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Abstract— This paper addresses the problem of multiple fault
detection and isolation under communication constraints.More
specifically, we consider the issue of sensor scheduling and
fault isolation co-design under limited bandwidth capacity. The
proposed isolation filter can be viewed as special structureof
the traditional Kalman filter. The sensor scheduling sequence
and the proposed filter are built in order to ensure the fault
isolability property and noise effect minimization.

I. INTRODUCTION

The study of networked control systems (NCS) is receiving
much importance in this recent years. This is mainly due to
the several advantages resulting from using a shared real time
network through which sensors, actuators and controllers
communicate. Compared with classic fault detection (FD)
systems, diagnosis over networks can reduce the system
wiring, make the system easy to supervise, maintain and
increase system agility· · · etc. Nevertheless, new constraints
also arise when sensor information and control information
are transmitted over a network. Such constraints can be
categorized in five types [5], [6]:

1) Quantization errors in the signals transmitted over the
network due to the finite word length of the packets;

2) Packet dropouts caused by the unreliability of the net-
work;

3) Variable sampling/transmission intervals;
4) Variable communication delays;
5) Medium access constraints due to the limited bandwidth

and sharing the network by multiple nodes and the fact
that only one node is allowed to transmit its packet per
transmission

6) Power consumption mainly in wireless networked con-
trol systems.

The presence of these network induced effects can
degrade the performance of FD systems and implies more
robust algorithms to this communication constraints.

It is clear that all of these constraints can exist in a
communication network, but only some of them were fully
considered in the literature, mainly the induced delay effect,
packet loss and sampling influences. The delay issue is
considered for example in [1], [2], [3], [5]. In [4], the
authors deal with the design of robust FD systems for NCS

with large transfer delays, in which it is impossible to totally
decouple the fault effects from unknown inputs. An adaptive
Kalman filter is proposed in [7] to minimize the effects
of the network induced delay on the residual signal. [16]
considered the problematic of FD for NCS with both delayed
inputs and measurements. In [19], [20], the FD system for
NCSs with packet dropouts was designed by modeling the
NCSs as a Markov jumping linear system (MJLS). The
issue of FD with multiple network induced constraints has
been considered for example [2], [14], [21]. Note that, to the
best of the author knowledge, the issue of fault isolation in
networked systems has not been fully investigated nowadays.

In this paper, we will address the problem of multiple
fault detection and isolation under communication
constraints. More specifically, we will consider medium
access constraints. In this case, the shared network can
only accommodates a limited number of simultaneous
communications between components. In this context, it is
only meaningful to specify a fault detection and isolation
module in conjunction with a communication policy which
indicates the times at which the plants sensors are to be
granted medium access. This communication policy is
known in the literature as communication sequence. The
communication sequence specifies which sensors are able
to send information to the detection filter at each time
step. Hence, the considered problematic leads naturally to
consider aco-designproblematic. That is, the design of a
fault detection and isolation filter in conjunction with sensor
scheduling sequence. The sensor scheduling sequence and
the proposed filter are built in order to ensure the fault
isolability property and noise effect minimization.

The rest of the paper is organized as follow: section II
gives the problem formulation. In section III, we will give
our main results. The sensor scheduling problem will be
discussed in section IV. A numerical example will be given in
section V to illustrate the effectiveness of the proposed co-
design method. Finally, we will provide some conclusions
and some future research directions in section VI.

II. PROBLEM FORMULATION

Consider the remote system depicted in Fig.1. The state
space representation of the plant under actuator and/or com-



Fig. 1. Remote filtering

ponent faults is given as follows:
{

xk+1 = Axk+Buk+Fϒk+wk

yk =Cxk+ vk
(1)

where xk ∈ ℜn is the state vector,uk is the control input,
F = [ f1, f2, ..., fq] ∈ ℜn×q is the fault distribution matrix,
ϒk = [ϒ1

k,ϒ
2
k, ...,ϒ

q
k]

T ∈ ℜq is the fault vector andyk ∈ ℜm

is the measurement signals vector. We assume that each
component of the output vectoryi represents the sensor
i ∈ {1,2, ..,m}. The initial state vectorx0, process noise
wk and measurement noisevk are uncorrelated, zero mean
white Gaussian random processes withx0 ∼ N(x̄0, P̄0),
wk ∼ N(0,W) and vk ∼ N(0, Im) respectively, whereP̄0,W
andR are symmetric, positive definite matrices.

The main objective of this paper consists in the design
of a fault detection and isolation filter that takes into
account the communication constraints induced by the
shared communication medium. More specifically, the
communication constraint we deal with in this paper is
referred to in the literature as a medium access constraint.
In this case, the shared network can only accommodates a
limited number of simultaneous communications between
components. In this context, it is only meaningful to specify
a filter in conjunction with a communication policy which
indicates the times at which the plants sensors are to be
granted medium access. This communication policy is
known in the literature as communication sequence [13].
The communication sequence specifies which sensors are
able to send information to the filter at each time step.

We will consider that the communication medium connecting
the sensors and the residual generator hasb output channels,
with

1≤ b≤ m (2)

At any time, only b of the m sensors can access these
channels to communicate with the residual generator while
others must wait.

A. Communication sequence

Suppose that there arem different sensors and that at each
time stepk only b < m are allowed to transmit messages.
We then haveσ = Cb

m = m!
b!(m−b)! possible configurations.

Let us introduce the application:µk : Z → M = {1, . . . ,σ},
that determine at each sample time the corresponding sensors
group index. We call this application theswitching pattern
for the sensor side. In Fig. 1, the signal ˜yk ∈ R

b is related
to yk by the following relation: ˜yk = S(µk)yk. The switch
matrix S(µk)∈R

b×m is used to select the subset of measures
that will be sent to the controller at each time stepk. This
subset is indexed by the values of the switching patternµk.
Considering the band limited effect, theextendedplant model
is described by

{

xk+1 = Axk+Buk+Fϒk+wk

ỹk = Cµkxk+ ṽk
(3)

whereCµk = S(µk)C and ṽk = S(µk)vk.

B. Fault detection filter

The fault detection and isolation filter proposed in this
paper is a modified version of the filter proposed in [22]
The state space representation of this filter is given by

{

x̂k+1 = Ax̂k+Buk+Kk(ỹk− ŷk)

ŷk = Cµk x̂k
(4)

where x̂k and ŷk denote the state and output estimation
vectors, respectively.

It is important to note that in the context considered in
this paper, both the filter gainKk and the switching pattern
µ(k) are design parameters.

III. M AIN RESULTS

In this section, we will introduce our main results. Before
doing this, we will first recall some basic definitions that
will be used in the sequel.

Definition 1. [22] The linear stochastic system (1) is said
to have fault detectability indexesρ = {ρ1,ρ2, · · · ,ρq} if
ρi = min{ν : CAν−1 fi 6= 0,ν = 1,2, ...}.

Definition 2. The time-varying fault detectability matrix
associated with the extended plant is defined as

Dµk = CµkΨ (5)

where
Ψ = [F1,AF2, ...,A

s−1Fs] (6)

Let s = max{ρi, i = 1,2, · · · ,q} be the maximum
value of fault detectability indexes. We define
ϒ̄k = [ϒ̄1T

k , ϒ̄2T
k , ..., ϒ̄sT

k ]T , F̄ = [F̄1, F̄2, ..., F̄s]. Whereϒ̄i ∈ ℜq
i

represents the part of faults having detectability indexρi

and distribution matrixF̄i ∈ Rn,qi . The extended system can
be equivalently rewritten as

{

xk+1 = Axk+Buk+ F̄ϒ̄k+wk

ỹk = Cµkxk+ ṽk



Consider the filter given by (4). The estimation errorek =
(xk − x̂k) and the output residualsqk = (ỹk − ŷk) dynamics
are given by

{

ek+1 = (A−KkCµk)ek+ F̄ϒ̄k−Kkṽk+wk,

qk = Cµkek+ ṽk
(7)

From superposition principle, it follows that for an additive
faults occurring at time instantr (with k> r +s), the output
residualsqk can be expressed as:

qk = q̄k+ ρ̄k,r
[

η̄T
r · · · η̄T

k−s · · · η̄T
k−2 η̄T

k−1

]T
(8)

with

ρ̄k,r = Cµk

[

Gk−1,r F̄ · · · Gk−1,k−(s−1)F̄ · · · Gk−1F̄ F̄
]

Gk−1,k− j = Gk−1Gk−2 · · ·Gk− j

Gk =
(

A−KkCµk

)

andq̄k corresponds to the output residuals for the non faulty
case.

Following similar arguments as in [22], the following result
is derived.

Proposition 1. (Fault isolability condition) Under the
condition rank(Cµk) = q, the solutions of the algebraic
constraints:(A−KkCµk)Ψ̄ = 0 can be parameterized asKk =
ωΠµk + K̄kΣµk with

Σµk = αµk(Im−DµkΠµk), Πµk = D+
µk

andω = AΨ̄ (9)

where K̄k ∈ ℜn,b−q is the reduced gain describing the re-
maining freedom of design,D+

µk
is the generalized inverse

or pseudo-inverse ofDµk and αµk is an arbitrary matrix
determined so that matrixΣµk is of full rows rank.
Under these conditions, the residualqk can then be expressed
as

qk = q̄k+Dµk

[

η̄1T
k−1 η̄2T

k−2 · · · η̄sT
k−s

]T
(10)

Remark 1. In the result given above, it is important to recall
that the matricesCk depend on the switching patternµk.
µk being a design parameter, it follows that the switching
patterns that contains sequences which violate the rank
condition in Proposition 1 have to be excluded. Hence, let
us define the set of admissible switching patternsΞ∗ given
by

Ξ∗ = {µk : Z → M ∗ ⊆ M } (11)

where M ∗ contains the indices corresponding to sensor
configurations (traduced by corresponding matricesCµk)
that verify the rank conditionrank(Cµk) = q.

Based on the development above, the fault isolation filter
can be designed by computing the free parameterK̄k so that
the trace of covariance matrix̄Pk = E(ēkēT

k ) is minimized.

Proposition 2. (Fault isolation filter design) For a fixed
switching patternµk ∈ Ξ∗, The proposed fault detection filter
described by the following relations:

x̂k+1 = Ax̂k+Buk+ωqr
k+ K̄µkγk (12)

P̄k+1 = (Āµk − K̄µkC̄µk)P̄k(Āµk − K̄µkC̄µk)
T + K̄µkV̄µkK̄

T
µk
+W̄µk

= φµk(P̄k) (13)

K̄µk = Āµk + P̄kC̄
T
µk
(C̄µkP̄kC̄

T
µk
+ V̄µk)

−1 (14)

with

Āµk = A−ωΠµkCµk (15)

C̄µk = ΣµkCµk (16)

V̄µk = ΣµkΣT
µk
, (17)

W̄µk =W+ωΠµkΠT
µk

ωT (18)

where

γk = Σµk(ỹk−Cµkx̂k) (19)

qr
k = Πµk(ỹk−Cµkx̂k) (20)

have the following properties

• γk is decoupled from the faults
• qr

k satisfy the relation

qr
k = Πµkq̄k+

[

η̄1T
k−1 η̄2T

k−2 · · · η̄sT
k−s

]T
(21)

Each component of the reduced output residualqr
k ∈ ℜq is

sensitive to only one fault. Thus, it is used for the fault
isolation.

Proof. The proof of this proposition follows similar
arguments as for the proof of Theorem 3.1 in [22].

One can see that the evolution of the covariance matrix
given by the Riccati equation (13) depends on the initial
covariance matrixP0 and the switching pattern given byµk.
Hence, in addition to the isolability condition (seeRemark
1), the scheduling strategy can be generated to optimize
the covariance matrix evolution. This point will be further
exposed in the next section.

IV. FINITE HORIZON OPTIMAL SCHEDULING

The problem addressed here is to choose whichb sensors
should operate at each time-step to minimize a function of
the error covariance of the state estimation at each time step.
Defining the scheduling strategysN is equivalent to define
the values ofµk for eachk = 0, · · · ,N− 1, or equivalently
sN =

[

µ0 µ1 · · · µN−1
]

. Let SN = M N be the set
of all possibleN-horizon scheduling strategies and letS ∗

N
be the set of all admissibleN-horizon scheduling strategies
(see Remark 1). The problem of optimal scheduling is
formulated as

min
sN∈S ∗

N

J (sN) (22)



where
J (sN) = ∑N

i=1 tr(P̄i) = ∑N−1
i=0 tr(φµi (P̄i)) andµi = sN(i).

The search algorithm:
Search algorithms are used for solving optimization problem
(22). The trivial way of solution is to perform all possible
scheduling cases. This enumerating method is only tractable
for relatively short time horizons. It requires much resources
in memory and computational time for longer estimation
horizons. To overcome this limitation, we will use in this
paper a pruning technique proposed in [18]. As showed in
[18], the proposed algorithm can significantly reduce the
computation complexity. Before proceeding, we will first
recall some definitions to ease the reading of the paper.

Definition 3. (Characteristic sets)Let {Hk}
N
k=0 be defined

as the characteristic sets as they completely characterizethe
objective function. Each set is of the form(P̄,γ) ∈ A ×R+

(A being the set of all symmetric positive semidefinite
matrices) and is generated recursively by

Hk+1 = πM ∗(Hk) from H0 = {(P̄0, tr(P̄0))}

with

πM ∗(H ) = {(φi(P̄),γ + tr(φi(P̄)) : ∀i ∈ M ∗
, ∀(P̄,γ) ∈ H }

Note that the above definition differs from the original one
in [18] by usingM ∗ instead ofM . This is due to the fault
isolability constraints in our context.

The setsHk, k = 1, · · ·N, express the covariance of the
estimate and the objective cost at every time-step under
every possible sensor schedule. LetHk(i) be theith element
of Hk, P̄k(i) andγk(i) be the covariance matrix and objective
cost corresponding toHk(i), M ∗k the set of all ordered
sequences of admissible (in terms of isolability constraint)
sensor schedules of lengthk, λ (P̄k(i)) ∈M ∗k be the ordered
sensor schedule corresponding to the covariance matrix
P̄k(i) andλ ∗ be the optimal sensor schedule for the problem.

Definition 4. (Algebraic redundancy) [18] A pair (P̄,γ) ∈
H is called algebraically redundant with respect to
H \{(P̄,γ)}, if there exist nonnegative constants{αi}

l−1
i=1

such that
l−1

∑
i=1

αi = 1 and

[

P̄ 0
0 γ

]

>

l−1

∑
i=1

αi

[

P̄(i) 0
0 γ(i)

]

wherel = card(H ) and{(P̄(i),γ(i))}l−1
i=1 is an enumeration

of H \{(P̄,γ)}.

The following theorem provides a condition which
characterizes the branches that can be pruned without
eliminating the optimal solution of the sensor scheduling
problem.

Theorem 1. [18] If the pair (P̄,γ) ∈ Hk is algebraically
redundant, then the branch and all of its descendants can
be pruned without eliminating the optimal solution from the
search tree.

We are now in position to describe the sensor scheduling
algorithm. Before doing this, let us recall the notion of
equivalent subsetof the search tree. This one is defined as
a set that still contains the optimal sensor schedule after
pruning, the pruning being realized using Theorem 1. The
computation of the equivalent subsets is done viaAlgorithm
1 in [18] The sensor scheduling algorithm is given as follows

Algorithm 2. Sensor scheduling for a finite horizon
i) H0 = {(P̄0,tr(P̄0))}
ii) for k= 1, · · · ,N, do

– Hk = πM ∗(Hk−1)
– Perform Algorithm 1 in [18] with

Hk

end for
iii) λ ∗ = arg min

j∈{1,··· ,card(HN)}

J (λ (HN( j)))

Remark 2. In [18], the authors proposed a suboptimal
solution which consists in approximating the search tree
by pruning branches which arenumerically redundant. To
this end, they use the notion ofε-redundancy. As pointed
out by the authors, theε-redundancy concept can typically
eliminate many more branches of the search tree leading to
less complexity problems.

V. I LLUSTRATIVE EXAMPLE

We consider the following discrete-time system

A=









0.2 1 0 0.2
0 0.1 1 0.4
0 0 0.4 1
0 0 0 0.3









, F =









−1 1
1 0
0 −1
1 1









C=





0 0.7 0 0
0 0 0.2 0
0 0 0 5



 , V = I

W =









0.89 0 0 0
0 0.5 0 0
0 0 0.95 0
0 0 0 0.58









The fault associated to the first column of the matrixF
occurs at time instantr1 = 50, with η1

k = 10sin(0.1k), while
the second fault (associated to the second column ofF)
occurs at timer2 = 120 with η2

k = 5.

We use the suboptimal version of Algorithm 2 (see Remark
2) to compute the suboptimal sensor schedule. Figure 2
shows the reduced output residualsqr

k =
[

qr1
k qr2

k

]T
, in

the case of using the suboptimal sensor schedule sequence
and an arbitrary periodic schedule, respectively . One can
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see that based on the proposed filter, one has the possibility
to detect and isolate multiple faults.

Figure 3 shows the evolution of the trace of the covariance
matrix of the estimation error for the two cases: suboptimal
sensor schedule and arbitrary periodic schedule. One can see
clearly the advantage and the performance of the proposed
method.

VI. CONCLUSIONS

This paper addresses the problem of multiple fault detec-
tion and isolation under communication constraints. More
specifically, we have considered the issue of sensor schedul-
ing and fault isolation co-design under limited bandwidth
capacity. We have proposed a detection and isolation filter
in addition with an optimal (or suboptimal) sensor schedul-
ing sequence that ensure the fault isolability property and
noise effect minimization. Future directions of research will

include the infinite horizon case and extension to online
scheduling techniques.
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