
PARAMETER UNCERTAINTIES

CHARACTERISATION FOR LINEAR MODELS.
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Abstract: Parameter estimation mainly consists in characterising a parameter set
consistent with measurements, the model and the equation error description. The
problem to be solved is that of finding the set of admissible parameter values
corresponding to an admissible error. The uncertainties must be treated by a
global analysis of the problem: both the equation error and the parameter set
are considered unknown. Then, a solution is given as a domain of time-variant
parameters and a bounded set of the error. This procedure consists in explaining
the measurements performed at all time by optimising a precision criterion based
on the polytope theory. Copyright c© 2006 IFAC.
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1. INTRODUCTION

1.1 Historical point of view

The parameter estimation using the set-membership
approach started in the eighties, where the strategy
initially consisted in circumscribing the domain de-
scribing model uncertainties by a simple form. This
approach was originally designed to deal with a model
linear in uncertain parameters and characterised by
a bounded error. The problem of parameter esti-
mation amounts to the determination of the set of
constant parameter values called the Feasible Param-
eter Set (F.P.S.). Each value of this set explains all
the available observations which are consistent with
the bounds of the error and the model structure.
For models linear in their parameters, the F.P.S. is
a convex polytope which can be approximated by
ellipsoids Fogel and Huang (1982), or orthotopes Mi-
lanese and Belforte (1982) containing it. The work in
Walter and Piet-Lahanier (1989) on the one hand, and
Mo and Norton (1990) on the other, used polytopic
domains. The main results are presented in the book

published by Milanese et al. (Milanese et al. (1996)).
For models nonlinear in their parameters, various
methods exist for determining an approximation of
the F.P.S., linear techniques have been extended to
the nonlinear case using multiple linearisation of the
model Belforte et al. (1990). In Reinelt et al. (2002)
a robust identification approach is proposed taking
into account unmodeled dynamics and noise affecting
data; as uncertainty is evaluated in terms of frequency
response, so that it can be handled by H∞ technics.
In ElGhaoui and Calafiore (2000), the authors explain
that the set of possible models is unfalsified by the
observed data if that data could actually have been
produced by one member of the model set. Results
have been obtained (Jaulin (1993)) in order to solve
the problem of nonlinear bounded-error estimation
using set inversion techniques and based on interval
analysis, there make it possible to characterise the
F.P.S. by enclosing it between internal and external
unions of boxes. The paper Jaulin (2001) deals with
a minimax parameter estimation of nonlinear para-
metric models from experimental data. For specific



model structures, it is possible to obtain sets of linear
inequalities describing a domain approximating the
F.P.S. Clement and Gentil (1988). Despite the resem-
blance, the problem considered in Ploix et al. (1999) is
noticeably different in the sense that uncertain param-
eters depend on time; more exactly, they are defined
by random variables with bounded realisations; more-
over, this paper only deals with MISO representation.
The proposed method is a no probability technique for
determining the inaccuracy with which each model
parameter is known. Only a class of structured and
models linear in uncertain parameters is considered.
The error is bounded while parameters fluctuate in-
side a time-invariant bounded domain represented by
a zonotope which explains the measurement.
Thus, the paper deals with parameters estimation in a
bounded-error context for models which are linear in
the parameters; parameters could vary with a limited
range and measurement errors are bounded but both
domains are not a priori known. The objective of this
method is to determine the characteristics of these
domains (centre, uncertainty range).

1.2 Model structure

In order to present the principle of the proposed
method, let us consider the following MISO model:

ym(k) = xT (k)θ(k) k = 1..N (1a)

y(k) = ym(k) + e(k) (1b)

where ym(k) is the model output, x(k) ∈ Rp is
the regressor vector at the instant k, y(k) is the
output measurement, whereas θ(k) ∈ Rp defines the
uncertain parameter vector. The error e(k) is assumed
to be bounded, the bounds being supposed invariant
along the time:

e(k) ∈ [−δ, δ] (2)

Thus, taking (2) into account, (1b) leads to:

y(k) − δ ≤ xT (k)θ(k) k = 1..N (3a)

xT (k)θ(k) ≤ y(k) + δ k = 1..N (3b)

Thus, at each instant k, the known measurement y(k)
belongs to an interval defined by (3) and the width
of this interval depends both on the bound δ and
the value set of θ(k). In the following, considering
the MIMO case, our objective is to search if there
exists, at each instant k, at least one value of (θ(k),
δ) satisfying constraints (3).

1.3 The parameters characterization problem

Let us now formulate the preceding remark for any
linear system with bounded time-varying parameters.

In this context, the method proposed by (Ploix et al.
(1999)) consists in finding a convex zonotope (its
mathematical description is explained thereafter) DN

centred on θc and defined by:

DN = {θ(k) ∈ Rp/θ(k) = θc + M(λ)ν(k)} (4)

M(0) = 0, ‖ ν(k) ‖∞≤ 1

such that it contains, at each instant k, at least a
value of the time-variant parameter vector θ(k) which
is fully compatible with the measurement y(k). The
matrix M(λ) characterises the shape of the domain
DN , λ being parameters for adjusting the dimension
of that domain. In this way, θ(k) fluctuates around its
central value θc inside DN for satisfying all constraints
(2), θc being considered as the nominal value of
the parameter θ(k). In order to increase the model
precision, DN must be the smaller domain centred on
θc with respect to the form imposed by (4).

The problem treated herein is the computation of the
central parameter value θc, the parameter uncertain-
ties and an appropriate characterisation of the error
domain for MIMO systems. Thus, the characterisa-
tion procedure consists in determining the bounds of
model uncertainties (λ, δ) and the center θc which
are totally compatible with the set of available mea-
surements.

The paper is organised as follows. In the next section,
the formalisation of the problem is detailed. In section
3, a precision criterion is defined in order to identify
the model having the minimum uncertainty. The
principle of parameter estimation while optimising the
given criterion is presented in section 4. In section 5,
an example illustrates the proposed method.

2. PROBLEM FORMULATION

We describe in subsections 2.1 and 2.2 the structure
of an uncertain system and the uncertainties. In sub-
section 2.3, we define a time-invarianty zonotope in
the parameter space such that, at each instant k, it
contains at least one value of the time-varying pa-
rameter θ(k) consistent with the observations. Then,
it is shown that the measurement equation maps the
zonotope Pθ in a new zonotope PY in the measure-
ment space. 1 .

2.1 Modelling of an uncertain system

In order to generalise the representation given by (1),
let us consider an uncertain model of a system with
several outputs, linear in parameters and observa-
tions, and represented by the following structure:

Y (k) = X(k)θ(k) + E(k) k = 1..N (5)

where Y (k) ∈ Rn, X(k) ∈ Rn.p are the known
variables at the time k and θ(k) ∈ Rp defines model
parameters. The bounded vector E(k) ∈ Rn defines
the error taking into account the uncertainties due
to the measuring process and to modelling errors
at the same time. This type of model includes the
particular case of MISO systems and that of MIMO
systems. In the MIMO case, according to the presence
of uncertain parameters in θ(k), the outputs Y (k) can
be coupled by some of the uncertain parameters ν(k)

1 The authors are very grateful to Hicham Janati Idrissi for

his help concerning simulation of some parts of the proposed

approach.



and that can lead to some difficulties in the estimation
problem.
Let us consider the variables, X(k) and Y (k) of which
the measurements are noted respectively X̃(k) and
Ỹ (k). The problem involved with parameter estima-
tion is to determine the parameter values consistent
with data

2.2 Description of the uncertainties

Uncertainties affecting a system are classified into two
categories. On the one hand, those acting directly
on the output are additive uncertainties E(k), and
on the other hand, the uncertainties describing the
parameter θ(k) occur in a multiplicative way.

Additive uncertainties are represented by the vector
E(k) ∈ Rn assumed to belong to the domain PE(δ):

PE(δ) = {Z(δ)u, ‖ u ‖∞≤ 1} (6)

with δ = (δ1 . . . δn)T , u = (u1 . . . un)T and Z(δ) ∈
Rn.n. When these uncertainties affect independently
each output, Z(δ) has the following structure:

Z(δ) = Diag(δ)

The vector δ defines the magnitude of additive uncer-
tainties which are considered centered and bounded.

Multiplicative uncertainties are represented by the
parameter vector θ(k) ∈ Rp which fluctuates in an
invariant domain denoted Pθ(λ, θc), defined by:

Pθ(λ, θc) = {θ(k) = θc + M(λ)ν(k), ‖ ν(k) ‖∞≤ 1}
(7)

These uncertainties are distributed on the various
components of the vector θ via a full row rank
matrix M(λ) ∈ Rp.q depending on the vector λ =
(λ1 . . . λq)

T . In the rest of the paper, the matrix M(λ)
is supposed having the following structure:

M(λ) = MDiag(λ) (8)

2.3 Principle of parameter estimation

The parameter estimation problem consists in finding
the values of the vectors θc, λ and δ which define
the parameters domain Pθ(λ, θc) (7) and the mea-
surement errors domain PE(δ) (6), so that the model
explains the available measurements in the most pre-
cise way:

Ỹ (k) ∈ PY (λ, δ, θc) k = 1..N (9)

with:

PY (λ, δ, θc) = {Y (k) ∈ /Y (k) = X̃(k)θc +

X̃(k)M(λ)ν(k) + Z(δ)u(k),

‖ u(k) ‖∞≤ 1, ‖ ν(k) ‖∞≤ 1} (10)

PY (λ, δ, θc) defines all possible values of the output
variables Y (k) consistent with variables X(k), the
model parameters θc and the model uncertainties

description given by the vectors λ and δ. Indeed,
considering (10), if Ỹ (k) ∈ PY (λ, δ, θc) then

∃w(k) ∈ Hq+n/Ỹ (k) = Ỹc(θc, k) + T (k, λ, δ)w(k)
(11)

T (k, λ, δ) = (X̃(k)M(λ) Z(δ))

Ỹc(θc, k) = X̃(k)θc w(k) =

(

ν(k)
u(k)

)

(12)

In this paper, the shape of the domain is partially
determined by the matrix M which structure is fixed
a priori; whatever the choice of this shape, all pa-
rameters parameters that are compatible with mea-
surements, error bounds and model structure will be
enclosed in the domain.
If we take λi = 0, the scalars δi can be chosen as large
as we want for a given value of θc, since that consists in
increasing the volume of the domain of uncertainties
occurring in the model, until being compatible with
all measurements.
If the measurements are not affected by errors, then
the model may be compatible with the measurements
by increasing the magnitude of λi.
In the other cases, it will be possible to define a
criterion representative of the precision, the latter
being related to the domain extent: indeed increasing
”arbitrarily” the values of λi and δi in order to ex-
plain measurements is not satisfactory. Therefore, it
is necessary to find a quantity which is sensitive to the
difference between real measurements and their esti-
mates. Ploix et al. (1999), defined a criterion based on
interval arithmetic (Moore (1979), Neumaier (1990))
for a model with only one output. An obvious and
intuitive choice that one can make, is to consider
the volume of the domain. It is easy to show that
its volume is proportional to the components of λ.
Then, the solution is the smallest λ which explains all
measurements.
The application of this procedure, when PY (λ, δ, θc)
has an complicated form, leads to some calculation
problems.One needs to find a criterion which is at
once representative of the model precision and which
does not lead to computation difficulties.

3. CHOICE OF THE CRITERION

The aim of this section is to define a criterion which
provides a solution (λs, δs, θc,s) in such a way that
the domain PY (λs, δs, θc,s), corresponding to the es-

timation of Y (k), contains all the measurements Ỹ (k)
while having a minimal size.

3.1 Definition of a vertex

Let us consider a bounded polytope ∆ ⊂ Rn defined
by r linear inequalities (r > n) which can be written
as: Ay ≤ b , ∀y ∈ ∆, with A ∈ Rr.n and b ∈ Rr. S is
a vertex of ∆ if the two following conditions hold:

AS − b contains at least n nul elements. (13a)

AS ≤ b. (13b)



Since the rows of A and the elements of b define all
the hyperplanes which constitute the faces of ∆ 2 ,
the first condition (13a) means that a vertex S is the
intersection of at least n hyperplanes limiting the hull
of ∆. Hence, there are n indexes ij, 1 ≤ i1 . . . in ≤ r

such that ΓS = t with Γ =





aT
i1

. . .

aT
in



, t = (bi1 . . . bin
)T ,

aj is the jth row of A and bj the jth element of b. The
second condition (13b) is that the vertex S belongs
to ∆: AΓ−1t ≤ b. If this does not hold, S is called a
pseudo-vertex.

3.2 Data zonotope characterisation

In the previous section, the definition of a polytope
has been recalled; this definition may be directly ap-
plied for representing either the parameter domain of
an uncertain system or the domain of the measure-
ments of the system. Then, the distances between the
centre of PY (λ, δ, θc) and its vertices can also describe
this shape. So, it is then possible to consider these
distances as a criterion of the model precision.

Principle for the polytope generation

The expression which generates the domain PY (λ, δ, θc),
parametrized by λ, δ and θc is given in (10) in which
the matrix T (k, λ, δ), defined in (12), has also the
form:

T (k, λ, δ) = (λ1t1(k)...λqtq(k) δ1e1...δnen) (14)

with ti(k) = X̃(k)mi, for i = 1..n, and In = (e1 . . . en)
being the identity matrix in Rn×n. For a such form
of the matrix T (k, λ, δ), it is possible to generate,
by combination, systematically all linear inequalities
describing PY (λ, δ, θc) as:

Ỹ (k) ∈ PY (λ, δ, θc) ⇔ R(k)Ỹ (k) ≤ d(k, λ, δ, θc)
(15)

with R(k) ∈ Rr×n (notice that r is the number of
inequalities defining the domain PY ). This is justified
by the fact that Ỹ (k) is linear in respect to w(k) which
is itself bounded; therefore Ỹ (k) is also bounded and
d(k, λ, δ, θc) is linear in λ, θc and δ. The determination
of d(k, λ, δ, θc) and R(k) is presented in the remainder
of this section.

Polytope generation

Now, we are interested in the computation of all
vertices of PY (λ, δ, θc); according to (15), these ver-
tices are defined by a set of inequalities R(k)Ỹ (k) ≤
d(k, λ, δ, θc). This procedure is performed by the fol-
lowing two steps. The first one concerns the con-
dition (13a) and consists in finding all matrices

Γi(k) =





aT
i1

(k)
..

aT
in

(k)



 (i = 1..nk, nk ≤ Cn
r , 1 ≤

ij ≤ r) containing n linearly independent rows of
R(k) and the corresponding vector γi(k, λ, δ, θc) =

2 if aT

i
is the ith row of A and bi the ith element of b, then the

ith face of ∆ is Fi = {y ∈ Rn/aT

i
y = bi and Ay ≤ b}.

(di1 (k, λ, δ, θc) . . . din
(k, λ, δ, θc))

T . Then we have to
determine the points Si(k) which are the intersections
of the n considered hyperplanes. This leads to the
expression of Si(k) :

Si(k) = Γ−1
i (k)γi(k, λ, δ, θc) (16)

The second step concerns condition (13b) and checks
whether the point Si(k) is a vertex or a pseudo-vertex
of PY (λ, δ, θc); this consists in testing whether Si(k)
belongs PY (λ, δ, θc). Using (15) and (16) :

Si(k) ∈ PY (λ, δ, θc) ⇔ (17)

R(k)Γ−1
i (k)γi(k, λ, δ, θc) ≤ d(k, λ, δ, θc)

Unfortunately, the last inequality cannot be easily
tested because it is parameterised by λ, δ and θc which
are unknown. Consequently, in the following, all the
points Si(k) checking only the first condition (13a)
are considered (thus without any distinction between
vertices and pseudo-vertices).

Vertices generation

The determination of each point Si(k) requires ini-
tially the knowledge of its associated matrix Γi(k) and
vector di(k, λ, δ, θc) which are based on the knowledge
of R(k) and d(k, λ, δ, θc) corresponding to the linear
inequalities describing PY (λ, δ, θc). Then, the problem
is to find R(k) and d(k, λ, δ, θc) such that:

Ỹ (k) ∈ PY (λ, δ, θc) ⇔ R(k)Ỹ (k) ≤ d(k, λ, δ, θc)

⇔ ∃w ∈ Hq+n/Ỹ (k) = Ỹc(θc, k) + T (k, λ, δ)w(k)(18)

Considering the relation (18), the idea is to analyse
the influence of the bounded variable w(k) on each
component of Ỹ (k).

In order to take into account these dependancies,
the method consists in considering (n − 1) elements
sj = {wj1(k) . . . wjn−1

(k)} of w(k) among (q +n) and
corresponding to independent columns of T (k), then
looking for a linear combination of the components
of Ỹ (Ỹi, i = 1 . . . n), noted Cj = gT

j Ỹ which is inde-
pendent of wj1(k) . . . wjn−1

(k). Then, gj is the vector
orthogonal to the (n−1) columns t̃j1(k) . . . t̃jn−1

of the

matrix T̃ (k) (t̃i is the ith column of T̃ (k)). Therefore,
Cj depends only on the (q + 1) components of w(k)
which do not belong to the set sj . As these compo-
nents vary in Hq+1, then it is possible to determine a
lower and an upper bounds of Cj as :

gT
j Ỹ (k) ≤ gT

j Ỹc(θc, k)+ | gT
j T̃ (k) | α (19a)

gT
j Ỹ (k) ≥ gT

j Ỹc(θc, k)− | gT
j T̃ (k) | α (19b)

By iterating this procedure for of all sets sj =
{wj1(k) . . . wjn−1

(k)} of bounded variables to elimi-

nate (j = 1..ny, ny = Cn−1
q+n ) and aggregating the

pairs of inequalities (19), one obtains:



















gT
1

...
gT

ny

−gT
1

...

−gT
ny

















(Ỹ (k) − Ỹc(θc, k)) ≤

























| gT
1 T̃ (k) |

...

| gT
ny

T̃ (k) |

| gT
1 T̃ (k) |

...

| gT
ny

T̃ (k) |

























α

(20)

Finally, the parallelotope PY (α, θc) is defined as:

Ỹ (k) ∈ PY (α, θc) ⇔ R(k)Ỹ (k) ≤ d(k, α, θc) (21)

R(k) = (g1 ... gny
− g1 ... − gny

)

d(k, α, θc) = R(k)Ỹc(θc, k)+ | R(k)T̃ (k) | α

where R(k) ∈ R2(ny+n).n and d(k, α, θ) ∈ R2(ny+n).

3.3 Precision criterion

The main result of section 3.2 provides the bounds
of a domain to which the measurements Ỹ (k) be-
long. This domain is characterized by several param-
eters, i.e. the center θc of the parameter domain,
the shape of the domain described by the λ param-
eter and the bound δ of the error. It is clear that
the ”best” parameter vector is that which can ex-
plain all the measurements with the smaller fluctu-
ations of its parameters, these fluctuations depend-
ing on λ and δ. For that purpose, we have to com-
pute the distances between the centre of PY (α, θc)
and its vertices. For that, the following consists
in finding all matrices Γi(k) = (aT

i1
(k) . . . aT

in
(k))T

(i = 1..nk, nk ≤ Cn
r ) containing n linearly inde-

pendent rows of R(k) and the corresponding vec-
tor di(k, α, θc) = (di1 (k, α, θc) . . . din

(k, α, θc))
T , and

then determine the points Si(k) such that:

Γi(k)(Si(k) − Ỹc(θc, k)) =| Γi(k)T̃ (k) | α

We have Si(k) = Ỹc(θc, k) + Γ−1
i (k) | Γi(k)T̃ (k) | α

and then, the distance between the point Si(k) and
the centre Ỹc(θc, k) of the parallelotope PY (α, θc) is:

δi(k) =‖ Si(k) − Ỹc(θc, k) ‖=
√

αT Qi(k)α

Qi(k) =| Γi(k)T̃ (k) |T Γ−T
i (k)Γ−1

i (k) | Γi(k)T̃ (k) |
(22)

The number of the points Si(k) being equal to nk, the
quadratic mean of δi(k) at a time k is:

δ(k) = αT

(

1

nk

nk
∑

i=1

Qi(k)

)

α. (23)

Then, taking into account (23) and all the available
data (k = 1..N), the final expression of the criterion
of precision may be written:

J(α) = αT

N
∑

k=1

(

1

nk

nk
∑

i=1

Qi(k)

)

α (24)

4. EXAMPLE

In order to illustrate this procedure, let us consider
a system linear in parameters and measurements,
described by the following model:

Y (k) = X(k)θ(k) (25)

with Y (k) ∈ R2, X(k) ∈ R2×2 and θ(k) ∈ R2. For
sake of simplicity, X(k), k = 1..500 are constant and
equal to :

X =

(

−1.5 0.5
−1.0 3.0

)

and only the values of Ỹ (k) change du to the measure-
ment noise. The domain described by the uncertain
parameters is generated by the following equation:

θ(k) = θc + M(λ)ν(k) (26)

θc =

(

5
5

)

M = 0.1

(

−3 1 −3
−2 5 1

)

λ =
(

1 1.25 2
)T

The measurement noise has been generated by using
an uniform pdf taking values between −1 and +1.
In this example, the centre θc of the parameter
domain and the matrix M are considered known and
only the size of uncertainties remains unknown in
order to observe the efficiency of the chosen criterion
for uncertainty characterization. The matrix T̃ (k) =
X̃(k)M is then constant (equal to T̃ ) and therefore
all the matrices Q(k) take the common value:

Q =
1

nk

nk
∑

i=1

(Γ−1
i | ΓiT̃ |)T (Γ−1

i | ΓiT̃ |) (27)

corresponding to the set of the points Si(k) at the
time k. For this particular example where θc is given
(β = α) and the measurement are noise free (α =
λ), the precision criterion only depends on the λ
parameter:

J(λ) =

N
∑

k=1

λT Qλ (28)

and the problem is thus reduced to the minimisation
of J(β) = βT Qβ. In this example the matrix Q has
the value:

Q =





640.2 32.4 1043
32.4 59.94 62.6
1043 62.6 1745.9



 (29)

and the corresponding constraints imposed by mea-
surements ANλ ≥ bN are such that:

AN =





1.48 1.02 0 1.15 .22
0.98 0.08 0.63 0 .54
3.12 1.64 0.42 1.91 0



 (30)

and bN =
(

8.9 4.10 2.67 4.80 1.79
)

.
The vector λopt which minimises J1(λ) = λT Qλ while
checking ANλ ≥ bN , is

λopt = (0.987 1.246 1.988)T

knowing that simulation was made by taking λ =
(1.00 1.25 2.00)T . When increasing the number of
measurements, a better estimation (in regard to
the true values) may be obtained. For, example
with N = 1000 observations, we get λopt =
(0.989 1.249 1.998)T . Figure 1 shows a projection on
the space (Y1, Y2) of all measurements (k = 1..N
) which belong to the considered field representing
different possible values that can take measurements.
The same data are presented on figure 1 on which
the identified domain has been drawn. On Figure 2,



the true and the identified data domains have been
displayed and can be compared. Figure 3 presents the
domain Pθ. At last, when identifying together λ and
θc, we obtain :

λopt = (0.966 1.152 1.943)T θc = 4.998 5.002

5. CONCLUSION

Parameter estimation of a MIMO model has been
studied. This is a well known problem, however when
the bounds of the equation error are not admissible,
i.e. for the given measurements and an equation-error
description, the existence of a solution (parameter set)
is not guaranteed if the parameters are supposed time
invariant. A method, consisting in explaining all the
measurements while optimising a criterion of preci-
sion is proposed in the most general case where the
parameters are time-varying without considering the
notion of parameter variation speed. Moreover, the
uncertainties characterisation of a MIMO model high-
lights dependencies between the outputs of the model,
these dependencies being created by the parameters
to be estimated. A technique taking into account
these dependencies, combined with the calculation
of a criterion of precision is proposed. It provides
an optimal solution (via the precision criterion) as a
parameter set, its central value and the bounds of the
equation error. Further, it would be also interesting
to use polytopes instead of parallelotopes in order to
improve parameter estimation procedure. The idea is
to find some linear inequalities defining the parameter
set as a polytope in which the time-varying parameter
vector varying in time, explain all measurements for
a given model structure.
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Fig. 1. Data and estimated domain
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