State estimation and fault detection of uncertain systems based on an interval approach

Benoît Marx, Didier Maquin and José Ragot

Centre de Recherche en Automatique de Nancy (CRAN) Nancy-Université CNRS

Conference on Control and Fault-Tolerant Systems, SysTol'10 October, 6-8, 2010, Nice, France

Overview of the presentation

- Introduction
- State estimation
- 3 Application to fault diagnosis
 - Change detection of operating mode
 - Fault diagnosis by residual generation
- Example: search for active mode
- 5 Conclusion and perspectives

1.1 Introduction

Context and motivations

- The process should be described in a large operating range
 - → Nonlinear models
- The knowledge on the process is imperfect
 - → Uncertain models
- Process evolves in a disturbed environment
 - → Actuator and measurement noises
- Process can be faulty
 - → Different operating modes (healthy or not)

1.1 Introduction

Context and motivations

- The process should be described in a large operating range
 - → Nonlinear models
- The knowledge on the process is imperfect
 - → Uncertain models
- Process evolves in a disturbed environment
 - → Actuator and measurement noises
- Process can be faulty
 - → Different operating modes (healthy or not)

Proposed approach

- Uncertainties and noises are handled by the interval approach
- Fault diagnosis for uncertain nonlinear systems is proposed, based on
 - interval state estimation
 - active mode detection
 - residual generation

1.2 Problem statement and notations

Studied systems

The aim is to perform state estimation and fault diagnosis of uncertain nonlinear systems defined by

$$x(k+1) = f(x(k), u(k), \theta(k), v(k))$$
$$y(k) = h(x(k), \theta(k), w(k))$$

where f and g are known nonlinear functions and

- \bullet $x(k) \in \mathbb{R}^n$, $u(k) \in \mathbb{R}^r$ and $y(t) \in \mathbb{R}^p$ are the system state, the input and output
- $v(k) \in \mathbb{IR}^{n_v}$ and $w(k) \in \mathbb{IR}^{n_w}$ are the state and measurement noises
- $\theta(k) \in \mathbb{IR}^{n_{\theta}}$ is the uncertain parameter

1.2 Problem statement and notations

Studied systems

The aim is to perform state estimation and fault diagnosis of uncertain nonlinear systems defined by

$$x(k+1) = f(x(k), u(k), \theta(k), v(k))$$
$$y(k) = h(x(k), \theta(k), w(k))$$

where f and g are known nonlinear functions and

- \bullet $x(k) \in \mathbb{R}^n$, $u(k) \in \mathbb{R}^r$ and $y(t) \in \mathbb{R}^p$ are the system state, the input and output
- $v(k) \in \mathbb{IR}^{n_v}$ and $w(k) \in \mathbb{IR}^{n_w}$ are the state and measurement noises
- \bullet $\theta(k) \in \mathbb{IR}^{n_{\theta}}$ is the uncertain parameter
- $y_m(k) \in \mathbb{R}^p$ is the measured output

1.2 Problem statement and notations

Studied systems

The aim is to perform state estimation and fault diagnosis of uncertain nonlinear systems defined by

$$x(k+1) = f(x(k), u(k), \theta(k), v(k))$$
$$y(k) = h(x(k), \theta(k), w(k))$$

where f and g are known nonlinear functions and

- $x(k) \in \mathbb{R}^n$, $u(k) \in \mathbb{R}^r$ and $y(t) \in \mathbb{R}^p$ are the system state, the input and output
- $v(k) \in \mathbb{IR}^{n_v}$ and $w(k) \in \mathbb{IR}^{n_w}$ are the state and measurement noises
- \bullet $\theta(k) \in \mathbb{IR}^{n_{\theta}}$ is the uncertain parameter
- $y_m(k) \in \mathbb{R}^p$ is the measured output

Notations

- a real interval is defined by $[z] = [z^- z^+] = \{z \in \mathbb{R} \mid z^- \le z \le z^+\}$
- an interval vector $[z] \in \mathbb{R}^{n_z}$ means that each component is an interval
- IR^{n_z} denotes the set of all boxes of IR^{n_z}

The state estimation is based on the known data:

- the interval initial condition $x(0) \in I\mathbb{R}^n$
- the measured input and output $u(k) \in \mathbb{R}^r$ and $y_m(k) \in \mathbb{R}^m$
- the time varying lower and upper bounds on the interval noises and uncertainties v(k), w(k) and $\theta(k)$

Principle of the interval state estimation

State estimation is performed by analytic redundancy between the dynamic and measurement equations of the model by iteratively:

The state estimation is based on the known data:

- the interval initial condition $x(0) \in I\mathbb{R}^n$
- the measured input and output $u(k) \in \mathbb{R}^r$ and $y_m(k) \in \mathbb{R}^m$
- the time varying lower and upper bounds on the interval noises and uncertainties v(k), w(k) and $\theta(k)$

Principle of the interval state estimation

State estimation is performed by analytic redundancy between the dynamic and measurement equations of the model by iteratively:

• inverting the output equation:

$$(y_m(k), [\theta(k)], [w(k)]) \rightarrow [\hat{x}^y(k)]$$

The state estimation is based on the known data:

- the interval initial condition $x(0) \in I\mathbb{R}^n$
- the measured input and output $u(k) \in \mathbb{R}^r$ and $y_m(k) \in \mathbb{R}^m$
- the time varying lower and upper bounds on the interval noises and uncertainties v(k), w(k) and $\theta(k)$

Principle of the interval state estimation

State estimation is performed by analytic redundancy between the dynamic and measurement equations of the model by iteratively:

• inverting the output equation:

$$(y_m(k), [\theta(k)], [w(k)]) \rightarrow [\hat{x}^y(k)]$$

• simulating the dynamic equation:

$$([\hat{x}(k-1)], u(k-1), [\theta(k)], [v(k)]) \rightarrow [\hat{x}^+(k)]$$

The state estimation is based on the known data:

- the interval initial condition $x(0) \in I\mathbb{R}^n$
- the measured input and output $u(k) \in \mathbb{R}^r$ and $y_m(k) \in \mathbb{R}^m$
- the time varying lower and upper bounds on the interval noises and uncertainties v(k), w(k) and $\theta(k)$

Principle of the interval state estimation

State estimation is performed by analytic redundancy between the dynamic and measurement equations of the model by iteratively:

• inverting the output equation:

$$(y_m(k), [\theta(k)], [w(k)]) \rightarrow [\hat{x}^y(k)]$$

• simulating the dynamic equation:

$$([\hat{x}(k-1)], u(k-1), [\theta(k)], [v(k)]) \rightarrow [\hat{x}^+(k)]$$

• merging the two information sources:

$$[\hat{x}^y(k)] \cap [\hat{x}^+(k)] \rightarrow [\hat{x}(k)]$$

• **Step 0.** Initialize $\mathcal{D}_{x,0}^+$ with \mathcal{D}_0 . Let k=1

Initialization

 $\mathcal{D}_{x,0}^+$ is the set of possible values of x(0) deduced by prediction at k=0. The estimation of x(0) is given by the known initial condition: [x(0)].

- **Step 0.** Initialize $\mathcal{D}_{x,0}^+$ with \mathcal{D}_0 . Let k=1
- **Step 1.** Collect the data u(k) and $y_m(k)$

Input and output measurements

At each instant, u(k) and $y_m(k)$ are collected. It is recalled that u(k) and $y_m(k)$ are not interval.

- **Step 0.** Initialize $\mathcal{D}_{x,0}^+$ with \mathcal{D}_0 . Let k=1
- **Step 1.** Collect the data u(k) and $y_m(k)$
- **Step 2.** Compute the output domain $\mathcal{D}_{y,k}$:

$$\mathcal{D}_{y,k} = \{y \mid y - y_m(k) \in [w(k)]\}$$

Output estimation

Based on the known lower and upper bounds of [w(k)], the set of possible values of y(k) is deduced.

- **Step 0.** Initialize $\mathcal{D}_{x,0}^+$ with \mathcal{D}_0 . Let k=1
- **Step 1.** Collect the data u(k) and $y_m(k)$
- **Step 2.** Compute the output domain $\mathcal{D}_{y,k}$:

$$\mathcal{D}_{y,k} = \{ y \ / \ y - y_m(k) \in [w(k)] \}$$

• **Step 3.** Compute the state domain $\mathcal{D}_{x,k}^{y}$:

$$\mathcal{D}_{x,k}^{y} = \{ x \in \mathbb{IR}^{n} / h(x,\theta) \in \mathcal{D}_{y,k}, \ \theta \in [\theta(k)] \}$$

Inverting the observation equation

Based on the known lower and upper bounds of $[\theta(k)]$, the set of possible values of x(k), consistent with $y_m(k)$ is deduced.

- **Step 0.** Initialize $\mathcal{D}_{x,0}^+$ with \mathcal{D}_0 . Let k=1
- **Step 1.** Collect the data u(k) and $y_m(k)$
- **Step 2.** Compute the output domain $\mathcal{D}_{y,k}$:

$$\mathcal{D}_{y,k} = \{ y \ / \ y - y_m(k) \in [w(k)] \}$$

• Step 3. Compute the state domain $\mathcal{D}_{x,k}^{y}$:

$$\mathcal{D}_{x,k}^{y} = \{ x \in \mathbb{IR}^{n} / h(x,\theta) \in \mathcal{D}_{y,k}, \ \theta \in [\theta(k)] \}$$

• **Step 4.** Compute the admissible state domain $\mathcal{D}_{x,k}$:

$$\mathcal{D}_{x,k} = \mathcal{D}^+_{x,k-1} \cap \mathcal{D}^y_{x,k}$$

Merging observation and prediction

The state estimation must be consistent with both observation and prediction, thus the two sets are intersected.

- **Step 0.** Initialize $\mathcal{D}_{x,0}^+$ with \mathcal{D}_0 . Let k=1
- **Step 1.** Collect the data u(k) and $y_m(k)$
- **Step 2.** Compute the output domain $\mathcal{D}_{y,k}$:

$$\mathcal{D}_{y,k} = \{ y \ / \ y - y_m(k) \in [w(k)] \}$$

• Step 3. Compute the state domain $\mathcal{D}_{x.k}^{y}$:

$$\mathcal{D}_{x,k}^{y} = \{ x \in \mathbb{IR}^{n} / h(x,\theta) \in \mathcal{D}_{y,k}, \ \theta \in [\theta(k)] \}$$

• **Step 4.** Compute the admissible state domain $\mathcal{D}_{x,k}$:

$$\mathcal{D}_{x,k} = \mathcal{D}^+_{x,k-1} \cap \mathcal{D}^y_{x,k}$$

• Step 5. Reduce the domain complexity: $\hat{\mathcal{D}}_{x,k} \supseteq \mathcal{D}_{x,k}$

Complexity reduction

Intersecting sets may lead to complex shape.

An overestimation (e.g. orthotope) may decrease the shape complexity.

- Step 0. Initialize $\mathcal{D}_{x,0}^+$ with \mathcal{D}_0 . Let k=1
- **Step 1.** Collect the data u(k) and $y_m(k)$
- **Step 2.** Compute the output domain $\mathcal{D}_{y,k}$:

$$\mathcal{D}_{y,k} = \{ y \ / \ y - y_m(k) \in [w(k)] \}$$

• **Step 3.** Compute the state domain $\mathcal{D}_{x,k}^{y}$:

$$\mathcal{D}_{x,k}^{y} = \{ x \in \mathbb{IR}^{n} / h(x,\theta) \in \mathcal{D}_{y,k}, \ \theta \in [\theta(k)] \}$$

• **Step 4.** Compute the admissible state domain $\mathcal{D}_{x,k}$:

$$\mathcal{D}_{x,k} = \mathcal{D}^+_{x,k-1} \cap \mathcal{D}^y_{x,k}$$

- Step 5. Reduce the domain complexity: $\hat{\mathcal{D}}_{x,k} \supseteq \mathcal{D}_{x,k}$
- Step 6. Predict the state set:

$$\mathcal{D}_{x,k}^{+} = \{ f(x, u(k), \theta, v) / x \in \hat{\mathcal{D}}_{x,k}, \ v \in [v(k)], \ \theta \in [\theta(k)] \}$$

Simulating the dynamic equation

Based on the known lower and upper bounds of $[\theta(k)]$ and [v(k)], the set of possible values of x(k+1), consistent with $x(k) \in \hat{\mathcal{D}}_{x,k}$ is deduced.

- **Step 0.** Initialize $\mathcal{D}_{x,0}^+$ with \mathcal{D}_0 . Let k=1
- **Step 1.** Collect the data u(k) and $y_m(k)$
- **Step 2.** Compute the output domain $\mathcal{D}_{y,k}$:

$$\mathcal{D}_{y,k} = \{ y \ / \ y - y_m(k) \in [w(k)] \}$$

• Step 3. Compute the state domain $\mathcal{D}_{x,k}^{y}$:

$$\mathcal{D}_{x,k}^{y} = \{ x \in \mathbb{IR}^{n} / h(x,\theta) \in \mathcal{D}_{y,k}, \ \theta \in [\theta(k)] \}$$

• **Step 4.** Compute the admissible state domain $\mathcal{D}_{x,k}$:

$$\mathcal{D}_{x,k} = \mathcal{D}^+_{x,k-1} \cap \mathcal{D}^y_{x,k}$$

- Step 5. Reduce the domain complexity: $\hat{\mathcal{D}}_{x,k} \supseteq \mathcal{D}_{x,k}$
- **Step 6.** Predict the state set:

$$\mathcal{D}_{x,k}^{+} = \{ f(x, u(k), \theta, v) / x \in \hat{\mathcal{D}}_{x,k}, \ v \in [v(k)], \ \theta \in [\theta(k)] \}$$

• Step 7. Increase k := k + 1, go to Step 1

Iteration

The prediction will be faced to measurements collected at step 1., and so on \dots

- State estimation is based on the information consistency
 - o predicted state set $\mathcal{D}_{\mathbf{x},k-1}^+$ and observed state set $\mathcal{D}_{\mathbf{x},k}^{\mathbf{y}}$ are intersected

- State estimation is based on the information consistency \rightarrow predicted state set $\mathcal{D}^+_{x,k-1}$ and observed state set $\mathcal{D}^y_{x,k}$ are intersected
- Fault detection is based on the information inconsistency $\to \mathcal{D}_{x,k}^+ \cap \mathcal{D}_{x,k}^y = \varnothing \text{ indicates that measurements are inconsistent with the model}$

- State estimation is based on the information consistency \rightarrow predicted state set $\mathcal{D}^+_{x,k-1}$ and observed state set $\mathcal{D}^y_{x,k}$ are intersected
- Fault detection is based on the information inconsistency $\to \mathcal{D}_{x,k}^+ \cap \mathcal{D}_{x,k}^y = \varnothing$ indicates that measurements are inconsistent with the model
- The presented state estimation can be adapted to fault diagnosis
 - In the framework of supervision, faulty models are available
 - → fault diagnosis is performed by active mode detection
 - \rightarrow state estimation is performed with each model, information inconsistency invalids a model

- State estimation is based on the information consistency \rightarrow predicted state set $\mathcal{D}^+_{x,k-1}$ and observed state set $\mathcal{D}^y_{x,k}$ are intersected
- Fault detection is based on the information inconsistency $\to \mathcal{D}_{x,k}^+ \cap \mathcal{D}_{x,k}^y = \varnothing$ indicates that measurements are inconsistent with the model
- The presented state estimation can be adapted to fault diagnosis
 - In the framework of supervision, faulty models are available
 - ightarrow fault diagnosis is performed by active mode detection
 - \rightarrow state estimation is performed with each model, information inconsistency invalids a model
 - Fault detection can be made by comparing estimates and measurements
 - ightarrow real state values are not available for comparison with estimated ones
 - → estimated and measured output are used for residual generation

• The predicted output domain $\mathcal{D}_{y,k}^+$ is deduced from the predicted state domain $\mathcal{D}_{x,k}^+$

$$\begin{split} \mathcal{D}_{y,k}^{+} = & \left\{ y^{+} \ / \ y^{+} = h(x^{+}, \theta^{+}) + w, \ x^{+} = f(x, u(k), \theta, v), \right. \\ & \left. x \in \mathcal{D}_{x,k}^{+}, \theta^{+} \in \left[\theta(k+1) \right], \theta \in \left[\theta(k) \right], v \in \left[v(k) \right], w \in \left[w(k) \right] \right\} \end{split}$$

• The predicted output domain $\mathcal{D}_{y,k}^+$ is deduced from the predicted state domain $\mathcal{D}_{x,k}^+$

$$\mathcal{D}_{y,k}^{+} = \left\{ y^{+} / y^{+} = h(x^{+}, \theta^{+}) + w, \ x^{+} = f(x, u(k), \theta, v), \right.$$
$$\left. x \in \mathcal{D}_{x,k}^{+}, \theta^{+} \in [\theta(k+1)], \theta \in [\theta(k)], v \in [v(k)], w \in [w(k)] \right\}$$

• The measured output domain is estimated

$$\mathcal{D}_{k,k+1} = \{ y \ / \ y - y_m(k) \in [w(k+1)] \}$$

• The predicted output domain $\mathcal{D}_{y,k}^+$ is deduced from the predicted state domain $\mathcal{D}_{x,k}^+$

$$\begin{split} \mathcal{D}_{y,k}^{+} &= \left\{ y^{+} \ / \ y^{+} = h(x^{+}, \theta^{+}) + w, \ x^{+} = f(x, u(k), \theta, v), \right. \\ &\left. x \in \mathcal{D}_{x,k}^{+}, \theta^{+} \in \left[\theta(k+1) \right], \theta \in \left[\theta(k) \right], v \in \left[v(k) \right], w \in \left[w(k) \right] \right\} \end{split}$$

• The measured output domain is estimated

$$\mathcal{D}_{k,k+1} = \{ y \ / \ y - y_m(k) \in [w(k+1)] \}$$

A fault indicator is computed

$$r_{k+1} = \mathcal{D}_{v,k}^+ \cap \mathcal{D}_{v,k+1}$$

(an overestimation of $\mathcal{D}_{y_k}^+$ can be used to limit the computational load)

• The predicted output domain $\mathcal{D}_{y,k}^+$ is deduced from the predicted state domain $\mathcal{D}_{x,k}^+$

$$\mathcal{D}_{y,k}^{+} = \left\{ y^{+} / y^{+} = h(x^{+}, \theta^{+}) + w, \ x^{+} = f(x, u(k), \theta, v), \right.$$
$$\left. x \in \mathcal{D}_{x,k}^{+}, \theta^{+} \in \left[\theta(k+1) \right], \theta \in \left[\theta(k) \right], v \in \left[v(k) \right], w \in \left[w(k) \right] \right\}$$

• The measured output domain is estimated

$$\mathcal{D}_{k,k+1} = \{ y \ / \ y - y_m(k) \in [w(k+1)] \}$$

A fault indicator is computed

$$r_{k+1} = \mathcal{D}_{y,k}^+ \cap \mathcal{D}_{y,k+1}$$

(an overestimation of $\mathcal{D}^+_{\nu_k}$ can be used to limit the computational load)

• A fault is detected if $r_{k+1} = \emptyset$

• In the framework of supervision it is assumed that different operating modes – normal or faulty – are available.

- In the framework of supervision it is assumed that different operating modes – normal or faulty – are available.
- Each mode is represented by an uncertain NL model

$$M_{i} \begin{cases} x_{i}(k+1) &= f_{i}(x_{i}(k), u(k), \theta(k), v(k)) \\ y_{i}(k+1) &= h_{i}(x_{i}(k), \theta(k)) + w(k) \end{cases}, i = 1, ..., N$$

- In the framework of supervision it is assumed that different operating modes – normal or faulty – are available.
- Each mode is represented by an uncertain NL model

$$M_{i} \begin{cases} x_{i}(k+1) &= f_{i}(x_{i}(k), u(k), \theta(k), v(k)) \\ y_{i}(k+1) &= h_{i}(x_{i}(k), \theta(k)) + w(k) \end{cases}, i = 1, ..., N$$

• The objective is to determine at each instant the active mode.

- In the framework of supervision it is assumed that different operating modes – normal or faulty – are available.
- Each mode is represented by an uncertain NL model

$$M_{i} \begin{cases} x_{i}(k+1) &= f_{i}(x_{i}(k), u(k), \theta(k), v(k)) \\ y_{i}(k+1) &= h_{i}(x_{i}(k), \theta(k)) + w(k) \end{cases}, i = 1, ..., N$$

- The objective is to determine at each instant the active mode.
- The chosen approach is to invalid the model being inconsistent with the measurements and the bounds on noises and uncertainties.

- In the framework of supervision it is assumed that different operating modes – normal or faulty – are available.
- Each mode is represented by an uncertain NL model

$$M_{i} \begin{cases} x_{i}(k+1) &= f_{i}(x_{i}(k), u(k), \theta(k), v(k)) \\ y_{i}(k+1) &= h_{i}(x_{i}(k), \theta(k)) + w(k) \end{cases}, i = 1, ..., N$$

- The objective is to determine at each instant the active mode.
- The chosen approach is to invalid the model being inconsistent with the measurements and the bounds on noises and uncertainties.
- The state estimation algorithm is modified to check the consistency of each model with the measurements.

- In the framework of supervision it is assumed that different operating modes – normal or faulty – are available.
- Each mode is represented by an uncertain NL model

$$M_{i} \begin{cases} x_{i}(k+1) &= f_{i}(x_{i}(k), u(k), \theta(k), v(k)) \\ y_{i}(k+1) &= h_{i}(x_{i}(k), \theta(k)) + w(k) \end{cases}, i = 1, ..., N$$

- The objective is to determine at each instant the active mode.
- The chosen approach is to invalid the model being inconsistent with the measurements and the bounds on noises and uncertainties.
- The state estimation algorithm is modified to check the consistency of each model with the measurements.
- The state estimation algorithm can also be used for residual generation.

3.4 Algorithm of change detection of operating mode

• **Step 0.** Initialize $\mathcal{D}_{\mathbf{x},0,i}^+$ with \mathcal{D}_0 , for $i=1,\ldots,N$. Let k=1

Initialization

 $\mathcal{D}_{x,0,i}^+$ are the sets of possible values of $x_i(0)$ at k=0. All the state estimates are initialized with: [x(0)].

3.4 Algorithm of change detection of operating mode

- **Step 0.** Initialize $\mathcal{D}_{x,0,i}^+$ with \mathcal{D}_0 , for $i=1,\ldots,N$. Let k=1
- **Step 1.** Collect the data u(k) and $y_m(k)$

Input and output measurements

At each instant, u(k) and $y_m(k)$ are collected. It is recalled that u(k) and $y_m(k)$ are not interval.

3.4 Algorithm of change detection of operating mode

- **Step 0.** Initialize $\mathcal{D}_{x,0,i}^+$ with \mathcal{D}_0 , for $i=1,\ldots,N$. Let k=1
- **Step 1.** Collect the data u(k) and $y_m(k)$
- **Step 2.** Compute the output domains $\mathcal{D}_{y,k,i}$, for $i=1,\ldots,N$:

$$\mathcal{D}_{y,k,i} = \{ y_i \ / \ y_i - y_m(k) \in [w(k)] \}$$

Output estimation

Based on the known lower and upper bounds of [w(k)], the set of possible values of $y_i(k)$ is deduced, for each model M_i .

- **Step 0.** Initialize $\mathcal{D}_{\mathbf{x},0,i}^+$ with \mathcal{D}_0 , for $i=1,\ldots,N$. Let k=1
- **Step 1.** Collect the data u(k) and $y_m(k)$
- **Step 2.** Compute the output domains $\mathcal{D}_{y,k,i}$, for i = 1, ..., N:

$$\mathcal{D}_{y,k,i} = \{ y_i / y_i - y_m(k) \in [w(k)] \}$$

• **Step 3.** Compute the state domain $\mathcal{D}_{x,k,i}^{y}$, for $i=1,\ldots,N$:

$$\mathcal{D}_{x,k,i}^{y} = \{x_i \in \mathbb{IR}^n / h_i(x_i, \theta) \in \mathcal{D}_{y,k,i}, \ \theta \in [\theta(k)]\}$$

Inverting the observation equation

Based on the known lower and upper bounds of $[\theta(k)]$, the sets of possible values of $x_i(k)$, consistent with $y_m(k)$ are deduced.

- **Step 0.** Initialize $\mathcal{D}_{x,0,i}^+$ with \mathcal{D}_0 , for $i=1,\ldots,N$. Let k=1
- **Step 1.** Collect the data u(k) and $y_m(k)$
- **Step 2.** Compute the output domains $\mathcal{D}_{y,k,i}$, for $i=1,\ldots,N$:

$$\mathcal{D}_{y,k,i} = \{ y_i / y_i - y_m(k) \in [w(k)] \}$$

• **Step 3.** Compute the state domain $\mathcal{D}_{x,k,i}^{y}$, for $i=1,\ldots,N$:

$$\mathcal{D}_{x,k,i}^{y} = \{x_i \in \mathbb{IR}^n / h_i(x_i, \theta) \in \mathcal{D}_{y,k,i}, \ \theta \in [\theta(k)]\}$$

• **Step 4.** Compute the admissible state domain $\mathcal{D}_{x,k,i}$, for i = 1, ..., N:

$$\mathcal{D}_{x,k,i} = \mathcal{D}^+_{x,k-1,i} \cap \mathcal{D}^y_{x,k,i}$$

Merging observation and prediction

The state estimation must be consistent with both observation and prediction, thus the two sets are intersected.

- **Step 0.** Initialize $\mathcal{D}_{\mathbf{x},0,i}^+$ with \mathcal{D}_0 , for $i=1,\ldots,N$. Let k=1
- **Step 1.** Collect the data u(k) and $y_m(k)$
- **Step 2.** Compute the output domains $\mathcal{D}_{y,k,i}$, for i = 1, ..., N:

$$\mathcal{D}_{y,k,i} = \{ y_i / y_i - y_m(k) \in [w(k)] \}$$

• **Step 3.** Compute the state domain $\mathcal{D}_{x,k,i}^{y}$, for $i=1,\ldots,N$:

$$\mathcal{D}_{x,k,i}^{y} = \{x_i \in \mathbb{IR}^n / h_i(x_i, \theta) \in \mathcal{D}_{y,k,i}, \ \theta \in [\theta(k)]\}$$

• **Step 4.** Compute the admissible state domain $\mathcal{D}_{x,k,i}$, for i = 1, ..., N:

$$\mathcal{D}_{x,k,i} = \mathcal{D}^+_{x,k-1,i} \cap \mathcal{D}^y_{x,k,i}$$

• **Step 5.** Check for active mode, for i = 1, ..., N:

if
$$\mathcal{D}_{x,k-1,i_0} = \emptyset$$
, then i_0 is not an active mode.

Search for active mode

 $\mathcal{D}_{x,k-1,i_0} = \{\varnothing\}$ means that the prediction made with M_{i_0} is inconsistent with measurements \to the i_0^{th} model is invalidated.

- **Step 0.** Initialize $\mathcal{D}_{x,0,i}^+$ with \mathcal{D}_0 , for $i=1,\ldots,N$. Let k=1
- **Step 1.** Collect the data u(k) and $y_m(k)$
- **Step 2.** Compute the output domains $\mathcal{D}_{y,k,i}$, for $i=1,\ldots,N$:

$$\mathcal{D}_{y,k,i} = \{ y_i / y_i - y_m(k) \in [w(k)] \}$$

• **Step 3.** Compute the state domain $\mathcal{D}_{x,k,i}^{y}$, for $i=1,\ldots,N$:

$$\mathcal{D}_{x,k,i}^{y} = \{x_i \in \mathbb{IR}^n / h_i(x_i, \theta) \in \mathcal{D}_{y,k,i}, \ \theta \in [\theta(k)]\}$$

• **Step 4.** Compute the admissible state domain $\mathcal{D}_{x,k,i}$, for i = 1, ..., N:

$$\mathcal{D}_{x,k,i} = \mathcal{D}^+_{x,k-1,i} \cap \mathcal{D}^y_{x,k,i}$$

- **Step 5.** Check for active mode, for i = 1, ..., N:
 - if $\mathcal{D}_{x,k-1,i_0} = \emptyset$, then i_0 is not an active mode.
- **Step 6.** Reduce the domain complexity, for i = 1, ..., N: $\hat{\mathcal{D}}_{x,k,i} \supseteq \mathcal{D}_{x,k,i}$

Complexity reduction

Intersecting sets may lead to complex shape.

An overestimation (e.g. orthotope) may decrease the shape complexity.

- **Step 0.** Initialize $\mathcal{D}_{x,0,i}^+$ with \mathcal{D}_0 , for $i=1,\ldots,N$. Let k=1
- **Step 1.** Collect the data u(k) and $y_m(k)$
- **Step 2.** Compute the output domains $\mathcal{D}_{y,k,i}$, for i = 1, ..., N:

$$\mathcal{D}_{y,k,i} = \{ y_i / y_i - y_m(k) \in [w(k)] \}$$

• **Step 3.** Compute the state domain $\mathcal{D}_{x,k,i}^{y}$, for $i=1,\ldots,N$:

$$\mathcal{D}_{x,k,i}^{y} = \{x_i \in \mathbb{IR}^n / h_i(x_i, \theta) \in \mathcal{D}_{y,k,i}, \ \theta \in [\theta(k)]\}$$

• **Step 4.** Compute the admissible state domain $\mathcal{D}_{x,k,i}$, for i = 1, ..., N:

$$\mathcal{D}_{x,k,i} = \mathcal{D}^+_{x,k-1,i} \cap \mathcal{D}^y_{x,k,i}$$

- **Step 5.** Check for active mode, for i = 1, ..., N: if $\mathcal{D}_{x,k-1,i_0} = \varnothing$, then i_0 is not an active mode.
- **Step 6.** Reduce the domain complexity, for i = 1, ..., N: $\hat{\mathcal{D}}_{x,k,i} \supseteq \mathcal{D}_{x,k,i}$
- **Step 7.** Predict the state set, for i = 1, ..., N:

$$\mathcal{D}_{x,k,i}^{+} = \{ f_i(x_i, u(k), \theta, v) / x_i \in \hat{\mathcal{D}}_{x,k,i}, \ v \in [v(k)], \ \theta \in [\theta(k)] \}$$

Simulating the dynamic equation

Knowning lower and upper bounds of $[\theta(k)]$ and [v(k)], the sets of possible values of $x_i(k+1)$, consistent with $x_i(k) \in \hat{\mathcal{D}}_{x,k,i}$ are deduced.

- **Step 0.** Initialize $\mathcal{D}_{x,0,i}^+$ with \mathcal{D}_0 , for $i=1,\ldots,N$. Let k=1
- **Step 1.** Collect the data u(k) and $y_m(k)$
- **Step 2.** Compute the output domains $\mathcal{D}_{y,k,i}$, for $i=1,\ldots,N$:

$$\mathcal{D}_{y,k,i} = \{ y_i / y_i - y_m(k) \in [w(k)] \}$$

• **Step 3.** Compute the state domain $\mathcal{D}_{x,k,i}^{y}$, for $i=1,\ldots,N$:

$$\mathcal{D}_{x,k,i}^{y} = \{x_i \in \mathbb{IR}^n / h_i(x_i, \theta) \in \mathcal{D}_{y,k,i}, \ \theta \in [\theta(k)]\}$$

• **Step 4.** Compute the admissible state domain $\mathcal{D}_{x,k,i}$, for i = 1, ..., N:

$$\mathcal{D}_{x,k,i} = \mathcal{D}^+_{x,k-1,i} \cap \mathcal{D}^y_{x,k,i}$$

• **Step 5.** Check for active mode, for i = 1, ..., N:

if
$$\mathcal{D}_{x,k-1,i_0} = \emptyset$$
, then i_0 is not an active mode.

- **Step 6.** Reduce the domain complexity, for i = 1, ..., N: $\hat{\mathcal{D}}_{x,k,i} \supseteq \mathcal{D}_{x,k,i}$
- **Step 7.** Predict the state set, for i = 1, ..., N:

$$\mathcal{D}_{x,k,i}^{+} = \{ f_i(x_i, u(k), \theta, v) / x_i \in \hat{\mathcal{D}}_{x,k,i}, \ v \in [v(k)], \ \theta \in [\theta(k)] \}$$

• Step 8. Increase k := k + 1, go to Step 1

Iteration

The prediction made with each model will be faced to measurements collected at step 1.

- **Step 0.** Define the initial state domains $\mathcal{D}_{\mathbf{x},0,i}^+$, and set k=1.
- Step 1. Collect the data u(k) and $y_m(k)$.
- **Step 2.** Characterize the admissible state domains using a prediction based on the *i*th model:

$$\mathcal{D}_{x,k,i}^{+} = \{f_{i}(x_{i}, u(k), \theta, v) / x_{i} \in \hat{\mathcal{D}}_{x,k,i}, \theta \in [\theta(k)], v \in [v(k)]\}$$

- **Step 0.** Define the initial state domains $\mathcal{D}_{x,0,i}^+$, and set k=1.
- Step 1. Collect the data u(k) and $y_m(k)$.
- **Step 2.** Characterize the admissible state domains using a prediction based on the *i*th model:

$$\mathcal{D}_{x,k,i}^{+} = \left\{ f_i(x_i, u(k), \theta, v) / x_i \in \hat{\mathcal{D}}_{x,k,i}, \theta \in [\theta(k)], v \in [v(k)] \right\}$$

• **Step 3.** Characterize the admissible output domains $\mathcal{D}^+_{y,k,i}$

- **Step 0.** Define the initial state domains $\mathcal{D}^+_{\mathbf{x},0,i}$, and set k=1.
- **Step 1.** Collect the data u(k) and $y_m(k)$.
- **Step 2.** Characterize the admissible state domains using a prediction based on the *i*th model:

$$\mathcal{D}_{x,k,i}^{+} = \{f_i(x_i, u(k), \theta, v) / x_i \in \hat{\mathcal{D}}_{x,k,i}, \theta \in [\theta(k)], v \in [v(k)]\}$$

- Step 3. Characterize the admissible output domains $\mathcal{D}^+_{y,k,i}$
- **Step 4.** Compute the bounds of the output domains $y_{ij}^-(k) = \inf y/y \in \mathcal{D}_{y,k,i}^+$ and $y_{ij}^+(k) = \sup y/y \in \mathcal{D}_{y,k,i}^+$ where the j is the number of the component output.
- Step 5. Compute the interval residuals

$$[r_{ij}(k)] = [y_{ij}^{-}(k) - y_{mj}(k), \ y_{ij}^{+}(k) - y_{mj}(k)]$$

- **Step 0.** Define the initial state domains $\mathcal{D}_{\mathbf{x},0,i}^+$, and set k=1.
- Step 1. Collect the data u(k) and $y_m(k)$.
- **Step 2.** Characterize the admissible state domains using a prediction based on the *i*th model:

$$\mathcal{D}_{x,k,i}^{+} = \{f_{i}(x_{i}, u(k), \theta, v) / x_{i} \in \hat{\mathcal{D}}_{x,k,i}, \theta \in [\theta(k)], v \in [v(k)]\}$$

- **Step 3.** Characterize the admissible output domains $\mathcal{D}^+_{\gamma,k,i}$
- **Step 4.** Compute the bounds of the output domains $y_{ij}^-(k) = \inf y/y \in \mathcal{D}_{y,k,i}^+$ and $y_{ij}^+(k) = \sup y/y \in \mathcal{D}_{y,k,i}^+$ where the j is the number of the component output.
- **Step 5.** Compute the interval residuals

$$[r_{ij}(k)] = [y_{ij}^{-}(k) - y_{mj}(k), \ y_{ij}^{+}(k) - y_{mj}(k)]$$

- **Step 6.** Test the residual by checking if: $0 \in [r_{ij}(k)]$
- Step 7. Increase k = k + 1 and go to Step 1.

Active mode detection

For a given k, the i^{th} mode is said

- not active, if $0 \notin [r_{ii}(k)], \exists j \in \{1, \dots, p\}$
- active, if $0 \in [r_{ii}(k)], \forall i \in \{1, \dots, p\}$

4.1 Example of search for active mode

• Let consider a system, with a normal operation mode (i = 0) and two abnormal modes (i = 1, 2), defined by

$$M_{i} \begin{cases} x(k+1) &= \begin{pmatrix} 0.6 & 0 \\ -0.2 & 0.5 \end{pmatrix} x(k) + \begin{pmatrix} 1 \\ 0 \end{pmatrix} u(k) + \begin{pmatrix} 0.05 & 0 \\ 0 & 0.05 \end{pmatrix} v(k) \\ y_{i}(k) &= h_{i}(x(k), \theta(k)) + w(k) \end{cases}$$
 with

$$v_i(k) \in [-1 \ 1]$$
 $w_i(k) \in [-0.04 \ 0.04]$ $\theta_1(k) \in [0.8 \ 1.2]$ $\theta_2(k) \in [1.3 \ 1.7]$

4.1 Example of search for active mode

•

• Let consider a system, with a normal operation mode (i = 0) and two abnormal modes (i = 1, 2), defined by

$$M_{i} \begin{cases} x(k+1) &= \begin{pmatrix} 0.6 & 0 \\ -0.2 & 0.5 \end{pmatrix} x(k) + \begin{pmatrix} 1 \\ 0 \end{pmatrix} u(k) + \begin{pmatrix} 0.05 & 0 \\ 0 & 0.05 \end{pmatrix} v(k) \\ y_{i}(k) &= h_{i}(x(k), \theta(k)) + w(k) \end{cases}$$
 with

$$v_i(k) \in [-1 \ 1]$$
 $w_i(k) \in [-0.04 \ 0.04]$ $\theta_1(k) \in [0.8 \ 1.2]$ $\theta_2(k) \in [1.3 \ 1.7]$

$$\begin{array}{ll} h_0^T(x(k),\theta(k)) = \left(\frac{x_1(k)+\theta_1(k)}{1+\theta_2(k)x_1(k)} \quad \frac{x_1(k)+x_2(k)+\theta_2(k)}{\theta_1(k)+x_2^2(k)}\right) & (\textit{normal}) \\ h_1^T(x(k),\theta(k)) = \left(\frac{x_1(k)+0.5+\theta_1(k)}{1+(\theta_2(k)-0.5)x_1(k)} \quad \frac{x_1(k)+x_2(k)-0.5+\theta_2(k)}{0.5+\theta_1(k)+x_2^2(k)}\right) & (\textit{abnormal}) \\ h_2^T(x(k),\theta(k)) = \left(\frac{x_1(k)+1.5\theta_1(k)}{1+(0.5+3\theta_2(k))x_1(k)} \quad \frac{x_1(k)+x_2(k)+0.5+3\theta_2(k)}{1.5\theta_1(k)+x_2^2(k)}\right) & (\textit{abnormal}) \end{array}$$

4.1 Example of search for active mode

•

• Let consider a system, with a normal operation mode (i = 0) and two abnormal modes (i = 1, 2), defined by

$$M_{i} \begin{cases} x(k+1) &= \begin{pmatrix} 0.6 & 0 \\ -0.2 & 0.5 \end{pmatrix} x(k) + \begin{pmatrix} 1 \\ 0 \end{pmatrix} u(k) + \begin{pmatrix} 0.05 & 0 \\ 0 & 0.05 \end{pmatrix} v(k) \\ y_{i}(k) &= h_{i}(x(k), \theta(k)) + w(k) \end{cases}$$
with

$$v_i(k) \in [-1 \ 1]$$
 $w_i(k) \in [-0.04 \ 0.04]$ $\theta_1(k) \in [0.8 \ 1.2]$ $\theta_2(k) \in [1.3 \ 1.7]$

$$\begin{split} h_0^T(x(k),\theta(k)) &= \left(\frac{x_1(k)+\theta_1(k)}{1+\theta_2(k)x_1(k)} - \frac{x_1(k)+x_2(k)+\theta_2(k)}{\theta_1(k)+x_2^2(k)}\right) & (normal) \\ h_1^T(x(k),\theta(k)) &= \left(\frac{x_1(k)+0.5+\theta_1(k)}{1+(\theta_2(k)-0.5)x_1(k)} - \frac{x_1(k)+x_2(k)-0.5+\theta_2(k)}{0.5+\theta_1(k)+x_2^2(k)}\right) & (abnormal) \\ h_2^T(x(k),\theta(k)) &= \left(\frac{x_1(k)+1.5\theta_1(k)}{1+(0.5+3\theta_2(k))x_1(k)} - \frac{x_1(k)+x_2(k)+0.5+3\theta_2(k)}{1.5\theta_1(k)+x_2^2(k)}\right) & (abnormal) \end{split}$$

 Active mode detection is desired, despite the noises and unknown varying parameters.

4.2 Generation of the active mode indicators

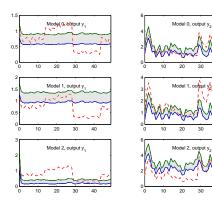
- Switching law of the system:
 - at k = 15: $M_0 \to M_1$
 - at k = 30: $M_1 \to M_2$
 - at k = 45: $M_2 \to M_0$

4.2 Generation of the active mode indicators

- Switching law of the system:
 - at k = 15: $M_0 \to M_1$
 - at k = 30: $M_1 \to M_2$
 - at k = 45: $M_2 \to M_0$
- At each instant k, the bounds of the N interval outputs are computed :

$$y_{ij}^{-}(k) = \inf_{y_{ij}(k) \in \mathcal{D}_{y,k,i}} y_{ij}(k)$$
$$y_{ij}^{+}(k) = \sup_{y_{ij}(k) \in \mathcal{D}_{y,k,i}} y_{ij}(k)$$

where i is is the number of the model and j the number of the output component.



- y_{mj} are drawn in red
- y_{ii}^- are drawn in blue
- y_{ii}^+ are drawn in green

4.3 Generation of the active mode indicators

Residual generation:

$$r_{ij} = \begin{bmatrix} y_{ij} - y_{mj} & y_{ij}^{+} - y_{mj} \end{bmatrix}$$

$$\begin{bmatrix} y_{ij}^{-1} - y_{mj} & y_{ij}^{-1} - y_{mj} \end{bmatrix}$$

$$\begin{bmatrix} y_{ij}^{-1} - y_{mj} & y_{ij}^{-1} - y_{mj} \end{bmatrix}$$

$$\begin{bmatrix} y_{ij}^{-1} - y_{mj} & y_{ij}^{-1} - y_{mj} \end{bmatrix}$$

$$\begin{bmatrix} y_{ij}^{-1} - y_{mj} & y_{ij}^{-1} - y_{mj} \end{bmatrix}$$

$$\begin{bmatrix} y_{ij}^{-1} - y_{mj} & y_{ij}^{-1} - y_{mj} \end{bmatrix}$$

$$\begin{bmatrix} y_{ij}^{-1} - y_{mj} & y_{ij}^{-1} - y_{mj} \end{bmatrix}$$

$$\begin{bmatrix} y_{ij}^{-1} - y_{mj} & y_{ij}^{-1} - y_{mj} \end{bmatrix}$$

$$\begin{bmatrix} y_{ij}^{-1} - y_{mj} & y_{ij}^{-1} - y_{mj} \end{bmatrix}$$

$$\begin{bmatrix} y_{ij}^{-1} - y_{mj} & y_{ij}^{-1} - y_{mj} \end{bmatrix}$$

$$\begin{bmatrix} y_{ij}^{-1} - y_{mj} & y_{ij}^{-1} - y_{mj} \end{bmatrix}$$

$$\begin{bmatrix} y_{ij}^{-1} - y_{mj} & y_{ij}^{-1} - y_{mj} \end{bmatrix}$$

$$\begin{bmatrix} y_{ij}^{-1} - y_{mj} & y_{ij}^{-1} - y_{mj} \end{bmatrix}$$

$$\begin{bmatrix} y_{ij}^{-1} - y_{mj} & y_{ij}^{-1} - y_{mj} \end{bmatrix}$$

$$\begin{bmatrix} y_{ij}^{-1} - y_{mj} & y_{ij}^{-1} - y_{mj} \end{bmatrix}$$

4.3 Generation of the active mode indicators

Residual generation:

20

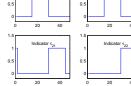
20

$$r_{ij} = \begin{bmatrix} y_{ij}^- - y_{mj} & y_{ij}^+ - y_{mj} \end{bmatrix}$$

Active mode indicator:

$$T_{ij} = \frac{1 - sgn(y_{ij}^- - y_j)(y_{ij}^+ - y_j)}{2}$$

$$\int_{0.5}^{1.5} \int_{0.20}^{1.5} \int_{0.5}^{1.5} \int_{0.5}^{1.5$$



Conclusion and perspectives

- State estimation and fault detection have been proposed for
 - nonlinear systems
 - uncertain and disturbed systems
- The proposed approach is based on interval analysis

Conclusion and perspectives

- State estimation and fault detection have been proposed for
 - nonlinear systems
 - uncertain and disturbed systems
- The proposed approach is based on interval analysis
- Further works should improve some restrictions
 - the coupling between interval variables were not considered
 - the separability of the modes is not a priori studied

Conclusion and perspectives

- State estimation and fault detection have been proposed for
 - nonlinear systems
 - uncertain and disturbed systems
- The proposed approach is based on interval analysis
- Further works should improve some restrictions
 - the coupling between interval variables were not considered
 - the separability of the modes is not a priori studied

THANK YOU FOR YOUR ATTENTION

State estimation and fault detection of uncertain systems based on an interval approach

Benoît Marx, Didier Maquin and José Ragot

Centre de Recherche en Automatique de Nancy (CRAN) Nancy-Université CNRS

Conference on Control and Fault-Tolerant Systems, SysTol'10 October, 6-8, 2010, Nice, France

