed via an optimization
problem subject to LMI (Linear Matrix Inequality) constraints.

◮ Reduced LMI conditions with Polya’s theorem.

Perspectives

◮ Study of the unmeasurable premise variable case (ξ (t) = x(t)).

◮ Study of the case where both actuator and sensor faults affect the
system

◮ Extension to robust fault tolerant control (disturbances and
modeling uncertainties).
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