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Abstract - On-line optimisation provides a means for
maintaining a process around its optimum operating plant. An
important component of optimisation relies in data
reconciliation which is used for obtaining consistent data. On a
mathematical point of view, the formulation is generally based
on the assumption that the measurement errors have normally
pdf with zero mean. Unfortunately, in the presence of gross
errors, all of the adjustments are greatly affected by such biases
and would not be considered as reliable indicators of the state
of the process. This paper proposes a data reconciliation
strategy that deals with the presence of such gross errors.

1. Introduction
The problem of obtaining reliable estimates of the state of a
process is a fundamental objective, these estimates being used
to understand the process behaviour. For that purpose, a wide
variety of techniques has been developed to perform what is
currently known as data reconciliation. Unfortunately, the
measurement may be unknowingly corrupted by gross errors.
As a result, the data reconciliation procedure can give rise to
absurd results and the estimated variables are corrupted by this
bias. Several schemes have been suggested to cope with the
corruption of normal assumption of the errors [Narasimhan,
1989]. Methods to include bounds in process variables to im-
prove gross errors detection have been developed. One major
disadvantage of these methods is that they give rise to
situations that it may impossible to estimate all the variable
using only a subset of the remaining free gross errors
measurements.
There is also an important class of robust estimators whose
influence function are bounded and finit allowing to reject
outliers [Hampel, 1986]. Another approach is to take into ac-
count the non ideality of the measurement error distribution
using an objective function constructed on contaminated error
distribution.
In the following, we adopt and develop this idea for the data
reconciliation problem. Section 2 will be devoted to recall the
background of data reconciliation. In section 3, robust data
reconciliation is developped and will be illustrated through an
academic example in section 4.

2. Data reconciliation background
The classical general data reconciliation problem [Mah, 1976],
[Crowe, 1996], deals with a weighted least squares
minimisation of the measurement adjustments subject to the
model constraints. Indeed the model process equations are
taken as linear for sake of simplicity :

Ax A xm n n= ∈ℜ ∈ℜ0,  ,  . (1)
where x  is the state of the process. The measurement devices
give the information ˜ x ∈ℜn :

  ̃ x = x + ε,  p(ε) ≈ N (0,V) (2)

where ε ∈ℜn  a vector of random errors characterised by
varaince matrix V  and normal probability distribution (pd). In
the least square sense, the well-known solution of this problem
is ˆ x = (I − VAT (AVAT )−1 A)y . [Maquin, 1991]. In fact, the
method doesn't work in any situation, the main drawback being
the contamination of all estimated values by the outliers. For
that reason robust estimators could be preferred, robustness
being the ability to ignore the contribution of extreme data i.e.
such as gross errors.

3. Robust data validation
If the measurements contain random outliers, then a single pd
described as in (2) cannot account for the high variance of the
outliers. To overcome this problem let us assume that measure
noise is sampled from two pd, one having a small variance
representing regular noise and the other having a large variance
representing outliers. Thus, for each observation, we define:
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Minimising (3) in respect to x  gives :
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Thus system (4) is clearly non linear and we suggest the
following iterative scheme :
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4. Example and discussion
The method described in section 3 is applied to system (6).
Random errors were added to the 16 variables but the gross
errors were added only on some of them.



x1 − x2 + x4 = 0                  x2 − x3 − x11 = 0
x3 − x4 − x5 = 0                 x5 − x6 + x10 = 0
x6 − x7 − x8 = 0                 x7 − x9 − x10 = 0
x12 + x13 − x14 = 0             x14 − x15 − x16 = 0
x11 − x12 − x13 + x16 = 0

(6)

The performance results are given when three gross errors
(with a common magnitude of 8) affect the measurement 3, 7
and 16. Comparison of the proposed robust least square
algorithm (RLS) with the classical least squares (LS) algorithm
is now provided.

Var. true data meas.  RLS est. LS est.

1 115.00 114.50 114.26 114.91
2 132.00 129.80 130.55 132.05
3 106.40 114.53 105.26 108.28
4 17.00 17.04 16.28 17.14
5 89.40 88.37 88.97 91.14
6 109.60 110.90 110.05 111.86
7 61.00 69.72  61.74 63.56
8 48.60 48.58 48.30 48.29
9 40.80  40.93 40.66 42.85

10 20.20 20.23 21.08 20.72
11 25.60 25.55 25.29 23.77
12 33.10 33.34 33.54 36.97
13 5.10 5.07 5.27  5.15
14  38.20 39.03 38.82 42.13
15 25.60 25.56 25.29 23.77
16 12.60 20.61 13.53 18.36

Table 1. Measurements and reconciled data

0 5 10 15
0

5

10

0 5 10 15
0

5

10

Figure 1. Corrective terms for RLS and LS

In table 1, columns 4 and 5 show the estimations obtained with
RLS and LS ; analysing the estimation errors, for RLS
estimator clearly allows to suspect variables 3, 7 and 16 for
being contaminated by a gross error. Such conclusion is more
difficult to express with LS estimator. Figure 1 visualizes more
clearly the estimation errors both for LS and RLS (on each
graph, horizontral and vertical axis are scaled with the number
of the data and the magnitude of the absolute estimation error).
The proposed method has been extended to non linear system.
We relate only the bilinear case, in which the model is

described by : Ax = 0, A(x ⊗ y) = 0  with x n∈ℜ , y n∈ℜ ,
A ∈ℜm.n .     The criterion to be maximised is then defined by

Φ = p xi ˜ x i , θ( )
i=1

v
∏ p yi ˜ y i , θ( ) (7)

Numerical data are not given and only graphical results are
shown with figure 2 : the upper part is concerned with
estimation errors obtained with RLS while lower part is
devoted to LS. For that simulation the x  and y  data were
respectively corrupted with gross errors on component 3, 7, 16
on x  and 1, 9, 12 on y . Without ambiguity, all the gross errors
have been detected and isolated with RLS that is not the case
with LS.

0 5 10 15
0

2

4

6

8
RLS x

0 5 10 15
0

1

2
RLS y

0 5 10 15
0

2

4

6

8
LS x

0 5 10 15
0

1

2
LS y

Figure 2. Corrective terms for RLS and LS

5. Conclusion
To deal with the issues of gross errors influence on data
estimation, the paper has presented a robust approach. For that
purpose, we use a cost function which is less sensitive to the
outlying observations than that of least squares. As a
perspective of development of robust reconciliation strategies,
there is a need for taking account of model uncertainties and
optimise the balancing parameter µ .
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