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Abstract: The state estimation of nonlinear systems with delayed measurements is
investigated in this paper. The proposed approach is based on the representation
of the nonlinear system by a decoupled multiple model that, to our knowledge,
has not been investigated extensively. This multiple model approach offers an
interesting alternative to the classically used multiple model known as Takagi-
Sugeno multiple model. Indeed, in contrast to this last, the decoupled multiple
model makes it possible to introduce a state vector with a different dimension for
each submodel. Sufficient conditions for ensuring the exponential convergence of
the estimation error are provided in terms of LMIs.
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1. INTRODUCTION

Strongly nonlinear systems subject to delayed
measurements are frequently encountered in prac-
tical engineering problems. Indeed, any measure-
ment system has intrinsically a time-delay more
or less negligible, for example due to data trans-
mission time between the sensors of the system
and the monitoring room.

The time-delay is not often taken into account
in the modelling stage of the system in order to
provide a less complex model useful for designing
a control law or setting up a diagnosis strategy.
However, it is well known that the influence of
the time-delay can be at the origin of serious
consequences (ignored data, oscillations, destabi-
lization of the closed-loop, etc.) for the safety of
the operator and/or to keep the system in good

working order (see for example (Richard, 2003)
and the references therein for an overview of de-
layed systems).

The state estimation of the system, using an
observer, may be a way to partly avoid these kinds
of problems. The state estimation problem for
linear systems, with delay in the input, the output
and/or the state has been widely investigated in
the last few years (see for instance (Yang and Saif,
1998; Sename, 2001; Fridman et al., 2003) and
their references). The resulting observer can be
used in an observer-based controller perspective
in order to ensure the stability of the feedback
control law. In other respects, Germani et al.
(2002) and Kazantzis and Wright (2005) propose
a similar solution to the state estimation of a
class of nonlinear systems. The two solutions are
conceptually similar, the basic idea being the



building of a chain observer that allows the state
estimation at a given fraction of the output delay.

In this paper, nonlinear system modelling is per-
formed with the help of the multiple model
approach which is closely related to operat-
ing regime-based modelling framework (Murray-
Smith and Johansen, 1997). Indeed, multiple
models are a powerful tool for modelling a large
class of nonlinear systems. The basis of the multi-
ple model approach is the decomposition of the
operating space of the nonlinear system into a
number L of operating zones, each of them be-
ing characterised by a submodel. According to
the zone where the nonlinear system evolves, the
output of each submodel is more or less requested
in order to approximate the whole behaviour of
the nonlinear system. The contribution of each
submodel is defined by a weighting function.

It is important to notice that a large class of
complex systems can be approximated by a mul-
tiple model, with a wished accuracy, by increasing
the number of submodels and by a parametric
optimisation of the weighting functions. Further-
more, if the submodels take a linear form and
for particular weighting functions, most of the
analysis tools available for linear systems can be
partially extended to the analysis of nonlinear
systems represented by a multiple model.

Filev (1991) provides, in a fuzzy modelling frame-
work (directly related to multiple model frame-
work), two possible structures in order to take into
account the contribution of each submodel. In the
first structure, the submodels are decoupled and
their state vector are different (decoupled multiple
model); in the second one, the submodels share
the same state vector (Takagi-Sugeno multiple
model).

The Takagi-Sugeno model has been successfully
used for modelling the dynamic behaviour of de-
layed nonlinear systems. Cao and Frank (2001)
present the conception of a stabilization law using
an observer by taking into account multiple known
time-delays in the state and the output. Chen et
al. (2004) establish sufficient conditions for en-
suring the stability of a multiple model that rep-
resents a nonlinear interconnected system (large-
scale system) subject to time-delay in the state.
Jiang et al. (2005) propose an observer-based feed-
back controller with adaptation to delay, hence
the exact knowledge of time-delay is unnecessary.
The time-delay considered is constant but is not
known exactly. In this approach, both estimation
of the time-delay and the state are achieved in the
same time.

By comparison with the Takagi-Sugeno multiple
model, the decoupled multiple model has been
less investigated. However, a few works in the

control domain (Gawthrop, 1995; Gregorcic and
Lightbody, 2000) and in modelling (Venkat et
al., 2003; Orjuela et al., 2006) of nonlinear systems
have made a successful implementation of this
structure and shown its relevance.

In this communication, a new method for design-
ing an observer for a nonlinear system (modelled
by a decoupled multiple model) subject to vari-
able time-delay measurements is proposed. The
outline of this paper is as follows. The two clas-
sic structures of a multiple model are shown in
section 2. The problem formulation is presented
in section 3. In section 4, the stability of the
decoupled multiple model is investigated on one
hand, and sufficient conditions (in LMIs terms) in
order to ensure the exponential convergence of the
estimation error are established on the other hand.
In section 5, an academic example illustrates the
state estimation of a decoupled multiple model.

2. MULTIPLE MODEL STRUCTURES

The interconnection of the submodels can be
performed with various structures in order to
generate the global output of the multiple model.
Two essential structures of multiple models can
be distinguished whether the same state vector
appears in all submodels or not.

Concerning the identification step, there exists
different techniques (linearisation, parametric op-
timisation) for the parameter estimation of the
submodels for a particular multiple model struc-
ture. See (Murray-Smith and Johansen, 1997;
Babuska, 1998; Gasso et al., 2001; Venkat et
al., 2003; Orjuela et al., 2006) and the references
therein for further information about these tech-
niques.

2.1 Takagi-Sugeno multiple model

Takagi-Sugeno multiple model structure is con-
ventionally employed in multiple model analysis
and synthesis. This multiple model has the fol-
lowing structure:

ẋ(t) = {

L
∑

i=1

µi(ξ(t))Ai}x(t) + {

L
∑

i=1

µi(ξ(t))Bi}u(t),

y(t) = {
L

∑

i=1

µi(ξ(t))Ci}x(t), (1)

where x ∈ R
n is the state vector, u ∈ R

m the input
vector, y ∈ R

p the output vector and Ai ∈ R
n×n,

Bi ∈ R
n×m and Ci ∈ R

p×n are known constant
matrices.

Moreover, the µi(ξ(t)) are the weighting functions
that ensure the transition between the contribu-
tion of each submodel. They have the following
properties :



L
∑

i=1

µi(ξ(t)) = 1, ∀t (2a)

0 ≤ µi(ξ(t)) ≤ 1 ∀i = 1...L, ∀t (2b)

where ξ(t) is the decision variable that depends
on known quantities such the input or the output
of the system.

It should be noted that the Takagi-Sugeno multi-
ple model is similar to a system whose parameters
vary with time. Indeed, from equation (1), one
can see that the contribution of each submodel is
taken into account through a blend between the
parameters of the submodels.

2.2 Decoupled multiple model

Filev (1991) proposes another multiple model
structure based on a parallel interconnection of
the submodels. Here, this structure is slightly
modified using a state representation as follows:

ẋi(t) = Aixi(t) + Biu(t),

yi(t) = Cixi(t) (3)

y(t) =
L

∑

i=1

µi(ξ(t))yi(t),

where xi ∈ R
ni and yi ∈ R

p are respectively
the state vector and the output vector for the ith

submodel and where Ai ∈ R
ni×ni , Bi ∈ R

ni×m

and Ci ∈ R
p×ni are the constant matrices.

In this multiple model structure the contribu-
tion of each submodel is taken into account by
a blend between the outputs of the submodels
via a weighted sum. It is obvious that the prin-
cipal interest of this structure is the decoupling
between the submodels. Indeed, in contrast to the
Takagi-Sugeno multiple model, in the decoupled
multiple model the dimension of the state vector
xi of each submodel can be different (of course the
dimension of the input and output vectors for all
the submodels must be identical). Therefore, this
structure is well adapted for modelling strongly
nonlinear systems whose structure varies with the
operating regime, for example when the complex-
ity of the dynamic behaviour is not uniform in the
operating range.

Notation: The following notations will be used
throughout the paper: P > 0 (P < 0) denotes
a positive (negative) definite matrix; PT is the
transpose of the matrix P . I is the identity matrix
of appropriated dimension. We shall simply write
µi(ξ(t)) = µi(t) and x(t − τ(t)) = x(∇) where
τ(t) > 0 is a variable time-delay.

3. PROBLEM FORMULATION

The aim of this paper is to tackle the state esti-
mation of a nonlinear system subject to delayed

measurements. The nonlinear system is modelled
by the following decoupled multiple model:

ẋi(t) = Aixi(t) + Biu(t),

yi(t) = Cixi(t) (4)

y(t) =

L
∑

i=1

µi(ξ(t − τ(t)))yi(t − τ(t)).

The variable time-delay τ(t) is assumed perfectly
known and satisfies the following conditions:

{

0 ≤ τ(t) ≤ τ
τ̇(t) ≤ γ < 1.

(5)

The state estimation of the multiple model (4) is
achieved with the help of a proportional observer
given by:

˙̂xi(t) = Aix̂i(t) + Biu(t) + Ki(y(t) − ŷ(t)),

ŷi(t) = Cix̂i(t) (6)

ŷ(t) =
L

∑

i=1

µi(ξ(t − τ(t)))ŷi(t − τ(t)),

where Ki ∈ R
ni×p are the unknown gains associ-

ated to each submodel.

Here, the design of the observer consists in deter-
mining the matrices Ki such that the estimation
error given by:

ei(t) = xi(t) − x̂i(t), i = 1...L (7)

converges to zero in a finite time (exponential
convergence). It is important to remark that the
observer only uses the measurable signals i.e. the
input and output of the system (the outputs of
the submodels are not available). Hence, it is
necessary to take into account the blend between
the outputs of the submodels in order to ensure
the convergence of the estimation error for an
arbitrary blend between the submodels.

4. MAIN RESULTS

4.1 Stability of the decoupled multiple model

The use of an augmented state vector allows to
rewrite the multiple model (4) in the following
compact form:

ẋ(t) = Ãx(t) + B̃u(t),

y(t) = C̃(∇)x(∇), (8)

where



Ã =

















A1 0 0 0 0

0
. . . 0 0 0

0 0 Ai 0 0

0 0 0
. . . 0

0 0 0 0 AL
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,

C̃(∇) =
[

µ1(∇)C1 · · ·µi(∇)Ci · · ·µL(∇)CL

]

and

x(t) =
[

x1(t) · · ·xi(t) · · ·xL(t)
]T

∈ R
n, n =

L
∑

i=1

ni.

The stability of a decoupled multiple model can be
easily established by analysing the eigenvalues of
the matrix Ã. Indeed, notice that the matrix Ã is
a block diagonal matrix. Therefore, all eigenvalues
of this matrix are in the left-half complex plane
if and only if all eigenvalues of every matrices Ai

are in the left-half complex plane.

To sum up, a decoupled multiple model is stable
if and only if all submodels are stable, in contrast
to the Takagi-Sugeno multiple model where the
stability depends not only on the stability of the
submodels but also on the weighting function val-
ues. In the sequel, the multiple model is assumed
to be stable.

4.2 Estimation error convergence

The aim of this section is to investigate the
state estimation of a decoupled multiple model
in presence of delayed measurements. Here, the
second Lyapunov method is employed in order to
provide delay-independent sufficient conditions, in
LMIs terms (Boyd et al., 1994), for ensuring the
estimation error convergence.

In the following, we will investigate the expo-
nential convergence of the estimation error. In-
deed, the exponential convergence is a strong form
of convergence that guarantees dynamic perfor-
mances of the estimation error, in particular a
convergence velocity via a decay rate.

Theorem 1. Consider the decoupled multiple mo-
del (4), the observer (6) and the variable time-
delay (5). The exponential convergence of the
estimation error is guaranteed if there exists two
symmetric, positive definite matrices P and Q, a
matrix G and a positive scalar α such that:

[

(Ã+αI)T P+P (Ã+αI)+Q −GC̃i

−(GC̃i)
T

−(1−γ)e−2ατ Q

]

< 0,

for i = 1...L where C̃i = [ 0 ··· Ci ··· 0 ].
The scalar α is called the decay rate and the
observer gain is deduced from K̃ = P−1G.

Proof : The observer represented by equation (6)
can be rewritten, in a compact form, using the
block matrices (8):

˙̂x(t) = Ãx̂(t) + B̃u(t) + K̃(y(t) − ŷ(t)), (9)

ŷ(t) = C̃(∇)x̂(∇),

where

K̃ =
[

K1 · · ·Ki · · ·KL

]T
,∈ R

n. (10)

The dynamics of the estimation error is given by:

ė(t) = Ãe(t) − K̃C̃(∇)e(∇). (11)

The exponential convergence is investigated via
a Lyapunov-Krasovskii functional proposed by
Mondié and Kharitonov (2005):

V (t) = eT (t)Pe(t) (12)

+

0
∫

−τ(t)

eT (t + θ)e2αθQe(t + θ)dθ,

where P and Q are symmetric, positive definite
matrices. Let us notice that the exponential con-
vergence is ensured if the two following conditions
are guaranteed:

(1) V (t) > 0,
(2) V̇ (t) + 2αV (t) < 0.

The derivative of the functional (12) with respect
to time yields:

V̇ (t) = ėT (t)Pe(t) + eT (t)P ė(t) + eT (t)Qe(t)

− (1 − τ̇(t))e−2ατ(t)eT (∇)Qe(∇) (13)

− 2α

0
∫

−τ(t)

eT (t + θ)e2αθQe(t + θ)dθ,

that can be upper bounded using the time-delay
conditions (5):

V̇ (t)≤ ėT (t)Pe(t) + eT (t)P ė(t) (14)

+ eT (t)Qe(t) − (1 − γ)e−2ατeT (∇)Qe(∇)

− 2α

0
∫

−τ(t)

eT (t + θ)e2αθQe(t + θ)dθ,

that becomes by considering (11):

V̇ (t) =
[

e(t)
e(∇)

]T [

ÃT P+PÃ+Q −PK̃C̃(∇)

−(K̃C̃(∇))T P −(1−γ)e−2ατ Q

] [

e(t)
e(∇)

]

−2α

0
∫

−τ(t)

eT (t + θ)e2αθQe(t + θ)dθ. (15)

Moreover, notice that the functional (12) can be
rewritten as follows:



V (t) =

[

e(t)
e(∇)

]T [

P 0
0 0

] [

e(t)
e(∇)

]

(16)

+

0
∫

−τ(t)

eT (t + θ)e−2αθQe(t + θ)dθ,

hence the expression V̇ + 2αV yields:

V̇ + 2αV ≤

[

e(t)
e(∇)

]T
{[

ÃT P+PÃ+Q −PK̃C̃(∇)

−(K̃C̃(∇))T P −(1−γ)e−2ατ Q

]

+ 2α

[

P 0
0 0

]} [

e(t)
e(∇)

]

. (17)

The right hand of the above inequality is a
quadratic form in [ e(t) e(∇) ]

T
. The negativity of

V̇ (t) + 2αV is therefore guaranteed if and only if:

[

(Ã+αI)T P+P (Ã+αI)+Q −PK̃C̃(∇)

−(K̃C̃(∇))T P −(1−γ)e−2ατ Q

]

< 0. (18)

Moreover, it is important to notice that the matrix
C̃(∇) can be rewritten as follows:

C̃(∇) =
L

∑

i=1

µi(∇)C̃i, (19)

where the constant, block matrix C̃i takes the
following form:

C̃i =
[

0(p×n1) · · · Ci · · · 0(p×nL)

]

. (20)

By considering (19) and taking into account the
property (2a) of the weighting functions, the ma-
trix inequality (18) may be rewritten as:

L
∑

i=1

µi(∇)
[

(Ã+αI)T P+P (Ã+αI)+Q −PK̃C̃i

−(K̃C̃i)
T P −(1−γ)e−2ατ Q

]

< 0.

According to property (2b), the above matrix
inequality is also satisfied if:

[

(Ã+αI)T P+P (Ã+αI)+Q −PK̃C̃i

−(K̃C̃i)
T P −(1−γ)e−2ατ Q

]

< 0 , (21)

for i = 1..L, that is a sufficient condition for ensur-
ing the exponential convergence of the estimation
error. Notice that these matrix inequalities are
nonlinear (bilinear) in K̃ and P . Therefore, it is
not possible to solve them directly using classi-
cal LMI tools. However, the change of variables
G = PK̃ allows the linearisation of the matrix
inequalities (21) as follows:

[

(Ã+αI)T P+P (Ã+αI)+Q −GC̃i

−(GC̃i)
T

−(1−γ)e−2ατ Q

]

< 0, (22)

for i = 1...L, that is a LMI in P , G and Q. Hence,
the proof of Theorem 1 is completed. 2

5. SIMULATION EXAMPLE

Let us consider the state estimation of a decoupled
multiple model with L = 2 submodels. The
parameters of the submodels are:

A1 =





−2 0.5 0.6
−0.3 −0.9 0
−1.3 0.6 −0.8



 , A2 =

[

−0.2 −0.6
0.3 −1

]

,

B1 =
[

1 0.2 0.5
]T

, B2 =
[

−0.5 0.8
]T

,

C1 =
[

1 0.8 0.5
]

, C2 =
[

0.7 0.3
]

.

Here, the decision variable ξ(t) is the input signal
u(t) ∈ [0, 1]. The weighting functions are obtained
from normalised Gaussian functions:

µi(ξ(t)) = ωi(ξ(t))/
L

∑

j=1

ωj(ξ(t)), (23)

ωi(ξ(t)) = exp
(

−(ξ(t) − ci)
2
/σ2

)

, (24)

with the standard deviation σ = 0.4 and the
centres c1 = 0.3 and c2 = 0.7. The eigenvalues
of the matrix Ã lie in the open left-half plane:

λ =
[

−1.33 ± 0.71i, −1.03, −0.6 ± 0.14i
]

,

therefore the multiple model is stable.

The time-delay that appears in the output of the
systems has the form: τ(t) = 0.5 + 0.45 sin(0.5t).
The upper bound of its derivative is given by:
γ = 0.225.

A solution that satisfied the Theorem 1, is given
by:

P =













1.396 −1.598 −0.548 −0.139 −1.302
−1.598 8.306 3.216 −0.014 −0.472
−0.548 3.216 1.591 0.066 0.517
−0.139 −0.014 0.066 5.051 −1.317
−1.302 −0.472 0.517 −1.317 9.350













,

Q =













1.907 2.193 1.207 0.102 −1.278
2.193 4.327 2.158 0.340 −3.186
1.207 2.158 1.118 0.168 −1.476
0.102 0.340 0.168 0.718 −0.137
−1.278 −3.186 −1.476 −0.137 3.312













,

K̃ =
[

0.9330 0.9017 −1.5429 0.1059 0.1568
]T

,

with a decay rate α = 0.2.

In the simulation an uniformly distributed ran-
dom signal, generated by Simulink, is added to the
output. The obtained estimation error is plotted
in figure 1 (top and center), the measured and
the estimated output is shown at the bottom of
figure 1. The error around the origin time is due
to the differences between initial conditions of the
multiple model and the observer. The suggested
observer provides a good state estimation under
measurement noise.
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Fig. 1. Estimation error (top and center), mesured
and estimated output (bottom)

6. CONCLUSION

The state estimation of a nonlinear system in
presence of delayed measurements has been inves-
tigated in this communication. The state observer
is built by modelling the nonlinear system by a
decoupled multiple model. In contrast to the well
known Takagi-Sugeno observer, in the proposed
observer each submodel has its own state vector
that can have a different dimension. The exponen-
tial convergence of the estimation error is ensured
if a set of delay-independent sufficient conditions
are satisfied. Encouraging results are illustrated
through a simulation example.

In a future work, the proposed approach will be
extended in order to take into account a para-
metric uncertain multiple model. An interesting
prospect can be to consider in particular an un-
certain time-delay i.e. the exact value of the time-
delay in the observer is not precisely known.
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