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1.1 Introduction

Context and motivations

The process should be described in a large operating range
→ Nonlinear models

The knowledge on the process is imperfect
→ Uncertain models

Process evolves in a disturbed environment
→ Actuator and measurement noises

Process can be faulty
→ Different operating modes (healthy or not)
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Context and motivations

The process should be described in a large operating range
→ Nonlinear models

The knowledge on the process is imperfect
→ Uncertain models

Process evolves in a disturbed environment
→ Actuator and measurement noises

Process can be faulty
→ Different operating modes (healthy or not)

Proposed approach

Uncertainties and noises are handled by the interval approach

Fault diagnosis for uncertain nonlinear systems is proposed, based on

interval state estimation

active mode detection

residual generation



1.2 Problem statement and notations

Studied systems

The aim is to perform state estimation and fault diagnosis of uncertain
nonlinear systems defined by

x(k + 1) = f (x(k), u(k), θ(k), v(k))

y(k) = h(x(k), θ(k),w(k))

where f and g are known nonlinear functions and

x(k) ∈ IIRn, u(k) ∈ IRr and y(t) ∈ IIRp are the system state, the input and output

v(k) ∈ IIRnv and w(k) ∈ IIRnw are the state and measurement noises

θ(k) ∈ IIRnθ is the uncertain parameter
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y(k) = h(x(k), θ(k),w(k))

where f and g are known nonlinear functions and

x(k) ∈ IIRn, u(k) ∈ IRr and y(t) ∈ IIRp are the system state, the input and output

v(k) ∈ IIRnv and w(k) ∈ IIRnw are the state and measurement noises

θ(k) ∈ IIRnθ is the uncertain parameter

ym(k) ∈ IRp is the measured output

Notations

a real interval is defined by [z]=[z− z+]={z ∈ IR | z− ≤ z ≤ z+}

an interval vector [z] ∈ IRnz means that each component is an interval

IIRnz denotes the set of all boxes of IRnz



2.1 Principle of the interval state estimation

The state estimation is based on the known data:

the interval initial condition x(0) ∈ IIRn

the measured input and output u(k) ∈ IRr and ym(k) ∈ IRm

the time varying lower and upper bounds on the interval noises and
uncertainties v(k), w(k) and θ(k)

Principle of the interval state estimation

State estimation is performed by analytic redundancy between the dynamic
and measurement equations of the model by iteratively:



2.1 Principle of the interval state estimation

The state estimation is based on the known data:

the interval initial condition x(0) ∈ IIRn

the measured input and output u(k) ∈ IRr and ym(k) ∈ IRm

the time varying lower and upper bounds on the interval noises and
uncertainties v(k), w(k) and θ(k)

Principle of the interval state estimation

State estimation is performed by analytic redundancy between the dynamic
and measurement equations of the model by iteratively:

inverting the output equation:
(ym(k), [θ(k)], [w(k)]) → [x̂y(k)]



2.1 Principle of the interval state estimation

The state estimation is based on the known data:

the interval initial condition x(0) ∈ IIRn

the measured input and output u(k) ∈ IRr and ym(k) ∈ IRm

the time varying lower and upper bounds on the interval noises and
uncertainties v(k), w(k) and θ(k)

Principle of the interval state estimation

State estimation is performed by analytic redundancy between the dynamic
and measurement equations of the model by iteratively:

inverting the output equation:
(ym(k), [θ(k)], [w(k)]) → [x̂y(k)]

simulating the dynamic equation:
([x̂(k − 1)], u(k − 1), [θ(k)], [v(k)]) → [x̂+(k)]



2.1 Principle of the interval state estimation

The state estimation is based on the known data:

the interval initial condition x(0) ∈ IIRn

the measured input and output u(k) ∈ IRr and ym(k) ∈ IRm

the time varying lower and upper bounds on the interval noises and
uncertainties v(k), w(k) and θ(k)

Principle of the interval state estimation

State estimation is performed by analytic redundancy between the dynamic
and measurement equations of the model by iteratively:

inverting the output equation:
(ym(k), [θ(k)], [w(k)]) → [x̂y(k)]

simulating the dynamic equation:
([x̂(k − 1)], u(k − 1), [θ(k)], [v(k)]) → [x̂+(k)]

merging the two information sources:
[x̂y (k)] ∩ [x̂+(k)] → [x̂(k)]



2.2 Algorithm of state estimation

• Step 0. Initialize D+
x,0 with D0. Let k = 1

Initialization

D+
x,0 is the set of possible values of x(0) deduced by prediction at k = 0.

The estimation of x(0) is given by the known initial condition: [x(0)].



2.2 Algorithm of state estimation

• Step 0. Initialize D+
x,0 with D0. Let k = 1

• Step 1. Collect the data u(k) and ym(k)

Input and output measurements

At each instant, u(k) and ym(k) are collected.
It is recalled that u(k) and ym(k) are not interval.
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Merging observation and prediction

The state estimation must be consistent with both observation and
prediction, thus the two sets are intersected.
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Iteration

The prediction will be faced to measurements collected at step 1.,
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State estimation is based on the information consistency
→ predicted state set D+

x,k−1 and observed state set Dy
x,k are intersected

Fault detection is based on the information inconsistency
→ D+

x,k ∩ Dy
x,k = ∅ indicates that measurements are inconsistent with

the model

The presented state estimation can be adapted to fault diagnosis

In the framework of supervision, faulty models are available

→ fault diagnosis is performed by active mode detection

→ state estimation is performed with each model, information

inconsistency invalids a model

Fault detection can be made by comparing estimates and measurements

→ real state values are not available for comparison with estimated ones

→ estimated and measured output are used for residual generation
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y,k is deduced from the predicted state

domain D+
x,k

D+
y,k =

{

y+ / y+ = h(x+, θ+) + w , x+ = f (x , u(k), θ, v),

x ∈ D+
x,k , θ

+ ∈ [θ(k + 1)] , θ ∈ [θ(k)] , v ∈ [v(k)] ,w ∈ [w(k)]
}

The measured output domain is estimated

Dk,k+1 = {y / y − ym(k) ∈ [w(k + 1)]}

A fault indicator is computed

rk+1 = D+
y,k ∩ Dy,k+1

(an overestimation of D+
yk

can be used to limit the computational load)

A fault is detected if rk+1 = ∅
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In the framework of supervision it is assumed that different operating
modes – normal or faulty – are available.

Each mode is represented by an uncertain NL model

Mi

{

xi(k + 1) = fi (xi (k), u(k), θ(k), v(k))

yi(k + 1) = hi (xi (k), θ(k)) + w(k)
, i = 1, . . . ,N

The objective is to determine at each instant the active mode.

The chosen approach is to invalid the model being inconsistent with the
measurements and the bounds on noises and uncertainties.

The state estimation algorithm is modified to check the consistency of
each model with the measurements.

The state estimation algorithm can also be used for residual generation.



3.4 Algorithm of change detection of operating mode

• Step 0. Initialize D+
x,0,i with D0, for i = 1, . . . ,N . Let k = 1

Initialization

D+
x,0,i are the sets of possible values of xi (0) at k = 0.

All the state estimates are initialized with: [x(0)].
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The prediction made with each model will be faced to measurements
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y,k,i

where the j is the number of the component output.

• Step 5. Compute the interval residuals

[rij(k)] = [y−

ij (k)− ymj(k), y+
ij (k)− ymj(k)]

• Step 6. Test the residual by checking if: 0 ∈ [rij(k)]

• Step 7. Increase k = k + 1 and go to Step 1.

Active mode detection

For a given k , the i th mode is said

not active, if 0 /∈ [rij(k)], ∃j ∈ {1, . . . , p}

active, if 0 ∈ [rij(k)], ∀j ∈ {1, . . . , p}
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Let consider a system, with a normal operation mode (i = 0) and two
abnormal modes (i = 1, 2), defined by
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θ1(k) ∈ [0.8 1.2] θ2(k) ∈ [1.3 1.7]
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Active mode detection is desired, despite the noises and unknown
varying parameters.
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4.2 Generation of the active mode indicators

Switching law of the system:

at k = 15: M0 → M1

at k = 30: M1 → M2

at k = 45: M2 → M0

At each instant k , the bounds
of the N interval outputs are
computed :

y−

ij (k) = inf
yij (k)∈Dy,k,i

yij(k)

y+
ij (k) = sup

yij (k)∈Dy,k,i

yij(k)

where i is is the number of the
model and j the number of the
output component.
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Residual generation:

rij =
[

y−
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]
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