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Abstract— In this paper, a decoupled multiple model approach ~ able to provide a good characterisation of the system in
is us_ed in order to cope with the state estimation of_uncertai the whole operating range. On the other hand, the observer
nonlinear systems. The proposed decoupled multiple model yegign problem for generic nonlinear models is delicate and

provides flexibility in the modelling stage because the dimesion far thi bl . ved i |
of the submodels can be different and this constitutes the nia SO '@l IS problem remains unsolved in a general way.

difference with respect to the classically used multiple mael Multiple model approach is an appropriate tool for mod-
scheme. The state estimation is performed using a Proportial  elling complex systems using a mathematical model which

Integral Observer (PIO) which is well known for its robustness  can be used for analysis, controller and observer desiga. Th
properties with respect to uncertainties and perturbatiors. The basis of the multiple model approach is the decomposition

Lyapunov second method is employed in order to provide . - -
sufficient existence conditions of the observer, in LMI terns, of the operating space of the system into a finite number

and to compute the optimal gains of the PIO. The effectivenas Of operating zonesHence, the dynamic behaviour of the
of the proposed methodology is illustrated by a simulation system inside each operating zone can be modelled using a
example. simple submodel for example a linear model. The relative
contribution of each submodel is quantified with the help of a
weighting functionFinally, the approximation of the system
In many real world engineering applications, the knowledggehaviour is performed by associating the submodels and
of the system state is often required not only for contraby taking into consideration their respective contribngio
purpose but also for monitoring and fault diagnosis. I'Note that a large class of nonlinear systems can accurately
practice however, the measurements of the system state ¢gaRNmodelled using multiple models.
be very difficult or even impossible, for example when an The choice of the structure used to associate the submodels
appropriate sensor is not available or economically viablgonstitutes a key point in the multiple modelling framework
Model-based state estimation is a largely adopted strategyeed, the submodels can be aggregated using various
used in order to cope with this important problem. Typicallystructures [4]. Classically, the association of submodtls
a state estimation is provided by means of an observer whosegrformed in the dynamic equation of the multiple model
inputs are the inputs and the outputs of the system and tQging a common state vector. This model, knowi alsagi-
outputs are the estimated states. Note that the structue ofSugeno multiple modehas been initially proposed, in a
observer is based on the mathematical model of the consigzzy modelling framework, by Takagi and Sugeno [5] and
ered system. Therefore, the accuracy of the state estimatip a multiple model modelling framework by Johansen and
depends on the accuracy of the used mathematical mog®jss [6]. This model has been largely considered for armlysi
and the quality of the employed measurements. However,mjodelling, control and state estimation of nonlinear syste
mathematical model is an abstract representation of tHe rggee among others [7]-[9] and references therein).
world and it only provides an approximation to dynamic |n this paper, an other possible way for building a multiple
behaviours of the actual system. Consequently, modellingodel is employed. The used model, knowndesoupled
errors between the system and its model are UnaVOidab‘ﬁu|tip|e model has been Suggested in [4] and results of the
Besides, the employed measurements are also affected d4sociation of submodels only in the output equation of the
external disturbances due to the interactions between th@iitiple model. Note also that this multiple model has been
system and its environment. successfully employed in modelling [10], [11], control [£2

Hence, many efforts have been made in the past twa4] and state estimation [15], [16] of nonlinear systems.
decades to improve robustness of the state estimation Phie main feature of the decoupled multiple model is that
linear systems affected by disturbances and parametric Wizbmodels of different dimensions (e.g. number of states)
certainties (e.g. in [1]-{3] norm-bounded uncertainties a can be used. This fact introduces some flexibility degrees in
considered). However, dynamic behaviour of most of reahe modelling stage in particular when the model is obtained
systems is nonlinear and consequently a linear model is n@éing a black box modelling strategy. Indeed, the dimerssion

. . . L _ of the submodels can be well adapted to each operating zone
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I. INTRODUCTION



The parameter uncertainties are assumed to be unknowith variable structure and/or variable complexity in each
time-varying and norm bounded. With respect to the classmperating zone. The model parameters can be obtained from
proportional observer, the P1O offers more additional degr a set of measured input and output data using appropriate
of freedom which can be used for improving its robustnedslack box identification tools proposed for instance in [10]
properties with respect to perturbations and imperfestion [11], [17].

the model (dgtail; are given in sgction Il). The PIO design rRemark 1:1t should be mentioned that the outpuykst)
problem consists in finding the gains of the observer suah thgs the submodels are intermediary modelling signals only
the state estimation error converges toward zero or at leagleqd in order to provide a representation of the real system
remains gIob_aIIy bounded for all admissiblg uncertaintie§enaviour. The submodel outpuggt) are internal signals
and perturbations. Furthermore, the PIO design based on theine multiple model. They are not physically available
multiple model representation does not seem to be reportggy consequently no measurement is possible. Hence, they
previously to the best authors’ knowledge. cannot be employed for driving an observer. Only the global

The outline of this paper is as follows. Discussion abo%utput y(t) of the multiple model can be used for this
decoupled multiple model is proposed in section Il. In gecti purpose.

lll, the PIO design problem is investigated and the gains
of the observer are obtained by LMI optimization. Finally,A. Model uncertainties

n _sectl_on IV, a simulation e>_<amp|e lllustrates the statge parametric uncertainties in the system are represented
estimation of a decoupled multiple model. by the following norm-bounded matrices:

II. ON THE DECOUPLED MULTIPLE MODEL A = (EQ)IMFON | (3)

REPRESENTATION

. _ _ _ AB = Wi(()HSHE , 4)
In this paper, an uncertain nonlinear system described by _
a decoupled multiple model is considered. The state spagéere Mi, Ni, Hi and E; are known constant matrices of

representation of this multiple model is given by: appropriate dimensions arfé(t) and S(t) are unknown,
) real and possibly time-varying matrices with Lebesgue-
%) = (A+DA)X(t)+ (Bi+ABi)u(t) + Diw(t) , (18) measurable elements satisfying:
no = QL'X‘(t) ’ (1b) FTOR{M) <1 and STOSE) <1 Wt . )
yit) = .Zl“i(f(t))yi () +Ww(t) , (16)  Note that the uncertainties of each submodel are taken into
=

consideration according to the validity degree of each sub-
wherex € R™ andy; € RP are respectively the state vectormodel via its associated weighting functipr(Z (t)). Indeed,
and the output of thé™ submodel;u € R™ is the input, the uncertainties of a submodel can be neglected when its
y € RP the output andv € R the perturbation. The matrices respective contribution is not taken into consideration fo
A e RWM B e RWM Dy e R, G € RP*M and  providing the overall multiple model output.
W € RP*" are known and appropriately dimensioned. The

parametric uncertainties in the system are represented I%tations:the following notations will be used all along this

matricesAA; andAB; .(.d etails are given in section 1I-A). aper.P > 0 (P < 0) denotes a positive (negative) definite
The complete partition of the operating space of the SySte&atrix P. XT denotes the transpose of mati | is the

is performed using a characteristic variable of the SYStem o ntity matrix of aporooriate dimension adihal A A,
calleddecision variabl€ () that is assumed to be known andstand'fsy for a blockl?(pjiagonal matrix with thegrialt’ri.ééso}r,w

real-time available (e.g. the inputs and/or exogenousassyn A -~ . o
Note that the contribution of the submodels are quantified b.t)be main diagonal. The;—norm of a S|gn%!, quantifying

the weighting functionsu (£ (t)) which are associated with 1ts energy is denoted and defined [bs(t)[|3 = g e (t)e(t)dt.
each operating zone. They satisfy the following convex sufRinally, we shall simply writew; (& (t)) = pi(t).
constraints:

I1l. ON THE PROPORTIONALINTEGRAL OBSERVER

L
Zlﬂi(f(t)) =1and 0<p(¢(t)) <1,vVi=1.L,vt. (2) The conventional Luenberger or proportional observer only
= uses a proportional correction injection term given by the
Thanks to the above properties, the contributions of séverautput estimation error. In the PIO an additional injection
submodels can be taken into account simultaneously atefmz(t), given by the integral of the output estimation error,
therefore the dynamic behaviour of the multiple model cais included in the dynamic equation of the observer. Thanks
be truly nonlinear instead of a piecewise linear behaviour.to this additional degree of freedom some robustness degree
Note that the contributions of the submodels are taken intf the state estimation with respect to the system uncertain
account via a weighted sum in the output equation of théées and perturbation are introduced [1], [18], [19]. Th©PI
multiple model. Consequently, dimensions of the submodelsas also been successfully employed in the synchronization
can be different and therefore this multiple model fornof a chaotic system by [20]. The extension of the PIO design,
is suitable for black box modelling of complex systemdased on dissipativity framework, to a particular nonlmea



system whose non linearity is assumed to satisfy a Sectog,(t) = [X(t)} ’ Aa(t) _ [NA 0} . Da= [D] ’

bounded constraint, has been recently proposed in [21]. 2(t) Ct) 0 w
In this section, sufficient conditions for ensuring conver- C;, = [| o}T7 C,= [o |]T )

gence and optimal disturbance attenuation of the estimatio

error are established in LMI terms [22] using the Lyapunov

method. Note that the classic observer design cannot Y&

employed directly in the multiple model framework because . L _

the interaction between submodels must be taken into con- Aa(t) = _Zﬂi OA -, (19)

sideration in the observer design procedure for ensuriag th =

observer stability for any blend between the submodels. where

Let us notice that, by using the convex properties of the
ghting functions, the matriR,(t) can be rewritten as:

Firstly new notation of the decoupled multiple model A= P O} (20)
needed to design a PIO is introduced. The suggested PIO G 0
is then presented and its design is proposed by introducify P10 structure
some’., performances. The state estimation of the decoupled multiple model (18) is
A. Augmented form of the decoupled multiple model achieved by using the following PIO:
Consider the following augmented state vector: >'A<a(t) = Aa(t)ﬁa(t) +Cll§u(t) +Kp(y(t) — (1))
L +Kj (z(t) — 2(t)) , (21a)
T | 3
X(t) = [x{ (1) X () X[ ()] €R" n= xn @ « T
= gty = CHICi%(t) , (21b)
) = Crfalt) (21c)

t
and the supplementary varialdg) = [y(&)d& needed for
0 which has a similar structure to the PIO used in [20]. Notice

Fat the use of the auxiliary integral sigr#) in the dynamic
equation is at the origin of the designation Proportional-
(A+DA)X(t) + (B4+AB)u(t)+Dw , (7a) Integral Observer. The matrlg introduces a freedom degree

the P1O design. Thus, the decoupled multiple model (1) m
be rewritten in the following compact form:

. ><.
A~
L d
N
I

7)) = EOxt) +Wwt) | (7b) in the observer design.
yit) = Cxt)+wWwt) , (7c) C. Design of the PIO
where . _ Consider the state estimation error defined by:
A = diag{Ai---A--A (8) o) — )%l 2
B = [BlT"'BiT"'BLT]T ’ 9) . - a = X Xa
5 — [DlT DT DLT]T 7 (10) and its dynamics by:
. ~ =T =T = A
C(t) = IJi(t)Ci ) (11) C Aé 5 — KpW 23
2 + CitBu(t) + (Ba— KeW)w(t) . (23)
G = [0 - G - 0 (12)  Finally, (7a) and (23) can be gathered as follows:
with the parametric uncertainties given by: E(t) = Agpgt)e(t) +dw(t) , (24)
L
BA = 3 WOMFOR (13) “Where ]
N e) = [elm) ¥@]" . (25)
~ ~ — T
AB = Zui HOHSOE , (14) wit) = [wh(t) u'@®] . (26)
i= ~ =T =T = .=
~ t) —KpC(t)C; —KIC, Ci1AA
Mi = [0 --MiT'--O}T ; (15) Aopst) = [ ®) P (()) ! ™2 A}FAA],(W)
N = [0--Ni---0] | (16) Ba—KeW CiAB
; - ® = A (28)
H = [0---HT---0] . a7) D B+AB
Finally, the equations (7) can be rewritten in the followingNotice that the proportional gaikp can be used to reduce
augmented form: the impact of the perturbation on the estimation eegt).
_ - W T L - On the other hand, the observer dynamics can be improved
Xa(t) = (Aa(t) +C1AAC) )xa(t) +Ca(B+AB)u(t) with the help of the integral gaif;. Note also that, from
+  Daw(t) , (18a) equation (24).(t) is stable if and only if the decoupled
_ &mT multiple model (7) with admissible uncertainti@#\ is sta-
t) = C()C ) +Ww(t 18b
v _p 1Xa(t) +Ww(t), (18b) tlle and the observer 1gain€p and K, are chosen so that
2t) = Caxalt) , (18¢)  A,(t) — KeC(t)T) — K/Cy is also stable. In the sequel, the

where two following assumptions will be considered:



Assumption 1.The decoupled multiple model (7) with N;=[01 -02 03] , N=[01 02] ,
admissible uncertaintieSA is stable. _ Hy=[03 -01 0.2]T . Hp=[-01 _0_2]T 7

Assumption 2:The input and the perturbation are bounded E— 02 E,— 03
energy signals, i.gju(t)||3 < « and|jw(t)]|3 < c. LT 2= e

' 2 2 w=[01 -01] Y =liur) -

The robust PIO design problem can thus be formulated as N . _ . .
finding the matrices<p and K; such that the influence of ~Here, the decision variablé(t) is the input signal
W(t) on the estimation errce,(t) is attenuated and the stateU(t) € [—1,1]. The weighting functions are obtained from
estimation error remains globally bounded for any blengormalised Gaussian functions:
b_etween Fhe submodels. To this end, t_he fpllommhg;ectl\_/e (&) /Z n;(& (31)
signal which only depends on the estimation ergft) is
introduced:

mEw) = exp(—(f(t)—ci) /o), (32)

vit) = [Y 0]g(t) , (29)
. . . . . with the standard deviatiom = 0.6 and the centres; = —0.3
whereY is a matrix of appropriate dimension chosen by th%ndcz = 0.3. The perturbatiom(t) is a normally distributed

gesflgnerllztlnsllg, tt?]e ?Xl?eCted perforfmances of the PIO ¢ “¥ndom signal with zero mean and standard deviation equal
e formulated by the followingt. performances: to one. The input, the weighting functions and the outputs

tI|m ex(t)=0 forw(t) =0,F(t)=0,S(t)=0, (30a) are shown in figure 1. The time-varying sign&st), S(t)
5 I _ B and the perturbatiow(t) are plotted in figure 2. Notice that
Iv)Z < v*[W(O)]2 for W(t) # 0 andv(0) =0 ,  (30b) for 0 <t < 120 no uncertainties in the multiple model are
wherey is the £, gain fromw(t) to v(t) to be minimized. considered.

Theorem 1:Consider the uncertain model (18) and as .
sumptions 1 and 2. There exists a PIO (21) ensuring tt
objectives (30) if there exists symmetric positive definite : ‘
matricesP; € R(MPx(MP) and P, € R™", matricesLp €

R(MP)¥P and L, € RMP*P and positive scalarg, 1} and
T, such that the following condition holds foe= 1...L

miny subject to

N+ +YTY 0 W 0 PCM PGCH
0 Ai PD P RM; PH; o 100 200 ] 300 400 500 600
(*) (x) =yl 0 0 0 time (s)
0 (x) O Q 0 0 <0, Fig. 1. Input, weighting functions and outputs
(%) (+* 0 0 -1l 0 .
(%) (x) O 0 0 -1 .
where _ ~ T T . ‘
N = PA—-LCC; —LIC, , o 100
Y = PDa—LpW , |
~ ~ © o~ ~ 0
A = PALATR+TNN | ) | 2 ‘
@ = -yl+ TiinT E 0.5 1?0 \ ‘ ‘ ‘
for a prescribed matri¥. The observer gains are given by o ‘ ‘ TR I
Kp = P 'Lp andK; = P, 1Ly; the £, gain fromwit) to v(t) o5 . . L Ll 1L 1
is given byy= /. ' time (s)
Proof: The proof is deferred to the appendix. [ Fig. 2. Fi(t), S(t) andw(t)
IV. A SIMULATION EXEMPLE A solution satisfying conditions of theorem 1 is obtained

Consider the decoupled multiple model wlth= 2 submod- using YALMIP interface and SEDUMI solver. The gains of
els with different dimensions{ = 3 andn, = 2), given by: the PIO are:

-01 -03 06 _03 —01 Ko_ [-313 121 —202 368 -090 Q50 049 T
AL = —8-2 —8;' 0(-)16 v Re=|04 _oo| - P=1020 086 100 -151 274 -008 108
' L N « _[016 -012 —041 031 -057 Q65 —0.04)"
Bi=[03 05 06] , Bo= [04 03" . '=1_013 012 041 -032 056 002 065
T
Di=[01 -01 01] , —01]" - _ .
v 04 03 05] =10 0.2 I the minimal attenuation level ig = 0.8654 andr] = 0.74,
{ 0'4} C= { p } 1} =1.37,12 = 7.67, 12 = 2.08.
' T In the simulation the initial conditions of the multiple
=[-01 02 -01] , =[-02 01] ) model arex(0) = [01-0101-0101] and the initial condi-



tions of the observer are equal to zero. Figures 3 and 4 dis- V. CONCLUSIONS

play the comparison between the states of the submodels gpdinhis paper a PIO design is presented for a class of
their estimates. Note that the interaction between subfeodgncertain nonlinear system which can be modelled with
is at the origin of some compensation phenomenons in thge help of a decoupled multiple model. This model is
state estimation. For example, if the output of submodel 1 igitable for modelling variable structure systems because
only taken into consideration (i.¢u(t) ~ 1) then naturally the dimension of the submodels can be different in each
a bad state estimation of the submodel 2 is provided byperating zone. Sufficient conditions, in LMI terms, for
the observer. However, the overall output estimation of th@nsuringHm performances of the estimation error are es-
multiple model is not truly affected by this bad estimationtap|ished using Lyapunov method. The effectiveness of the
Finally, a comparison between the outputs of the multiplgroposed approach is illustrated via a simulation example.
model and their estimates is shown in figure 5. Note that theyrther research, in a fault diagnosis perspective, wiltdoe
output estimation errors remain globally bounded despée t jnyestigate the sensitivity of the state estimation witspet
model uncertainties and perturbations appear in the modely perturbations, model uncertainties and faults in order t

establish the sensitivity of the fault symptoms of the gsyste

APPENDIX PROOF OF THE THEOREM

Lemma 1:For any constant real matrices§ andY with
appropriate dimensions, a matrix functidft) bounded-
norm, i.e.FT(t)F(t) <1, then the following property holds
for any positive matrixQ

XFOY +YTFT()XT <XQXT+YTQY .

Consider the following quadratic Lyapunov function:

-1 100 200 ; maeéo(s) 200 500 500 V(t) _ e-la- (t)Plea(t) + XT (t)PzX(t ) : (33)
Fig. 3. States of submodel 1 and its estimates whereP; = pil' >0eth, = pél' > 0. The objectives (30) are
guaranteed if there exists a Lyapunov function (33) such tha
[22]:
V(t) < —vT()v(t) + W' (HW(t) . (34)
= - = = . - 4 The time-derivative of (33) along the trajectories of (2d4)Yla

(7a) is given by:
vy = ot |0 O o e

(%) 0
. P = diag{P, Py} , (36)
T T Q) = [Te) wt)]" . (37)
time (s)
Fig. 4. States of submodel 2 and its estimates Now, by taking into consideration (35), the condition (34)
becomes:
T YTy 0
QT ) PAobs(t”Ao?s()t)P*[ o'9) P;I Q(t) <0, (38)
* _

I I
100 200 300

which is a quadratic form iQ(t). By using the definitions of
Aops and® given respectively by (27) and (28), the inequality
(38) is also guaranteed if:

F+rT+YTY RCAA W P,C,AB

°MTWJV\H\'W.WHWMMWrW»W\WWM«WMM’(WWW’UW\*‘W» “

100 200 300
1

0 (%) Xi+Xo PD P(B+AB)
<0, (39
o 00 200 300 200 500 600 (*) (*) B y2| 0 ( )
04 ! J J —Y, estimation error (*) (*) 0 - VZI
ow««wwwwwWWWWMW»WWW»W W m“xﬁuw«wwmW-WWW where ] o
) 00 200 tin?éo(s) 200 500 600 r = Pl(éa(t) - KPC(t)Cl - Kl CZ) ) (40)
. . . . . - Pj_(Da — KPW) 5 (41)
Fig. 5. Output, its estimates and the output estimationrerro ~  aT
X1 = PA+APRP (42)

Xo = PAA+AATR, | (43)



Notice that by using the definition d&q(t) andC(t) given
respectively by (19) and (11}, can be rewritten as :

L
_;Ni ori ,

P(A — KeCiTy —KITy) .

r (44)

N = (45)

At this point, by considering (44) and (43), the nominal and!]
the uncertain terms in (39) may be dissociated as follows: 3

Ni+ri+yly o v o
L N
0 X1 PRD PB T 3]
i(t +7+2" <0, (46
i;HI( ) (*) (*) _V2| 0 ( )
0 (*) 0 —y2| [4]
where 0 PCi0A 0 PT.0B [5]
{0 PAA 0 PAB
Z= 0 0 0 0 (47) [6]
0 0 0 0

Now, by introducing the definitions afA and AB given by 7]

(13) and (14) therz +Z" becomes:

L

uf:;m(t){ﬁﬁﬁﬁ}, (48) O
i=

where [0

—P161~|\7|i Plélh‘HNi 0]

5 PM; P>H;

% = | P R (49)
0 0 [11]

. _ [R@®) o]fo N 0 O

=10 s(t)} [o 0 0 EJ ®0) g

Notice that the dependence of the unknown functibifs)
and§(t) upon (48) can be removed, by using the lemma
with Q; = diag{t}, 75}, as follows:

sl

4
2+7" < _iui(t){% (8 0] R Z}Y.T} . (51)

Finally, using the definition (42) oX;, the inequality (46)
is guaranteed if for = 1...L the following inequality holds:

[15]

. . [16]
G+MT+YTY 0 W 0 PCM PCH
0 ANi BD PB PBM PoH;
(%) (x) =y’ 0 0 0
5 W0 g 0 o | <0 (32 p7
(%) (x) 0 0 -1l 0
(%) (x) 0 0 0 —T15l [18]
where o -
@ —VI+DEE . (54)

This condition follows from the use of (51) in (46), thel20]
use of the well known Schur complement and the convey;
sum properties ofui(t). Note that asymptotic convergence
towards zero of the estimation error, when no uncertainti;e[%sﬂ
and no perturbations affect the system, is guaranteed by the
negativity of the block(1,1) in (52).

Finally, let us notice that (52) is not a LMI iRy, Kp, K|
and y. However, it becomes a LMI by settinge = PiKp,
L = PiK; andy = y2. Now, standard convex optimization
algorithms can be used to find matricBs P, Lp and L,
minimisingy. This completes the proof of theorem 1.

REFERENCES

A. Weinmann, Uncertain Models and Robust Control Vienna:
Springer-Verlag, 1991.

L. Xie and C. Souza, “Robust H-infinity control for lineaystems
with norm-bounded time-varying uncertaintyEEE Transactions on
Automatic Contral vol. 37, pp. 1188-1191, 1992.

L. Xie, Y. Soh, and C. de Souza, “Robust Kalman filteringr fo
uncertain discrete-time systemdEEE Transactions on Automatic
Control, vol. 39, no. 6, pp. 1310-1314, 1994.

D. Filev, “Fuzzy modeling of complex systemdiiternational Journal
of Approximate Reasoningol. 5, no. 3, pp. 281-290, 1991.

M. Takagi and M. Sugeno, “Fuzzy identification of systearsd its
application to modelling and controlfEEE Transactions on Systems
Man and Cyberneticsvol. 15, no. 1, pp. 116-132, 1985.

T. Johansen and B. Foss, “Constructing NARMAX modelsngsi
ARMAX model,” International Journal Contrgl vol. 58, no. 5, pp.
1125-1153, 1993.

K. Tanaka, T. Ikeda, and H. Wang, “Robust stabilizatidraalass of
uncertain nonlinear systems via fuzzy control: quadratbibzability,
Hinf control theory, and Linear Matrix InequalitieslEEE Transac-
tions on Fuzzy sysemeol. 4, no. 1, pp. 1-13, 1996.

R. Murray-Smith and T. JohanseMultiple model approaches to mod-
elling and contro] R. Murray-Smith and T. Johansen, Eds. London:
Taylor & Francis, 1997.

W. Assawinchaichote, S. Kiong Nguang, and P. Shizzy control
and filter design for uncertain fuzzy systenBerlin: Springer-Verlag,
2006.

A. Venkat, P. Vijaysai, and R. Gudi, “Identification ofomplex
nonlinear processes based on fuzzy decomposition of theysttate
space,”Journal of Process Contrplol. 13, no. 6, pp. 473-488, 2003.
B. Vinsonneau, D. Goodall, and K. Burnham, “Extendedbgll total
least square approch to multiple-model identification,”1th IFAC
World CongressPrague, Czech Republic, 2005.

P. Gawthrop, “Continuous-time local state local modetworks,” in
IEEE Conference on Systems, Man & Cybernetiescouver, Canada,
1995, pp. 852-857.

E. P. Gatzke and F. J. Doyle lll, “Multiple model apprbaor CSTR
control,” in 14th IFAC World CongressBeijing, P. R. China, 1999,
pp. 343-348.

G. Gregorcic and G. Lightbody, “Control of highly noméar pro-
cesses using self-tuning control and multiple/local maggdroaches,”
in 2000 IEEE International Conference on Intelligent Engirieg
Systems, INES 200@ortoroz, Slovenie, 2000, pp. 167-171.

F. Uppal, R. Patton, and M. Witczak, “A hybrid neuro-fyzand de-
coupling approach applied to the DAMADICS benchmark prohle
in Symposium on Fault Detection, Supervision and Safety fdmiieal
Processes, SAFEPROCESS'#%ashington, DC. USA, 2003.

R. Orjuela, B. Marx, J. Ragot, and D. Maquin, “State restiion for
nonlinear systems using a decoupled multiple modekgrnational
Journal of Modelling Identification and Control (to be pudied)
vol. 3, no. 5, 2008.

R. Orjuela, D. Maquin, and J. Ragot, “Nonlinear systelantification
using uncoupled state multiple-model approach,” Workshop on
Advanced Control and Diagnosis, ACD’2Q08ancy, France, 2006.
S. Beale and B. Shafai, “Robust control system desigth \&i pro-
portional integral observerfhternational Journal of Contrglvol. 50,
no. 1, pp. 97-111, 1989.

S. Linder and B. Shafai, “Rejecting disturbances toifilexstructures
using PI Kalman filters,” inConference on Control Application
Hartford, CT, USA, 1997.

C. Hua and X. Guan, “Synchronization of chaotic systdrased on
PI observer designPhysics Letters Avol. 334, pp. 382-389, 2005.
J. Jung, K. Huh, and T. Shim, “Dissipative Proporticivgkgral
Observer for a clas of uncertain nonlinear systems,’Aimerican
Control ConferenceNew York City, USA, 2007.

S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnamear Matrix
Inequalities in System and Control Theprser. SIAM studies in
applied mathematics. Philadelphia, P.A.: SIAM, 1994.



