Adaptive observer for fault estimation in nonlinear systems described by a Takagi-Sugeno model

Atef Khedher¹, Kamel Ben Othman¹, Mohamed Benrejeb¹ and Didier Maquin²

LARA Automatique, ENIT, BP 37, le Belvédère, 1002 Tunis, Tunisia
 CRAN, UMR 7039, Nancy-Université – CNRS, Vandœuvre-lès-Nancy, France

18th Mediterrranean Conference on Control and Automation.

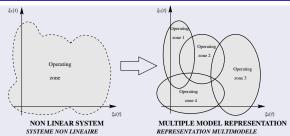
Marrakech, Morocco, 23-25th, 2010

Outline

- Multiple model structures
- Pault estimation
- 3 Example
- Conclusion and future works

Multiple model structures

Principle of the multiple models



- Operating range decomposition into a finite number of operating zones
- Each operating zone is modelled using a simple linear submodel
- The relative contribution of each submodel is quantified by a weighting function
- The global nonlinear model is the sum of the submodels weighted by these functions

Advantages of multiple models

- Well approximate the behaviour of the complex nonlinear systems
- Several results for linear systems can be extended to nonlinear systems through this kind of models

Takagi-Sugeno model

Structure of the model

Multiple model with a unique state

$$\begin{cases} \dot{x}(t) = \sum_{i=1}^{M} \mu_i(\xi(t))(A_ix(t) + B_iu(t)) \\ y(t) = \sum_{i=1}^{M} \mu_i(\xi(t))C_ix(t) = Cx(t) \end{cases}$$

$$\mu_{i}(\xi(t)) \begin{cases} \sum_{i=1}^{M} \mu_{i}(\xi(t)) = 1, & \forall t & \xi(t) : decision \ variable \\ 0 \leq \mu_{i}(\xi(t)) \leq 1, & \forall t, \ \forall i \in \{1, ..., M\} \end{cases}$$

- The local models share the same state vector
- The output equation is frequently assumed linear (all the matrices C_i are equal)

Problem formulation

System affected by actuator and sensor faults + output noise

$$\begin{cases} \dot{x}(t) = \sum_{i=1}^{M} \mu_i(\xi(t))(A_ix(t) + B_iu(t) + \frac{E_if_a(t)}{E_if_a(t)}) \\ y(t) = Cx(t) + \frac{F_if_a(t)}{E_if_a(t)} \end{cases}$$

Objective: transform the original sensor faults into actuator faults

z(t): filtered version of the output y(t)

$$\dot{z}(t) = \sum_{i=1}^{M} \mu_i(\xi(t))(-\overline{A}_i z(t) + \overline{A}_i(Cx(t) + Ff_s(t) + Dw(t)))$$

 $-\bar{A}_i$: stable matrices

Problem formulation

Augmented state and fault vector

$$X = \begin{bmatrix} x \\ z \end{bmatrix}, \quad f = \begin{bmatrix} f_a \\ f_s \end{bmatrix}$$

Augmented system

$$\begin{cases} \dot{X}(t) = \sum_{i=1}^{M} \mu_{i}(\xi(t))(A_{ai}X(t) + B_{ai}u(t) + E_{ai}f(t)) + F_{ai}w(t)) \\ Y(t) = C_{a}X(t) \end{cases}$$

$$A_{ai} = \begin{bmatrix} A_{i} & 0 \\ \bar{A}_{i}C & -\bar{A}_{i} \end{bmatrix}, B_{ai} = \begin{bmatrix} B_{i} \\ 0 \end{bmatrix}, E_{ai} = \begin{bmatrix} E_{i} & 0 \\ 0 & \bar{A}_{i}F \end{bmatrix}, F_{ai} = \begin{bmatrix} 0 \\ \bar{A}_{i}D \end{bmatrix}$$

$$C_{a} = \begin{bmatrix} 0 & I \end{bmatrix}$$

Re-written system in an augmented form

$$\begin{cases} \dot{X}(t) = \sum_{i=1}^{M} \mu_{i}(\xi(t))(A_{ai}X(t) + B_{ai}u(t) + E_{ai}f(t) + F_{ai}w(t)) \\ Y(t) = C_{a}X(t) \end{cases}$$

Proportional integral observer

$$\begin{cases} \dot{\hat{X}}(t) = \sum_{i=1}^{M} \mu_{i}(\xi(t))(A_{ai}\hat{X}(t) + B_{ai}u(t) + E_{ai}\hat{f}(t) + K_{i}(Y(t) - \hat{Y}(t))) \\ \dot{\hat{f}}(t) = \sum_{i=1}^{M} \mu_{i}(\xi(t))(L_{i}(Y(t) - \hat{Y}(t))) \\ \hat{Y}(t) = C_{a}\hat{X}(t) \end{cases}$$

Estimation errors

$$\tilde{x}(t) = X(t) - \hat{X}(t)$$
 and $\tilde{f}(t) = f(t) - \hat{f}(t)$

Dynamics of the errors

$$\dot{\tilde{x}}(t) = \sum_{i=1}^{M} \mu_i(\xi(t))((A_{ai} - K_iC_a)\tilde{x}(t) + E_{ai}\tilde{f}(t) + F_{ai}w(t))$$

$$\dot{\tilde{f}}(t) = \dot{f}(t) - \sum_{i=1}^{M} \mu_i(\xi(t)) L_i C_a \tilde{x}(t)$$

Augmented system of estimation errors

The following vectors are introduced:

$$arphi(t) = \left[egin{array}{c} ilde{x}(t) \ ilde{f}(t) \end{array}
ight] ext{ and } arepsilon(t) = \left[egin{array}{c} w(t) \ ilde{f}(t) \end{array}
ight]$$

Augmented system of estimation errors

$$\dot{\varphi}(t) = A_m \varphi(t) + B_m \varepsilon(t)$$

with:
$$A_m = \sum_{i=1}^M \mu_i(\xi(t)) \tilde{A}_{0i}$$
 and $B_m = \sum_{i=1}^M \mu_i(\xi(t)) \tilde{B}_{0i}$,

$$\tilde{A}_{0i} = \left[egin{array}{cc} A_{ai} - K_i C_a & E_{ai} \\ -L_i C_a & 0 \end{array}
ight], \ \tilde{B}_{0i} = \left[egin{array}{cc} F_{ai} & 0 \\ 0 & I \end{array}
ight]$$

Convergence of the generalized estimation error

Let us consider the following quadratic Lyapunov candidate function:

$$V(t) = \varphi^T(t)P\varphi(t)$$

Robust state and fault estimation

Convergence conditions

The problem of robust state and fault estimation is reduced to find the gains K_i and L_i of the observer to ensure an asymptotic convergence of $\varphi(t)$ towards zero if $\varepsilon(t)=0$ and to ensure a bounded error in the case where $\varepsilon(t)\neq 0$, i.e. :

$$\lim_{t \to \infty} \varphi(t) = 0$$
 for $\varepsilon(t) = 0$ $\|\varphi(t)\|_{Q_{\varphi}} \le \lambda \|\varepsilon(t)\|_{Q_{\varepsilon}}$ for $\varepsilon(t) \ne 0$

where $\lambda > 0$ is the attenuation level.

To satisfy these constraints, it is sufficient to find a Lyapunov function V(t) such that

$$\dot{V}(t) + \varphi^{T}(t)Q_{\varphi}\varphi(t) - \lambda^{2}\varepsilon^{T}(t)Q_{\varepsilon}\varepsilon(t) < 0$$

Robust state and fault estimation

Augmented system

$$\dot{\varphi}(t) = A_m \varphi(t) + B_m \varepsilon(t)$$

$$\dot{V}(t) + \varphi^{T}(t)Q_{\varphi}\varphi(t) - \lambda^{2}\varepsilon^{T}(t)Q_{\varepsilon}\varepsilon(t) < 0$$

Omitting to denote t, the last inequality can also be written as:

$$\psi^T \Omega_m \psi < 0$$

with:

$$\psi = \left[egin{array}{c} \varphi \ arepsilon \end{array}
ight] \ \ ext{and} \ \ \Omega_m = \left[egin{array}{c} A_m^T P + P A_m + Q_{\phi} & P B_m \ B_m^T P & -\lambda^2 Q_{arepsilon} \end{array}
ight]$$

This inequality holds if $\Omega_m < 0$.

Robust state and fault estimation

LMI formulation

$$A_m = \sum_{i=1}^M \mu_i(\xi(t))\tilde{A}_{0i}, \qquad \tilde{A}_{0i} = \tilde{A}_i - \tilde{K}_i\tilde{C}$$

where:

$$\tilde{A}_{i} = \begin{bmatrix} A_{ai} & E_{ai} \\ 0 & 0 \end{bmatrix}, \quad \tilde{K}_{i} = \begin{bmatrix} K_{i} \\ L_{i} \end{bmatrix}, \quad \tilde{C} = \begin{bmatrix} C_{a} & 0 \end{bmatrix}$$

With the changes of variables $G_i = P\tilde{K}_i$ and $m = \lambda^2$, the matrix Ω_m can be written as :

$$\Omega_m = \sum_{i=1}^M \mu_i(\xi(t))\Omega_i$$

$$\Omega_{i} = \left[\begin{array}{cc} P\tilde{A}_{i} + \tilde{A}_{i}^{T}P - G_{i}\tilde{C} - \tilde{C}^{T}G_{i}^{T} + Q_{\phi} & P\tilde{B}_{0i} \\ \tilde{B}_{0i}^{T}P & -mQ_{\varepsilon} \end{array} \right]$$

Main result

Theorem

The system : $\dot{\varphi} = A_m \varphi + B_m \varepsilon$ describing the time evolution of the state estimation error \tilde{x} and the fault estimation error \tilde{f} is stable and the \mathscr{L}_2 -gain of the transfer from $\varepsilon(t)$ to $\varphi(t)$ is bounded, if there exists a symmetric, positive definite matrix P, gain matrices G_i , $i \in \{1...M\}$ and a positive scalar m such that the following LMI are verified :

$$\left[\begin{array}{cc} P\tilde{A}_i + \tilde{A}_i^T P - G_i \tilde{C} - \tilde{C}^T G_i^T + Q_{\phi} & P\tilde{B}_{0i} \\ \tilde{B}_{0i}^T P & -mQ_{\epsilon} \end{array}\right] < 0$$

The proportional and integral gains of the observer are computed using $\tilde{K}_{mi} = P^{-1}G_i$ and the attenuation level is given by $\lambda = \sqrt{m}$.

System matrices

$$A_{1} = \begin{bmatrix} -0.3 & -3 & -0.5 & 0.1 \\ -0.7 & -5 & 2 & 4 \\ 2 & -0.5 & -5 & -0.9 \\ -0.7 & -2 & 1 & -0.9 \end{bmatrix}, A_{2} = \begin{bmatrix} -0.7 & -7 & -1.5 & -7 \\ -0.2 & -2 & 0.6 & 1.3 \\ 5 & -1.5 & -9 & -3.9 \\ -0.4 & -1 & -0.3 & -1 \end{bmatrix}$$

$$B_{1} = \begin{bmatrix} 1 & 2 \\ 5 & 1 \\ 4 & -3 \\ 1 & 0 \end{bmatrix}, B_{2} = \begin{bmatrix} 1 & 1 \\ 2 & 1 \\ 0 & 2 \\ -1 & -2 \end{bmatrix}, D = \begin{bmatrix} 0.5 & 0.5 \\ 0.2 & 0.2 \\ 0.1 & 0.1 \\ 0 & 0.1 \end{bmatrix}, F = \begin{bmatrix} 3.25 & 5 \\ 0 & 0.5 \\ -3.25 & 1.75 \\ 5.75 & 5 \end{bmatrix}$$

$$E_{1} = B_{1}, E_{2} = B_{2}, C = I, \xi(t) = u(t)$$

$$Q_{\varphi} = Q_{\varepsilon} = I, \quad \bar{A}_1 = 5 \times I, \quad \bar{A}_2 = 10 \times I$$

Input signals

$$u(t) = \left[\begin{array}{c} u_1(t) \\ u_2(t) \end{array} \right] \left\{ \begin{array}{c} u_1(t) : \text{telegraph type signal whose amplitude belongs to } [0,0.5] \\ u_2(t) : 0.4 + 0.25 \sin(\pi t) \end{array} \right.$$

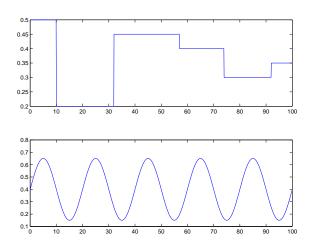


FIGURE: System inputs u(t)

Actuator and sensor faults

Actuator fault is defined as follows:

$$f_{a}(t) = \left[\begin{array}{c} f_{a1}(t) \\ f_{a2}(t) \end{array} \right]$$

with:

$$f_{a1}(t) = \begin{cases} 0.4\sin(\pi t), & 15 \text{ s} < t < 75 \text{ s} \\ 0, & \text{otherwise} \end{cases}, f_{a2}(t) = \begin{cases} 0, & t < 20 \text{ s} \\ 0.3, & 20 \text{ s} < t < 80 \text{ s} \\ 0.5, & t > 80 \text{ s} \end{cases}$$

and the sensor fault $f_s(t)$ is defined as follows:

$$f_{S}(t) = \left[\begin{array}{c} f_{S1}(t) \\ f_{S2}(t) \end{array} \right]$$

with:

$$f_{\rm S1}(t) = \left\{ \begin{array}{ll} 0, & t \leq 35 \ {\rm s} \\ 0.6, & t > 35 \ {\rm s} \end{array} \right., \ f_{\rm S2}(t) = \left\{ \begin{array}{ll} 0, & t \leq 25 \ {\rm s} \\ \sin(0.6\pi t), & t > 25 \ {\rm s} \end{array} \right.$$

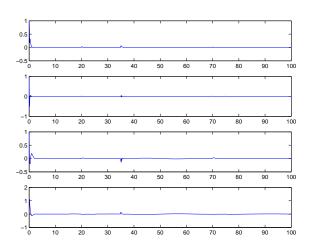


FIGURE: State estimation errors

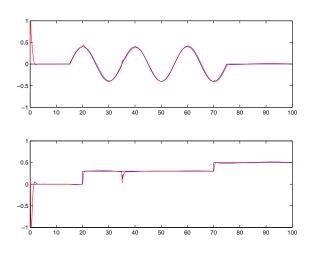


FIGURE: Actuator faults and their estimation

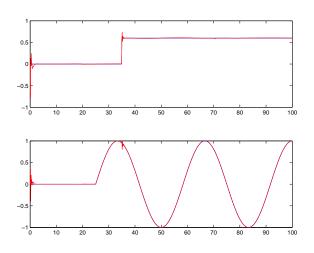


FIGURE: Sensor faults and their estimation

Conclusion and future works

Conclusion and future works

Conclusion

- Original method for state and fault estimation for systems described by nonlinear Takagi-Sugeno models using a proportional integral observer
- Using an adequate rewritting of the system equations, the sensor fault affecting the initial system is transformed into an actuator fault (i.e. into an unknown input); this transformation eases the simultaneous sensor and actuator fault estimation.

Future works

- Fault estimates can be used to conceive a fault tolerant control strategy able to cancel the fault effects on the system performances and behavior
- The proposed method should be extended to TS models with unmeasurable decision variables

Get in touch

Didier Maquin

Professor in Automatic Control National Polytechnic Institute of Nancy

High School of Electrical and Mechanical Engineering

Research Center for Automatic Control

didier.maquin@ensem.inpl-nancy.fr

More information?

Personal: http://www.ensem.inpl-nancy.fr/Didier.Maquin/en/

Research Lab: http://www.cran.uhp-nancy.fr/anglais/