State estimation and fault detection for systems described by

Takagi-Sugeno nonlinear models

Didier Maquin

Centre de Recherche en Automatique de Nancy — France
UMR 7039, Nancy-Université — CNRS

STA'2009, Hammamet, Tunisia
December 20-22, 2009

Nancy-Université

CIRAN

Didier Maquin (CRAN) FDI of nonlinear systems using multiple models STA’2009, Hammamet, Tunisia 1/75



Outline of the talk

@ FDI and fault estimation of nonlinear systems
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FDI and fault estimation of nonlinear systems

Context and problem position

@ Despite a lot of works in this area, model-based FDI for nonlinear systems remains
a difficult task

@ Observer-based approach using bank of observers is among the more used methods

@ Neccessity to be able to design nonlinear observers (possibly with unknown inputs)
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FDI and fault estimation of nonlinear systems

Context and problem position

@ Despite a lot of works in this area, model-based FDI for nonlinear systems remains
a difficult task

@ Observer-based approach using bank of observers is among the more used methods

@ Neccessity to be able to design nonlinear observers (possibly with unknown inputs)
v

Proposed approach and requirements

@ Nonlinear systems are modeled using the so-called “multiple model approach”

@ Classical model-based approaches are adapted to that kind of models
Why using a multiple model 7

@ Appropriate tool for modelling complex systems (black box or “exact” modelling)

@ Tools for linear systems can partially be extended to nonlinear systems

@ Specific analysis of the system nonlinearity is avoided

Didier Maquin (CRAN) FDI of nonlinear systems using multiple models STA’2009, Hammamet, Tunisia 4 /75



Basis of multiple model approach

o Decomposition of the operating space into different operating zones
@ Modelling the behaviour in each zone by a single submodel

o Quantifying, using weighting functions, the contribution of each submodel

&(t) &(t)

Operating
zone 3

Operating space :

Operating
zone 4

&i(t) &i(t)

Nonlinear systems Multiple model representation
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Basis of multiple model approach

o Decomposition of the operating space into different operating zones
@ Modelling the behaviour in each zone by a single submodel

o Quantifying, using weighting functions, the contribution of each submodel

&(t) &(t)

Operating
zone 3

Operating space :

Operating
zone 4

&i(t) &i(t)

Nonlinear systems Multiple model representation

Multiple model : association of a set of submodels
blended by an interpolation mechanism
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Connection of submodels — Decoupled multiple model

{ ).(,'(t) = A,‘X,'(t) + B,'U(t)
yi(t) = Gixi(t)

i=1,..,r
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Connection of submodels — Decoupled multiple model

Model structure

{ xi(t) = Aixi(t) + Biu(t) i=1,..r

yi(t) = Cixi(t)

y(t) = Zu £))yi(t)

@ The multiple model output is a weighted sum of the submodel outputs

o Convex sum property of the weighting function 1;(£(t))

S wi(€() =1 and 0 < pi(€(t)) <1, Ve, Vi€ {1,...,r}

i=1
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{ ).(,‘(t) = A,‘X,'(t) + B,'U(t)
yi(t) = Gixi(t)

i=1,..,r
y(t) = Zui(ﬁ(t))w(t)

@ The multiple model output is a weighted sum of the submodel outputs

o Convex sum property of the weighting function w;(&(t))

D wi(€(t) =1 and 0< pi(g(t)) <1, Ve, Vie{1,...,r}

i=1

@ Each “local model” has its own state vector x;(t)

@ Dimension of the submodels can be different )

@ Orjuela, R. (2008). Contribution a I'estimation d’état et au diagnostic des systémes
représentés par des multimodeéles. These de doctorat, Institut National
Polytechnique de Lorraine, Nancy, France.
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Connection of submodels — Takagi-Sugeno model

Takagi-Sugeno model structure

x(t) = Zuf(ﬁ(t))(AiX(t)JrBiU(t))

y(t) Z pi(§(t)) Gix(t)
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Takagi-Sugeno model structure
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Connection of submodels — Takagi-Sugeno model

Takagi-Sugeno model structure

x(t) = Zuf(ﬁ(t))(AiX(t)JrBiU(t))
y(t) = Zu;(f(t))C;x(t)

o Convex sum property of the weighting function u;(£(t))

D wi(6(t) =1 and 0< pi(g(t)) <1, Ve, Vie{1,...,r}

i=1

@ System is described by a unique state x(t)
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Takagi-Sugeno model

Construction of TS models — 3 main approaches
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Takagi-Sugeno model

Construction of TS models — 3 main approaches

o ldentification approach
o Choice of premise variables
Choice of the number of modalities of each premise variable
Choice of the structure of the local models
Parameter identification

@ Transformation of a nonlinear model into a multiple model
o Linearization around some “well-chosen” points

Identification of the weighting function parameter to minimize the ouput error

o Nonlinear sector approach

Rewriting of the model in a compact subspace of the state space

x(t) = f(x(t), u(t)) x(t) = ém(&(t))(A;x(t) + Bju(t))
= 5
y(t) = h(x(t), u(t)) y(t) = ;M(ﬁ(t))(cix(t) + Dju(t))
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Nonlinear sector approach

{ x1(t) = —x1(t) cos(xa(t)) + u(t)

%o (t) = x2(t) — x2(t)
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Nonlinear sector approach

{ x1(t) = —xq(t) cos(x1(t)) + u(t) = x(t)= (— cos(x1(t)) O ) x(t) + (é) u(t)

%o (t) = x2(t) — x2(t) x1(t) =il
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Nonlinear sector approach

{xl(r>:—n(t)cos(n(r))ﬂ(r) N k(t):(—cos(xm)) _Ol)x(m(})) u(t)

%o (t) = x2(t) — x2(t) x1(t)

—1<cos(x1) <1

xi cos(x1) = FL(xu)x1 — F}(x1)x1, with Fl(x) = L ang Fl(x) = 1=zl
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{xl(r>:—n(t)cos(n(r))ﬂ(r) N k(t):(—cos(xm)) _Ol)x(m(})) u(t)

%o (t) = x2(t) — x2(t) x1(t)

—1<cos(x1) <1

xi cos(x1) = FL(xu)x1 — F}(x1)x1, with Fl(x) = L ang Fl(x) = 1=zl

2

-1<x <1
x2 = F2(xa)x — F2(x1)xt, with Fl(xi) = —Xlg'l and F2(xi) = 71_2’“

pi(xa) = FE(a)FE(a), pa(xa) = Fi(xa)F3(x)
p3(x) = F3(a)FE(x1), palxa) = F}(x)Fi(x)
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Nonlinear sector approach

{xl(r>:—n(t)cos(n(r))ﬂ(r) N k(t):(—cos(xm)) _Ol)x(m(})) u(t)
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xi cos(x1) = FL(xu)x1 — F}(x1)x1, with Fl(x) = L ang Fl(x) = 1=zl

2

-1<x <1
x2 = F2(xa)x — F2(x1)xt, with Fl(xi) = —Xlg'l and F2(xi) = 71_2’“

pi(xa) = FE(a)FE(a), pa(xa) = Fi(xa)F3(x)
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1 ] 1 1 1
w=(3 3 4=(G 2)a=( 3)as(d 3) =)
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Nonlinear sector approach

{ B2 O s = (T 8 o+ (§) o
—1<cos(x1) <1

xicos(x1) = FL(xu)x1 — FA(x)x1, with F(xy) = ©CEL ang Fl(x) = 1=cgCa)

-1<x <1
x2 = F2(xa)x — F2(x1)xt, with Fl(xi) = —Xlg'l and F2(xi) = 71_2’“

X = —x cos(x: u . !
{20200 = w0 =L ntat)ax +Buco)
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Outline of the talk

© Observer design for TS model — an introduction
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Observer design for TS model — an introduction

Takagi-Sugeno model

x(t) = Zui(i(t)) (Aix(t) + Bju(t))

y() = Cx(1)
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Observer design for TS model — an introduction

x(t) = Zui(i(t)) (Aix(t) + Bju(t))

y(t) = Cx(t)

v

Hypotheses

@ The ouput equation is linear with regard to the system state
@ The decision variables are accessible = £(t) = u(t) or &(t) = y(t)
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Observer design for TS model — an introduction

Takagi-Sugeno model

x(t) = Zui(i(t)) (Aix(t) + Bju(t))

y() = Cx(1)

| N

Hypotheses

@ The ouput equation is linear with regard to the system state
@ The decision variables are accessible = £(t) = u(t) or &(t) = y(t)

x(t) = Zw(&(t)) (Aix(t) + Biu(t) + Li(y(t) — y(t))

y(t) = Cx(1)

.
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Observer design for TS model — an introduction

Takagi-Sugeno model

x(t) = Zui(i(t)) (Aix(t) + Bju(t))

y() = Cx(1)

| N

Hypotheses

@ The ouput equation is linear with regard to the system state
@ The decision variables are accessible = £(t) = u(t) or &(t) = y(t)

x(t) = Zw(&(t)) (Aix(t) + Biu(t) + Li(y(t) — y(t))

y(t) = Cx(1)

.

The gain L; can be easily designed.
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Observer design for TS model — an introduction

Takagi-Sugeno model

x(t) = Zui(é(t)) (Aix(t) + Bju(t))

y(t) = Cx(t)
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Observer design for TS model — an introduction

x(t) = Zui(é(t)) (Aix(t) + Bju(t))

y(t) = Cx(t)

v

Observer

(1) = Zui(f(t)) (Aik(t) + Biu(t) + Li(y(t) — 9(1))

y(t) = Cx(1)
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Observer design for TS model — an introduction

Takagi-Sugeno model

x(t) = Zui(é(f)) (Aix(t) + Bju(t))

y(t) = Cx(t)

v
Observer

t)—ZM:(ﬁ ) (Aix(t) + Biu(t) + Li(y(t) — 9(1))

(1) = Cx(1)

State estimation error

v

e(t) = x(t) — x(t)
é(t) = Zui(é‘(t)) (Ai — LiC)e(t)

A\
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Observer design for TS model — an introduction

State estimation error

&(t) = Zm(&(t)) (Ai = LiC)e(t)
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Observer design for TS model — an introduction

State estimation error

&(t) = Zm(ﬁ(f)) (Ai = LiC)e(t)

Convergence analysis — Lyapunov approach

Quadratic Lyapunov function

V(e(t)) = e (t)Pe(t), with P =P >0
The state estimation error asymptotically converges towards zero if
V(e(t)) <0
V(e(t)) = &' (t)Pe(t) + e (t)Pe(t) <0

V(e(t) =" () (Z ui((8)) (A = LiC)T P+ P(A; - L,-C))) e(t) <0

=i\
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Observer design for TS model — an introduction

State estimation error and derivative of Lyapunov function

e(t) = Zm(i(f)) (Ai = LiC)e(t)

V(e(t)) = &' () (Z u(€(2)) (A = LiC)TP + P(A — L,-C))) e(t) <0

Didier Maquin (CRAN) FDI of nonlinear systems using multiple models STA’2009, Hammamet, Tunisia 14 /75



Observer design for TS model — an introduction

State estimation error and derivative of Lyapunov function

e(t) = Zm(é(f)) (Ai = LiC)e(t)

V(e(t)) =e” (Zﬂ, () ( (Ai — LiC) P + P(A; — L;C))) e(t) <0

Sufficient convergence conditions

Convex sum property of y; functions implies that V/(e(t)) < 0 if :

(Ai— LiC)"P+ P(A — L;C) <0, Vi
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Observer design for TS model — an introduction

State estimation error and derivative of Lyapunov function

e(t) = Zm(é(f)) (Ai = LiC)e(t)

V(e(t)) = e'( (Zﬂ, t))(A-—L,-C)TP+P(A,-—L,-C))>e(t)<0

Sufficient convergence conditions

Convex sum property of y; functions implies that V/(e(t)) < 0 if :

(Ai— LiC)TP+ P(A — L;C) <0, Vi

These conditions are expressed using bilinear matrix inequalities
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Observer design for TS model — an introduction

State estimation error and derivative of Lyapunov function

e(t) = Zm(é(f)) (Ai = LiC)e(t)

V(e(t)) =e” (Zﬂ, t))(A-—L,-C)TP+P(A,-—L,-C))> e(t) <0

Sufficient convergence conditions

Convex sum property of y; functions implies that V/(e(t)) < 0 if :

(Ai— LiC)TP+ P(A — L;C) <0, Vi

These conditions are expressed using bilinear matrix inequalities

Transformation into LMI

With the bijective change of variable Ki = PL; (i.e. L; = P_IK,-)

(ATP+PA — C"KT — KiC) <0, Vi
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Outline of the talk

© Observer design for TS model with unmeasurable decision variables
@ First approach based on Lipschitz hypotheses
@ Second approach relying on the perturbation attenuation
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Observer design for TS model with unmeasurable decision variables

Takagi-Sugeno model with unmeasured decision variables

x(2) = 37 wi(x(0)) (Aix(2) + Biu(t))

y(t) = Cx(t)
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Observer design for TS model with unmeasurable decision variables

Takagi-Sugeno model with unmeasured decision variables

X(t)—Zu: )) (Aix(t) + Bju(t))

y(t) = Cx(t) |
Observer — weighting functions depend now on the estimated state
Zu(x X(t) + Biu(t) + Li(y — 9(1))

(1) = Cx(1)
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The gain L; are considerably more difficult to design !
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Observer design for TS model with unmeasurable decision variables

Takagi-Sugeno model with unmeasured decision variables

X(t)—Zu: )) (Aix(t) + Bju(t))

y(t) = Cx(t) |
Observer — weighting functions depend now on the estimated state
Zu(x X(t) + Biu(t) + Li(y — 9(1))

(1) = Cx(1)

.

The gain L; are considerably more difficult to design !

There exists very few results in the litterature dealing with that problem which is
essentially in the FDI framework J
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Previous studies in this area

@ Thau, F. (1973). Observing the state of non-linear dynamic systems. International
Journal of Control, 17(3) :471-479.
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Previous studies in this area

@ Thau, F. (1973). Observing the state of non-linear dynamic systems. International
Journal of Control, 17(3) :471-479.

Nonlinear model

{ x(t) = Ax(t) + f(x(t), u(t))
y(t) = Cx(t)
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Previous studies in this area

@ Thau, F. (1973). Observing the state of non-linear dynamic systems. International
Journal of Control, 17(3) :471-479.

Nonlinear model

{ x(t) = Ax(t) + F(x(t), u(t))

y(t) = Cx(t)
Observer
{ () = A%(t) + F(%(t), u(t)) + L(y(t) — 9(1))
y(t) = Cx(t)
(t

State estimation error (e(t) = x(t) — X(t))

é(t) = (A= LC)e(t) + F(x(t), u(t)) — f(X(t), u(t))
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Previous studies in this area

@ Thau, F. (1973). Observing the state of non-linear dynamic systems. International
Journal of Control, 17(3) :471-479.

Nonlinear model

{ x(t) = Ax(t) + f(x(t), u(t))
y(t) = Cx(t)

{ x() = AX(t) + F((2), u(t)) + Ly(t) — 9(t))
y(t) = CX(t)

State estimation error (e(t) = x(t) — X(t))
é(t) = (A= LQ)e(t) + F(x(t), u(t)) — F(X(t), u(t))
Lipschitz condition on the nonlinear part

£ (x(2), u(t)) = F(X(2), u()] <lIx(t) = X(D)]

Observer

><>
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Previous studies in this area

@ Thau, F. (1973). Observing the state of non-linear dynamic systems. International
Journal of Control, 17(3) :471-479.

Nonlinear model

{ x(t) = Ax(t) + f(x(t), u(t))
y(t) = Cx(t)

{ (1) = AX(t) + F(%(2), u(1) + L(y(t) - 9(t))
y(t) = Cx(t)
State estimation error (e(t) = x(t) — X(t))
é(t) = (A— LC)e(t) + f(x(t), u(t)) — F(X(t), u(t))
Lipschitz condition on the nonlinear part
(£ (x(2), u(t)) = F(X(2), u()] < ~llIx(t) = %(2)]]
Result : the state estimation error converges asymptotically towards 0

)\max(Q)
Amin(P)’

Observer

><>

if (A= LC)"P+ P(A—LC)=—Q with y < P=P">0,Q=Q" >0
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Provide an algorithm to compute the observer gain L
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First approach based on Lipschitz hypotheses

Non-perturbed TS model

x(t) = Zul ) (Aix(t) + Biu(t))
y(t) = CX(t)
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First approach based on Lipschitz hypotheses

X(t)—Zu: )) (Aix(t) + Biu(t))
y(t) = CX(t)

v

Rewritting of the model

() = Aox(e) + 3 pi(x(0) (Aix(e) + Biu(r)
vy =cxt)

with
1< : ,
=2 E Ai or Ay = Aj (dominant local model j)

A=A — Ao
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First approach based on Lipschitz hypotheses

Non-perturbed TS model

X(t) = Aox(t) + Y pi(x(£))(Aix(t) + Bu(t))

Y= ()
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First approach based on Lipschitz hypotheses
Non-perturbed TS model

() = Aox(e) + 3 pu(x() (Aix(e) + Biu(r)
y) = x(t)

v
Structure of the proposed observer

{ x(t) = Aok(t) + éuf(?(t))(ﬁf?(f) + Biu(t)) + L(y(t) — 9(1))

y(t) = Cx(1)
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First approach based on Lipschitz hypotheses
Non-perturbed TS model
X(£) = Aox(t) + Y pi(x(£))(Aix(t) + Biu(t))
i=1

y(t) = Cx(1)

v

Structure of the proposed observer

y(t) = Cx(1)

v
State estimation error

e(t) = x(t) — x(t)
é(t) = (Ao — LC)e(t) + A(x, X, u)

{ x(t) = Aok(t) + Z;ui(i(t))(_i?(t) + Biu(t)) + L(y(t) — 9(1))

where :
r

A(x % u) = Y (Aiui(x(0))x(2) = pi(R()%(2)) + Bi(pi(x(t)) = pi(X(t))u(t)))

i=1
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First approach based on Lipschitz hypotheses

State estimation error

é(t) = (Ao — LC)e(t) + A(x, X, u)

where :
r

A(x, %, u) = D (A (x(@)x(2) = mi(R(£)X(E)) + Bi(ui(x(2)) — pi(%(2))u(t)))

i=1
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First approach based on Lipschitz hypotheses

é(t) = (Ao — LC)e(t) + A(x, %, u)

where :
r

A(x, %, u) = D (A (x(@)x(2) = mi(R(£)X(E)) + Bi(ui(x(2)) — pi(%(2))u(t)))

i=1

Lipschitz hypotheses

o AL [ui(x(£)x(t) — mR(EDX(D)] < ailx(t) —(8) @i >0
o A2 |B(ui(x(0) — m(x(0) < Bilx(&)—K(B)] B >0
e A3. lu(t)] < p p>0
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First approach based on Lipschitz hypotheses

State estimation error

e(t) = (Ao — LC)e(t) + A(x, %, u)

where :
r

A(x, %, u) = D (A (x(@)x(2) = mi(R(£)X(E)) + Bi(ui(x(2)) — pi(%(2))u(t)))

i=1

Lipschitz hypotheses

o AL |ui(x(t))x(t) — m(X()*(D)] < aulx(t) —K(B)] >0
° A2. Bi(pi(x(t)) — pi(X())| < Bilx(t) —%(t)] B >0
e A3. lu(t)] < p p>0

| \

Fallout

| \

|A( &, u)] < [x(t) — %(2)]

where :
.

v = Z(&(A,-)a,- + Bip), (A : maximum singular value of (A;)

=il
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First approach based on Lipschitz hypotheses

State estimation error

é(t) = (Ao — LC)e(t) + A(x, %, u)

where : |A(x, X, u)|] < v[x(t) — Xx(t)]
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First approach based on Lipschitz hypotheses

State estimation error

é(t) = (Ao — LC)e(t) + A(x, X, u)
where : |A(x, X, u)|] < v[x(t) — Xx(t)]

Convergence analysis — Lyapunov approach

Quadratic Lyapunov function

V(e(t)) = e’ (t)Pe(t), with P =P >0

The state estimation error asymptotically converges towards zero if

V(t) = e’ (t) (¢TP + P¢) e(t) + 2¢" (£)PA(x, %, u) < 0

where : & = Ay — LC
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First approach based on Lipschitz hypotheses

State estimation error

é(t) = (Ao — LC)e(t) + A(x, X, u)
where : |A(x, X, u)|] < v[x(t) — Xx(t)]

Convergence analysis — Lyapunov approach

Quadratic Lyapunov function

V(e(t)) = e’ (t)Pe(t), with P =P >0

The state estimation error asymptotically converges towards zero if

V(t) = e’ (t) (¢TP + P¢) e(t) + 2¢” (t)PA(x, %, u) < 0

where : & = Ay — LC

Non quadratic terms : e’ PA
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Some useful tools in LMI framework

For two matrices X and Y with appropriate dimensions, the following property holds :

XY +XYT < X"Q'x+vQy', Q>0
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Some useful tools in LMI framework

For two matrices X and Y with appropriate dimensions, the following property holds :

XY +XyT <x™Q'x+vay’", Q>0

| A\

Lemma 2 : Schur complement

Let us consider three matrices Q(x) = Q7 (x), R(x) = R"(x) and S(x) of compatible
dimensions depending linearly on the variable x. The following LMIs are equivalent :

o () 2] -

Q@ R(x) >0,Q(x) — S(X)R_I(X)ST(X) >0
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First approach based on Lipschitz hypotheses

Convergence analysis — Lyapunov approach

V(t) = e (t) (¢TP + P¢) e(t) + 2e" (t)PA(x, %, u)

with [A(x, &, u)| < v]e(t)]

e (t)(®TP + PO+ PQ 'Pe(t) + AT (x, %, u)QA(x, %, u) < 0

<eT(£)(v2Q)e(t)

Didier Maquin (CRAN) FDI of nonlinear systems using multiple models STA’2009, Hammamet, Tunisia 25 /75



First approach based on Lipschitz hypotheses

Convergence analysis — Lyapunov approach

V(t) = e (t) (¢TP + P¢) e(t) + 2e" (t)PA(x, %, u)

with [A(x, &, u)| < v]e(t)]

e (t)(®TP + PO+ PQ 'Pe(t) + AT (x, %, u)QA(x, %, u) < 0

<eT(£)(v2Q)e(t)

Finally, the convergence condition can be written as

(A — LC)TP+ P(A— LC) + PQ7'P ++2Q < 0
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First approach based on Lipschitz hypotheses

Convergence analysis — Lyapunov approach

V(t) = e (t) (¢TP + P¢) e(t) + 2e" (t)PA(x, %, u)

with [A(x, &, u)| < v]e(t)]

e (t)(®TP + PO+ PQ 'Pe(t) + AT (x, %, u)QA(x, %, u) < 0

<eT(£)(v2Q)e(t)

Finally, the convergence condition can be written as
(A — LC)"P+ P(As— LC) + PQ'P++4°Q <0
With the change of variable K = PL and using the Schur complement

ATP+PA — CTKT —KC+~*Q P

P o | <0
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First approach based on Lipschitz hypotheses

Non-perturbed TS model

x(t) = Aox(t) + z pi(x(£)(Aix(t) + Bu(t))
y(t) = Cx(t)

(1)

v

Structure of the proposed observer

x(t) = Aox(t) + guf(?(t))(/z\i?(t) + Biu(t)) + Ly (t) — 9(1))
y(t) = CX(¢)

(@)

v

Theorem 1

The state estimation error between the TS model (1) and its observer (2) converges
asymptotically toward zero, if there exists a matrix P = PT > 0, a diagonal positive
matrix @ and a gain matrix K such that the following condition holds :

T T T 2
[AOP—i-PAo CPK KC+v°@Q P ]<0 3)
-Q
The gain of the observer is computed by L = P71K. |
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First approach based on Lipschitz hypotheses

Perturbed TS model

{ x(t) = _Z pi(x(2)) (Aix(t) + Biu(t) + Eiw(t))
y(t) = CX(t)
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First approach based on Lipschitz hypotheses

Perturbed TS model

x(t) = _Z pi(x(2)) (Aix(t) + Biu(t) + Eiw(t))
y(t) = CX(t)

Hypothesis & design goals

@ w(t) : exogeneous disturbance such that w(t) € £

@ determine the observer gain L such that the observer error dynamics is bounded
and the £ gain of the transfer from w(t) to e(t) is below a given threshold

lle()ll,
llw(®)ll

<§ £>0
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First approach based on Lipschitz hypotheses

Perturbed TS model

x(t) = I_:erlw(X(t)) (Aix(t) + Biu(t) + Eiw(t))
y(t) = Cx(t)

v

Hypothesis & design goals

@ w(t) : exogeneous disturbance such that w(t) € £

@ determine the observer gain L such that the observer error dynamics is bounded
and the £ gain of the transfer from w(t) to e(t) is below a given threshold

le(l,
lo(ol, <& ¢7°

v

Convergence analysis of the state estimation error

The condition which guarantees the boundedness of the £, norm of the transfer from
w(t) to e(t) is given by :

V(t)+ e’ (t)e(t) — Ew’ (t)w(t) <0
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Some useful tools in LMI framework

Consider the linear system :

x(t) = Ax(t)+ Bu(t)
y(t) = Cx(t)+ Du(t)
If the system is stable and u(t) is bounded then there exists £ > 0 such that :
+oo +oo
/ YT (B)y()dt < & / uT(£)u(t)dt
0 0

The constant ¢ is called £ gain of the system.
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Some useful tools in LMI framework

L, gain

Consider the linear system :

{x(t) = Ax(t) + Bu(t)
y(t) = Cx(t)+ Du(t)

If the system is stable and u(t) is bounded then there exists £ > 0 such that :

+oo

/ YT (0)y(£)dt < & / uT ()u(t)dt

The constant & is called £, gain of the system.

Lemma 3 : Bounded real lemma

| \

The previous constraint holds for any bounded u(t) with u(t) # 0 if and only if there
exists a matrix P such that :

ATP+PA+C'C PB+C'D -0
B"™P+D'C DD — €21
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First approach based on Lipschitz hypotheses

Perturbed TS model

x(t) = ZMI(X(t)) (Aix(t) + Bju(t) + Eiw(t))
y(t) = CX(t)

(4)

Theorem 2

| \

The robust observer for the system (4) satisfying the perturbation attenuation
constraint is determined by minimizing the real positive number £ under the following
LMI constraints in the variables P, K, Q and & :

e P PE;
P -Q 0 <0,i=1,...,r
E'P 0 —&l

where :
O=AlP+PA —C KT —KC+~+*Q+1

The gain of the observer is computed by L = P~ K. The resulting attenuation level is
given by & = \/E . |

v
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Second approach relying on the perturbation attenuation

Difficulty

The weighting functions of the model depend on the actual state x(t) when that of the
observer depend on their estimates X(t).
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Second approach relying on the perturbation attenuation

Difficulty

The weighting functions of the model depend on the actual state x(t) when that of the
observer depend on their estimates X(t).

An idea is to express the model using artificially weighting functions
depending on that estimates.
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Second approach relying on the perturbation attenuation

Difficulty

The weighting functions of the model depend on the actual state x(t) when that of the
observer depend on their estimates X(t).

An idea is to express the model using artificially weighting functions
depending on that estimates.

Rewriting of the model

x(t) = 3 (mi(%(1)) (Aix(t) + Biu(t)) + 8i(t)(Aix(t) + Biu(t)))

i

y(t) = Cx(t)

=
N

where :

8i(t) = pi(x(1)) — pi(x(t))

Didier Maquin (CRAN) FDI of nonlinear systems using multiple models STA’2009, Hammamet, Tunisia 30 /75



Second approach relying on the perturbation attenuation

Rewriting of the model

{ x(t) = Z; (ni(%(1)) (Aix(t) + Biu(t)) + 6i(t)(Aix(t) + Bju(t)))
)

y(t) = Cx(t
where :
6i(t) = pi(x(t)) — pi(x(t)), -1<6i(t) <1
Let us define :
AA(t) = 25 t)A; = AT a(t)Ea, AB(t) = 25 t)B; = BLs(t)Es
where :
51(1‘)/,, 0 (51(t)/m 0
Ta(t) = : : o re(t) = : :
0 coo Or(t)n 0 s 0r(t)m

TA()Za(t) <1
Th(t)Ts(t) </
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Second approach relying on the perturbation attenuation

Rewritten model

{ x(t) = Zu (&) ((Ai + AA(1)x(t) + (B + AB(1))u(t))
y(£) = Cx(1)
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Second approach relying on the perturbation attenuation

Rewritten model

x(t) = Zu (&) ((Ai + AA(1)x(t) + (B + AB(1))u(t))
y(£) = Cx(1)

The original system with unmeasurable decision variables is transformed into an
equivalent “uncertain” TS model with known decision variables.

The terms are not uncertain, but only unknown (unlike model uncertainties). This
writing is used for observer design purpose only
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Second approach relying on the perturbation attenuation

Rewritten model

x(t) = Zu (&) ((Ai + AA(1)x(t) + (B + AB(1))u(t))
y(£) = Cx(1)

rigin m with unmeasur ecision vari is transformed in n
The o al syste th easurable decision variables is transformed into a
equivalent “uncertain” TS model with known decision variables.

The terms are not uncertain, but only unknown (unlike model uncertainties). This
writing is used for observer design purpose only

v

Proposed observer

x(t) = EM (%(2)) (Aik(2) + Biu(t) + Li(y(t) — 3(¢)))
9(t) = Cx(t)
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Second approach relying on the perturbation attenuation

State estimation error

e=> ui(%) ((Ai — LiC)e) + AAx + ABu
i=1
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Second approach relying on the perturbation attenuation

State estimation error

e=> ui(%) ((Ai — LiC)e) + AAx + ABu
i=1
Augmented system
o H & = 32 2 (X)) (Ases + Byu)
g = 5 i=1j=
8 e= (I 0)e,
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Second approach relying on the perturbation attenuation

Theorem 3

The system governing the augmented state estimation error is stable and the L, gain of
the transfer from u(t) to the state estimation error is bounded by 7, if there exists two
positive and symmetric matrices P1 and P», matrices K;, and positive scalars A1, A2 and
7 such that the following LMIs hold, ¥ i,j € {1,..,r} :

v, 0 0 PA P.B

0 = P, B; 0 0

0 B'P, -3+ XE]Es 0 0 <0
AT Py 0 0 1/ 0
BT P, 0 0 0 —Xof

where :
W, =A'P + PLA —KiIC—C"K" +1

S, = A P+ PA; + MEJ Ea

The gains of the observer are computed from L; = Py ' K; and the resulting Lo gain
from u(t) to e(t) is defined by v = /5 ]
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Outline of the talk

@ Design of unknown input observers
@ Partial decoupling of fault
@ Design of proportional integral observer
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Design of unknown input observers

Classical approach for fault detection/isolation — Bank of observers

Uy y(p)
CIE y» o > .»
T3 > Process - ¢ - Process | > y%p)
> >y
> o) > gl
» Observer 1 : —*| Observer 1 k
> o) g )
H Observer 2 | Observer 2
> ) > )
Observer 3 : “»| Observer 3 ¢
——
GOS for actuator fault detection GOS for sensor fault detection
(all u; but one) (all y; but one)
v
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Partial decoupling of fault

Considered TS model

x(t) = Zu:( (8)) (Aix(t) + Biu(t) + Eid(t))
y(t) = Cx(t)+Gd( )
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Partial decoupling of fault

Considered TS model

{ x(t) = Zu:( (8)) (Aix(t) + Biu(t) + Eid(t))
y(t) = Cx(t)+Gd( )

d(t) : unknown input vector (the dimension of d is less than that of y)

v

Rewriting of the model

{ (£) = X2 m%(0) (Ax(e) + Buu(t) + Evl(£) + ()
y(e) = Ot

) + Gd(t)
with : w(t) = g(ui(X(t)) — pi(%(1))) (Aix(t) + Bju(t) + Eid(t))
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Partial decoupling of fault

Considered TS model

{ x(t) = Zu:( (1)) (Aix(t) + Biu(t) + Eid(t))
y(t) = Cx(t)+Gd( )

d(t) : unknown input vector (the dimension of d is less than that of y)

Rewriting of the model

{ X(t) i;m(*(t))(AfX(t) + Biu(t) + Eid(t) + w(t))

=
| A

y(t) = Cx(t) + Gd(t)

with £ w(£) = 3= (ui(x(£)) ~ pi(X(£))) (Aix(t) + Biu(e) + (1))

A\

Proposed observer

{ z(t) = ZM:( (£)) (Niz(t) + Giu(t) + Liy(t))
X(t )—Z(f) Hy(t)
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A\

Proposed observer
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Partial decoupling of fault

Dynamics of the state estimation error

e(t) = Z/L,-()?(t))((PA,- — N; — KiC)x(t) + (PB: — G;)u(t)

+(PE; — KiG)d(t) 4+ Pw(t) + Nie(t)) + HGd(t)

with P =/ + HC and Ki = NiH + L;
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Partial decoupling of fault

Dynamics of the state estimation error

e(t) = Zu;(f((t))((PA; — N; — KiC)x(t) + (PB: — G;)u(t)

+(PE; — KiG)d(t) + Puw(t) + Nie(t)) + HGd(t)
with P = | + HC and K; = NjH + L;

v

Structural conditions

HG = 0 N, = PA—KC
PB = G PE, = KG
L = K—NH
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Partial decoupling of fault

Dynamics of the state estimation error

e(t) = Zu;()?(t))((PA,- — N; — KiC)x(t) + (PB: — G;)u(t)

+(PE; — KiG)d(t) + Puw(t) + Nie(t)) + HGd(t)
with P = | + HC and K; = NjH + L;

V.

Structural conditions

HG = 0 N, = PA—KC
PB = G PE, = KG
L = Ki—NH

Resulting dynamics of the state equation

é(t) = Zu:’(?(t)) (Nie(t) + Pw(t))  with |w(t)] < vle(t)]
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Design of unknown input observers

Theorem 4
An unknown input observer exists if there exists a symmetric positive definite matrix X,
matrices M; and S, and positive scalar A such that the following LMls hold,

Vi=1,..r:

v; (X+5C) < 0
(X+so)T oY
SG = 0
(X+SC)E = MG

where : W; = AT(X + CTST) + (X + SC)A — C" M — M;C + \y?I

The matrices defining the observer are computed according to :

H = X!'s

K = X 'M;

Ni = (I+HQOA - KC
Li = K —NH

G = (I4+HO)B

STA’2009, Hammamet, Tunisia
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Design of proportional integral observer

Considered TS model

x(t) = Z pi(x(¢)) (Aix(t) + Biu(t) + Eid(t) + Riw(t))
y(t) = Cx(t) + Gd(t) + Ww(t)

where d(t) is the vector of unknown inputs and w(t) a disturbance vector
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Design of proportional integral observer

Considered TS model

x(t) = Z pi(x(t)) (Aix(t) + Biu(t) + Eid(t) + Riw(t))
y(t) = Cx(t) + Gd(t) + Ww(t)

where d(t) is the vector of unknown inputs and w(t) a disturbance vector

Hypotheses

@ Al. the system is stable
@ A2. the signals u(t), d(t) and w(t) are bounded
o A3. d(t)=0
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Design of proportional integral observer

Considered TS model

x(t) = ,-_il’“(x(t)) (Aix(t) + Biu(t) + Eid(t) + Riw(t))
y(t) = Cx(t) + Gd(t) + Wuw(t)

where d(t) is the vector of unknown inputs and w(t) a disturbance vector

V.

Hypotheses

@ Al. the system is stable
o A2. the signals u(t), d(t) and w(t) are bounded
o A3. d(t)=0

Proportional integral observer

(1) = X ml%(0)) (AR(E) + Biu(e) + Ed(£) + La(y() - 5(1))

() = ;1 wi(%(8)) (Li(y(2) = 9(£)))
9(t) = Cx(t) + Gd(t)
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Design of a proportional integral observer

Rewriting of the original model with an augmented state vector

o= 3]
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Design of a proportional integral observer

Rewriting of the original model with an augmented state vector

xa(t) = [ x(t) } Xo(t) = gm(%(t)) (Axs(t) + Bru(z) + i (1))
d(t) y(t) = Cxs(t) + D (t)
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Design of a proportional integral observer

Rewriting of the original model with an augmented state vector

() 5a(t) = 32 ui(%(8)) (Aialt) + Buu(e) + T (t))
xa(t) = [ d(t) } i= B
(t) = Cxa(t) + Da(t)

| k<
|
I
|
A\

Theorem 5

The proportional integral observer is obtained by solving, for P = PT > 0, the following
constrained optimization problem :

min 4 s.t.
i Y

»M;
ATP+ PA— fC—CTRLT +1 PP — D
FTp— DTt 5 | <0

The gains of the observer are given by L; = P~ M; and the attenuation level is v = /5
v
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Design of a proportional integral observer

x(t) = Z pi(x(t)) (Aix(t) + Biu(t) + Eid(t) + Riw(t))
y(t) = Cx(t) + Gd(t) + Ww(t)
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Design of a proportional integral observer

x(t) = Z pi(x(¢)) (Aix(t) + Biu(t) + Eid(t) + Riw(t))
y(t) = Cx(t) + Gd(t) + Ww(t)

-2 1 1 -3 2 =2 [ 1 3
Al = 1 -3 0|, A= 5 -3 0|, Bi= 5|, B= 1
2 —8 1 2 —4 0.5 —7

[ursy
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Design of a proportional integral observer

x(t) = Z pi(x(¢)) (Aix(t) + Biu(t) + Eid(t) + Riw(t))
y(t) = Cx(t) + Gd(t) + Ww(t)

with :
-2 1 1 -3 2 -2 1 3
Al = 1 -3 0|, A= 5 -3 0|, Bi= 51, B= 1
2 1 -8 1 2 —4 | 0.5 -7
0 7 0 6 1] 05
EE=]0 5|, EE=|0 3|,R=R=|1 ’W:[O.S}’
0 2 0 1 1| ’
1 1 1 5 0
C_{l 0 1}’G_{1 0]
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Design of a proportional integral observer

x(t) = Z pi(x(¢)) (Aix(t) + Biu(t) + Eid(t) + Riw(t))
y(t) = Cx(t) + Gd(t) + Ww(t)

-2 1 1 -3 2 =2 [ 1 3
Al = 1 -3 0|, A= 5 -3 0|, Bi= 5|, B= 1
2 —8 1 2 —4 0.5 —7

[ursy
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Design of a proportional integral observer

x(t) = Z pi(x(¢)) (Aix(t) + Biu(t) + Eid(t) + Riw(t))
y(t) = Cx(t) + Gd(t) + Ww(t)

with :
-2 1 1 -3 2 -2 1 3
Al = 1 -3 0|, A= 5 -3 0|, Bi= 51, B= 1
2 1 -8 1 2 —4 | 0.5 -7
0 7 0 6 1] 05
EE=]0 5|, EE=|0 3|,R=R=|1 ’W:[O.S}’
0 2 0 1 1| ’

1 1 1 5 0
c=[101)e=]7 0]
The weighting functions depend on the first entry xi(t) of the state vector x(t) :

{ HI(X(t)) _ l—tang(xl(t))
pa(x(t)) = 1 — pa(x(t))
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Design of a proportional integral observer

Example cont'd

1

‘\ T ~ T LA T . T T
L P FE S
4 oy ) 1 !
0.8 - - L 1 = uy(t)
d ) 1 ' ) ' ) 2
\ L1 in' YN\ -
! i [ Y A YR v
0.6 % o\ (TR N\, 7
04 [ v f M
- Ll v ! 1
1 N D -
- 1
0.2 1 ; [
B ! [y
0 AT YU | | | | ‘s
10 15 20 25 30 35 40 45 50

FIGURE: Time evolution of the weighting functions u;

@ The perturbation w(t)

is a random bounded signal.

@ The fourth derivatives of the two unknown inputs are null.

Didier Maquin (CRAN)
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Design of a proportional integral observer

T
2 — 40
- d‘(t) estimé

1 / 1

T
— 4,0
= () estimé

[ 5 10 15 20 25 30 35 40 45 50

FIGURE: Unknown inputs and their estimates using a Pl observer
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Design of a proportional integral observer

Example cont'd

\ \ \ \ \ \ \ \ \
— e
05 e1(t) H
—_ 928
—_— (]
0 —~
-05 i
-1 —
15 : \ \ \ \ \ \ \ \
0 5 10 15 20 25 30 35 40 45 50
FIGURE: State estimation errors using a Pl observer
v
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Design of a proportional integral observer

Rewriting of the original model with an augmented state vector

x(t) a(e) (1)
d(t) :
x(t)= | @t with dl:(t) = dzz(t) d9(t)=0
dq—:l(t) C-/qf.l(t) dq.(t)
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Design of a proportional integral observer

Rewriting of the original model with an augmented state vector

x(t) a(e) (1)
d(t) :
x(t)= | @t with dl:(t) = dzz(t) d9(t)=0
dq—:l(t) C-/qf.l(t) dq.(t)

{ (D)= ; pi(%(2)) (Axa(t) + Byu(t) + P (1))
y(t) = Cxs(t) + Di(t)
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Design of a proportional integral observer

Rewriting of the original model with an augmented state vector

x(t) a(e) (1)
d(t) :
x(t)= | @t with dlft) = dzz(t) d9(t)=0
dq—:l(t) C-/qf.l(t) dq.(t)

{ (D)= ;1 pi(%(2)) (Axa(t) + Byu(t) + P (1))
y(t) = Cxs(t) + Di(t)

Estimation of the g first derivatives of the unknown input

(8) = 2 pilz(0)) (dor + Li(y(0) = () = L, = 1

d(t) = 3 miz(0) ((0) + Liy(6) - 9())
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Design of a proportional multiple integral observer

Example cont'd

T
2 — 40
- d‘(t) estimé

T
— 4,0
= () estimé

[ 5 10 15 20 25 30 35 40 45 50
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Design of a proportional multiple integral observer

Example cont'd

— e‘(1)

0.5 o
— ea(t)

FIGURE: State estimation errors using a Pl observer
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Design of a proportional multiple integral observer

Example cont'd

— e‘(1)

0.5 o
— ea(t)

05 — &0y
—_— e2:1;

— () |

0 2]

-0.5 i

b B

15 I I I I I I I I I
0 5 10 15 20 25 30 35 40 45 50

FIGURE: State estimation errors using a Pl observer
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Outline of the talk

© Fault detection and isolation
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Fault detection and isolation

Introduction
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Fault detection and isolation

Introduction

@ FDI has been (and remains) an active field of research over the past decades

@ A possible way to achieve FDI goals is to use bank of dynamic observers

@ The previously proposed observers are well adapted for that goal

Didier Maquin (CRAN) FDI of nonlinear systems using multiple models STA’2009, Hammamet, Tunisia



Fault detection and isolation

Introduction

FDI has been (and remains) an active field of research over the past decades

@ A possible way to achieve FDI goals is to use bank of dynamic observers
@ The previously proposed observers are well adapted for that goal
@ When using this kind approach, the output estimation errors are used as residuals

Didier Maquin (CRAN) FDI of nonlinear systems using multiple models STA’2009, Hammamet, Tunisia



Fault detection and isolation

Introduction

@ FDI has been (and remains) an active field of research over the past decades

@ A possible way to achieve FDI goals is to use bank of dynamic observers
@ The previously proposed observers are well adapted for that goal
@ When using this kind approach, the output estimation errors are used as residuals

v

Very small illustrative example n° 1
System represented by a TS model with one input u(t) and two outputs y;(t),i = 1,2 :

%(t) = gu;(x(r» (Aix(t) + Biu(t))
y(t) = Cx(t) + f(t) + w(t)

—2 1 1
Al = 1 -3 0

2 1 -8

1 0.5
Bi=| 05 |,B=|1 ,C:“ (1) H
0.5 0.25

f(t) is a sensor fault vector and w(t) a zero-mean noise vector.
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Fault detection and isolation

First step

Design of an observer on the basis of u(t) and the two noise-free outputs y;(t), i =
using the observer designed for attenuating the perturbation.

1,2
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Fault detection and isolation

First step

Design of an observer on the basis of u(t) and the two noise-free outputs y;(t),/ = 1,2
using the observer designed for attenuating the perturbation.

Remember that, in that case, we have :
e=> ui(%) ((Ai — LiC)e) + AAx + ABu
i=1
and it's useful to attenuate the effect of u(t) on the state estimation error e(t)

e(t
el

[[u(2)]l,
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Fault detection and isolation

First step

Design of an observer on the basis of u(t) and the two noise-free outputs y;(t),i = 1,2
using the observer designed for attenuating the perturbation.

Remember that, in that case, we have :
e=> ui(%) ((Ai — LiC)e) + AAx + ABu
i=1

and it's useful to attenuate the effect of u(t) on the state estimation error e(t)

e(t
el

l[u(®)ll,
The state estimation error converges and the gain of the transfer from u(t) to e(t) is
bounded by v = 0.0894

Since the input u(t) is bounded by 1, the state estimation error is bounded by
~ = 0.0894 that may be considered as acceptable when considering the magnitude of
the state.
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Fault detection and isolation

FIGURE: Input of the system (left) and state estimation errors (right)
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Fault detection and isolation

Second step — Bank of observers

u(t) > y1(t
> System

Observer 1

Observer 2

F1GURE: Generalized Observer Scheme (GOS) for sensor fault detection and isolation
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Fault detection and isolation

Using the same procedure, two observers have been designed on the basis of noisy and
faulty outputs.
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Fault detection and isolation

Second step

Using the same procedure, two observers have been designed on the basis of noisy and
faulty outputs.

The residual signals are defined as :
ri(t) = y;(t) — 95(t), Vije{1,2}

where i represents the observer number and j the output number.
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Fault detection and isolation

Second step

Using the same procedure, two observers have been designed on the basis of noisy and
faulty outputs.

The residual signals are defined as :

ri(t) = y;(t) — 95(t), Vije{1,2}
where i represents the observer number and j the output number.
The proposed scheme is such that :

@ ri1(t) is not sensitive to the fault £(t)

@ rp(t) is not sensitive to the fault f(t)
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Fault detection and isolation

Second step

Using the same procedure, two observers have been designed on the basis of noisy and
faulty outputs.

The residual signals are defined as :

ri(t) = y;(t) — 9i(t), Vi,j€{1,2}
where i represents the observer number and j the output number.
The proposed scheme is such that :

@ ri1(t) is not sensitive to the fault (t)

@ rp(t) is not sensitive to the fault f(t)

The measurements are corrupted by faults

1, 2<t<4 [ 1, 6<t<s8
) = { 0, elsewhere h(t) = { 0, elsewhere

Didier Maquin (CRAN) FDI of nonlinear systems using multiple models STA’2009, Hammamet, Tunisia



Fault detection and isolation

0 1 2 3 4 5 6 7 8 9 10
0.2 T T T T T T T T T
& o
-0.2 L L L L L L L L L
1 2 3 4 5 6 7 8 9 10

FIGURE: Residual signals

Maquin (CRAN) FDI of nonlinear systems using multiple models

'2009, Hammamet, Tunisia 55



Fault detection and isolation

Small illustrative example n° 2

System represented by a TS model with unknown input :

X(t) = z pi(x(8)) (Aix(t) + Biu(t) + Ed(t))
y(t) = Cx(t) + Gd(t)

Didier Maquin (CRAN) FDI of nonlinear systems using multiple models STA’2009, Hammamet, Tunisia 56 / 75



Fault detection and isolation

Small illustrative example n° 2

System represented by a TS model with unknown input :

X(t) = z pi(x(8)) (Aix(t) + Biu(t) + Ed(t))
y(t) = Cx(t) + Gd(t)

Didier Maquin (CRAN) FDI of nonlinear systems using multiple models STA’2009, Hammamet, Tunisia 56 / 75



Fault detection and isolation

Small illustrative example n° 2

System represented by a TS model with unknown input :

X(t) = z pi(x(8)) (Aix(t) + Biu(t) + Ed(t))
y(t) = Cx(t) + Gd(t)

-2 1 1 -3 2 =2 1 0.50
A= 1 -3 0|, A=| 5 -3 o|,B=|03]|,B=| 1 [,
2 1 -4 05 05 —4 05 0.25
0.50 1
C:“ 5 1],5: 1 |,B=] 05 ,G:[g'g]
0.25 1 ’

The considered unknown input is a piecewise constant function :

05, 45<t<11l
alld) = { 0, elsewhere
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Fault detection and isolation

Small illustrative example n° 2

System represented by a TS model with unknown input :

X(t) = z pi(x(8)) (Aix(t) + Biu(t) + Ed(t))
y(t) = Cx(t) + Gd(t)

-2 1 1 -3 2 =2 1 0.50
A= 1 -3 0|, A=| 5 -3 o|,B=|03]|,B=| 1 [,
2 1 -4 05 05 —4 05 0.25
0.50 1
C:“ 5 1],5: 1 |,B=] 05 ,G:[g'g]
0.25 1 ’

The considered unknown input is a piecewise constant function :

05, 45<t<11l
alld) = { 0, elsewhere

Implementation of a Pl observer
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Fault detection and isolation

050 - i

0.4r ! . 1

FIGURE: State estimation errors (up); Unknown input and its estimate (down)
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Outline of the talk

© Fault tolerant control
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Fault tolerant control

Reference
model

FI1GURE: FTC by model reference approach
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Fault tolerant control

Reference model

x(t) = gu,-(x<r>> (Ax(t) + Biu(?))
y(t) = z ui(x(1)) (Cix(£) + Diu(t))
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Fault tolerant control

x(t) = gumx(r)) (Aix(t) + Biu(t))
y(t) = z pi(x(£)) (Gx(t) + Dyu(t))

Actual (faulty) system

x¢(t) = éﬂi(xf(f)) (Aixe (t) + Bi(ur(t) + £(t)))

ye(t) = Z‘iui(Xf(f)) (Cixe(t) + Di(ur(t) + £(t)))
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Fault tolerant control

x(t) = z ui(x(£)) (Aix(t) + Biu(t))
y(t) = z pi(x(£)) (Gx(t) + Dyu(t))

4

{ x¢(t) = éﬂi(xf(t)) (Aixe (t) + Bi(ur(t) + £(t)))

ye(t) = ;ui(Xf(f)) (Cixe(t) + Di(ur(t) + £(t)))

V.

Control law

ur(t) = Zuf(Xf(t)) (=1 (1) + Kui(x(t) = xe(£)(1)) + u(t))
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V.

Control law
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Fault tolerant control

x(t) = z ui(x(£)) (Aix(t) + Biu(t))
y(t) = z pi(x(£)) (Gx(t) + Dyu(t))

4

{ x¢(t) = éﬂi(xf(t)) (Aixe (t) + Bi(ur(t) + £(t)))

ye(t) = ;ui(Xf(f)) (Cixe(t) + Di(ur(t) + £(t)))

V.

Control law

r

ur(8) = 30 (e (0) (=F(2) + Kuilx(t) = 2(£)(9)) + u(2))
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Fault tolerant control

Proportional integral observer

k() = 3 () (Ae(e) + Buu(e) + LF(E) + Huly(2) ~ 9())
A0 = X wl(o) (Haly(e) - 9(0)
3 (r(1)) (Ge(8) + Difur(1) + (1))

‘5)
—_~
~
N—
Il
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Fault tolerant control

5e() = 2 m(e(e)) (Ae(e) + Buu(e) + LiF(e) + Fhiy(2) — 5(2))
A0 = X wl(o) (Haly(e) - 9(0)
9i() = 2 w(e(1)) (GA(e) + Dilur() + (1))

v

Estimation errors

X(t) = Xf(t)
&(t) = | xr(t) — X¢(1)
f(t) — 1(¢)

&(e) =D D> mil%e())m(Oxr (1) Ag(2) + TA(t)

i=1 j=1
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Fault tolerant control

5e() = 2 m(e(e)) (Ae(e) + Buu(e) + LiF(e) + Fhiy(2) — 5(2))
A0 = X wl(o) (Haly(e) - 9(0)
9i() = 2 w(e(1)) (GA(e) + Dilur() + (1))

v

Estimation errors

X(t) = Xf(t)
&(t) = | xr(t) — X¢(1)
f(t) — 1(¢)

8(t) = 3007 wie ()i (£) Azé(2) + TA(Y)

i=1 j=1
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Fault tolerant control
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Fault tolerant control
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FIGURE: State estimation errors and tracking errors
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Fault tolerant control
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FIGURE: States of the reference model and system states with and without FTC
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Outline of the talk

@ Conclusion and prospects
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Conclusion and prospects

Conclusion

@ Contribution to state estimation, fault detection and isolation and fault tolerant
control of nonlinear systems
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Conclusion and prospects

Conclusion

@ Contribution to state estimation, fault detection and isolation and fault tolerant
control of nonlinear systems

@ Focus on TS models obtained by the nonlinear sector approach — unmeasurable
decision variables

@ Two different main approaches depending on the formulated hypotheses (Lipschitz
or Hoo) for designing observers have been proposed

o Original proposition related to the rewriting of the model using weighting functions
depending on estimated state variables

o Design of observers satisfying the requirements of FDI/FTC framework
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Conclusion and prospects

What | do not talk about

@ Upstream study for obtaining the “best” TS model using nonlinear sector approach
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Conclusion and prospects

What | do not talk about

@ Upstream study for obtaining the “best” TS model using nonlinear sector approach
@ Discrete-time TS models (some results can be easily transposed)

@ The nature of the Lyapunov function and the choice of more sophisticated
candidate functions (reduction of the conservatism of the proposed solutions)

@ The reduction of the number of LMI to solve

@ And so on ...
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Conclusion and prospects

Future works and ways of research

@ Application of that method on real systems (wastewater treatment plant, aircraft
and aerospace system - SIRASAS project, Robust and Innovative Strategies for
Space and Aeronautical Systems Autonomy)

9

Fondation de Recherche pour |'Aéronautique & |'Espace
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Conclusion and prospects

Future works and ways of research

@ Application of that method on real systems (wastewater treatment plant, aircraft
and aerospace system - SIRASAS project, Robust and Innovative Strategies for
Space and Aeronautical Systems Autonomy)

9

o Observability analysis of TS models

Fondation de Recherche pour |'Aéronautique & |'Espace

@ Reduction of the number of LMI (use of descriptor models)

@ Simultaneous estimation of the state and weighting function parameters

o Fault diagnosis in closed-loop systems
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