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Abstract: Multiple-model approach is an interesting alternative and a powerful tool
for modelling complex processes. This paper deals with the off-line identification of
non-linear systems employing the multiple-model approach. We use an uncoupled
state multiple-model in opposition to the classically used coupled state multiple-
model (Takagi-Sugeno). The use of this new mutiple-model structure reveals
a new undesirable phenomenon, called unhooking, that deteriorates the quality
of the obtained approximation. An original solution is proposed to avoid this
phenomenon.
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1. INTRODUCTION

Non-linear models are widely used in engineer-
ing science applications to describe the dynamic
behaviour of real-world processes. Due to their
mathematical complexity, they are not easily ex-
ploitable for designing a control law or setting
up a diagnosis strategy, even if they give a good
description of the considered process.

Assuming that the modelled process evolves
around an operating point, a linearisation stage
of the non-linear model is then possible and leads
to the reduction of the mathematical complexity
of the model. Hence, analysis tools available for
linear systems can be used. However, in practice,
the linearity assumption is not always respected
and consequently the linearised model does not
represent the whole behaviour of the process.

Moreover, it will be more interesting in practice
to have a model that gives a good global charac-
terisation of the dynamic behaviour of the process
and that is easily usable by engineers for example
with techniques for linear systems.

To fulfil these expectations, new modelling tech-
niques have been developped, among them multiple-
model approach. We propose in this paper an
off-line identification procedure of non-linear sys-
tems using an uncoupled state multiple-model ap-
proach.

The outline of this paper is as follows. Two
multiple-model structures using coupled and un-
coupled states are discussed in section 2. Section 3
presents the parametric estimation procedure for
uncoupled state multiple-model. The limits and
problems encountered in the application of this
procedure are illustrated through an academic ex-
ample in section 4. A modification of the multiple-
model structure is then introduced in section 5.
The goal is to improve the approximation qual-
ity and performances of the identified multiple-
model.

2. STRUCTURES OF MULTIPLE-MODELS

The divide and conquer strategy is the starting
point of many modelling techniques of non-linear
systems (N.L.S.). The basis of these techniques is



the decomposition of operating space of a non-
linear system into a number L of operating zones
that are characterised by a sub-model which is
often chosen as linear. According to the zone
where the non-linear system evolves then, the
output ŷi of each sub-system is more or less
requested in order to describe the whole behaviour
of the non-linear system.

The multiple-model (M.M.) output ŷ(k) is defined
by:

ŷ(k) =
L∑

i=1

µi(ξ(k))ŷi(k), (1)

the sub-model contribution depends on the weight-

ing function µi(ξ(k)). A large choice of weighting
functions is possible (it is not the purpose of the
present text to survey these possibilities). Here,
they are obtained from normalised Gaussian func-
tion:

µi(ξ(k)) =
ωi(ξ(k))

L∑

j=1

ωj(ξ(k))

, where (2)

ωi(ξ(k)) = exp
(

−(ξ(k) − ci)
2
/σ2

)

, (3)

ci is the centre of the ith weighting function and
σ is the dispersion for all weighting functions.
Decision variable ξ of weighting functions can
depend on the measurable state variables and/or
input/output variable. Two notions of weighting
functions are defined strongly blended and not

much blended (see Figure 1). There are various

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

µ
i

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

u(k)

µ
i

Fig. 1. Weighting functions strongly blended
σ = 0.35 (up), weighting functions not much
blended σ = 0.08 (down)

ways of connecting sub-models in order to gen-
erate the global output ŷ(k). We can distinguish
two multiple-model structures according the use
of coupled or uncoupled states.

2.1 Coupled state multiple-model

The coupled state structure or Takagi-Sugeno
(Takagi and Sugeno, 1985) is the more classically
used in multiple-model analysis and synthesis
(Murray-Smith and Johansen, 1997). The global
output of this multiple-model is computed by:

x̂(k + 1) = Ã(k)x̂(k) + B̃(k)u(k) + D̃(k), (4)

ŷ(k) = C̃(k)x̂(k),

such that:

Ã(k) =

L∑

i=1

µi(ξ(k))Ai, B̃(k) =

L∑

i=1

µi(ξ(k))Bi,

D̃(k) =
L∑

i=1

µi(ξ(k))Di, C̃(k) =
L∑

i=1

µi(ξ(k))Ci,

where x̂ ∈ R
n is the state vector, u ∈ R

m the
control, ŷ ∈ R

l the output vector and ξ the
decision variable of weighting function µi.

The coupled state multiple-model is assimilated to
a system whose parameters vary with time (notice
that there is an only global state x̂). Indeed, the
sub-model parameters are blended in function of
operating zones of the non-linear system.

2.2 Uncoupled state multiple-model

Filev (Filev, 1991) proposed another structure to
connect the sub-models by an uncoupled struc-
ture:

x̂i(k + 1) = Aix̂i(k) + Biu(k) + Di,

ŷi(k) = Cix̂i(k), (5)

ŷ(k) =

L∑

i=1

µi(ξ(k))ŷi(k),

where x̂i ∈ R
ni is the state vector of the ith sub-

model, u ∈ R
m is the control, ŷ ∈ R

l is the output
vector. Here, the global output of the multiple-
model is given by a weighted sum of the sub-
system outputs (parameters of sub-models are not
blended).

Notice that this multiple-model is given by paral-
lel connection of Wiener-type sub-models (a linear
sub-model in series with a non-linear function).
Therefore each sub-model has and evolves inde-
pendently in their own state space in function of
the input control and their initial state. Let us be
clear that the principal interest of this structure
is the decoupling between the sub-models. Indeed,
it is possible to think that:

• it is easier to transfer the analysis techniques
of linear systems to multiple-model;

• different structures of sub-models can be
employed. For example, linear and non-linear
models with a different dimension of the state
vector (of course the output vector dimension
must be identical).

3. PARAMETRIC ESTIMATION

The coupled state multiple-model has been em-
ployed in several identification procedures of
N.L.S in the last few years.

Johansen and Foss (Johansen and Foss, 1995)
have developed an algorithm for operating zone



decomposition of N.L.S. based on a priori process
information and a heuristic. The sub-models are
added at each iteration in function of non-linear
system complexity and the wished accuracy (as-
cending approach). Gasso (Gasso, 2000) proposed
another operating space decomposition technique
of the N.L.S. based on a grid partition. The
multiple-model complexity is reduced by elimi-
nation of irrelevant sub-models on one hand and
merging redundant models on the other one (de-
scending approach). Gugaliya and al. (Gugaliya et

al., 2005) suggest a modification of CART (Clas-
sification and Regression Tree) algorithm used in
the piecewise linear model identification in order
to constructing a multiple-model.

On the other hand, the identification procedure
based on the uncoupled state multiple-model has
been not much used. Some works in the con-
trol law synthesis of non-linear systems have
used successfully this structure (Gawthrop, 1995),
(Gregorcic and Lightbody, 2000). The M.M. is
obtained by local linearisation of the non-linear
system around different operating points.

Recently Venkat et al. (Venkat et al., 2003) have
proposed an identification methodology based on
this multiple-model structure for a control appli-
cation. The identification of sub-models is based
on input/output data that are obtained in one
small operating zone of the non-linear system thus
assuring the linearity of each set of data. A great
number of particular experiments of non-linear
system are necessary to generate several sets of
data. Indeed, one set of data is necessary for each
sub-model identification.

We propose an off-line identification procedure of
non-linear systems using an uncoupled multiple-
model approach. The identification problem is
given in the following statement: the aim is the
parameter identification of L sub-models when the
weighting functions µi(ξ) are fixed, on one hand
and input data u(k) and output data y(k) of a
SISO non-linear system are given on the other one.

3.1 Estimation criteria

Typically three estimation criteria: global, local
and combined, are employed in the parameter
identification of multiple-model. The choice of es-
timation criterion depends on the purpose (appli-
cation perspective) of multiple-model.

3.1.1. Global criterion The global criterion is
defined by:

JG =
1

2

N∑

k=1

ε(k)2, (6)

where N is the number of training data and ε(k)
is the global error between the M.M. output and
the N.L.S. output, given by :

ε(k) = ŷ(k) − y(k). (7)

This criterion encourages a good global charac-
terisation between global behaviour of the non-
linear system and the multiple-model, but the
local behaviour is not considered. This criterion
is interesting when the multiple-model is used in
a prediction perspective.

3.1.2. Local criterion The local criterion is de-
fined by:

JL =
1

2

L∑

i=1

N∑

k=1

µi(ξ(k))εi(k)2, (8)

where εi(k) is the local error between the ith sub-
model output and the N.L.S. output, given by:

εi(k) = ŷi(k) − y(k). (9)

This criterion favours the good local accurate ap-
proximation between local behaviour of the sub-
models and local behaviour of the non-linear sys-
tem. The multiple-model obtained may be used
in a phenomenon explication perspective. Indeed
the sub-models may be often comparable to a lin-
earised models of the non-linear system. However,
in comparison to global criterion, a number of
sub-models more important is necessary to have
a good global characterisation of the non-linear
system (Gasso, 2000).

3.1.3. Combined criterion The combined crite-
rion defined by (Yen et al., 1998):

JC = αJG + (1 − α)JL, (10)

provides an alternative to combining advantages
of the two above criteria, then, it is possible to
take advantages of each criterion in function of
weighting scalar value of α.

3.2 Parametric estimation procedure

In this section, the parameter estimation base
on the uncoupled state multiple-model approach
is presented. See (Walter and Pronzato, 1997)
for complements and general discussion about
identification techniques.

The column vector θ is the vector of unknown
parameters of the multiple-model represented in
the form of a partitioned vector in L column blocks

θp: θ = [θ1 . . . θp . . . θL]T (11)

where each column block θp is formed by the qp

unknown parameters of the particular sub-model
p: θp = [θp,1 . . . θp,q . . . θp,qp

]T (12)

θp,q denoting the unknown scalar parameter of the
sub-model p.

Here, the parametric estimation of θp,q is based on
an iterative minimisation procedure of a quadratic
criterion J (global, local or combined) with Gauss-
Newton’s algorithm:

θ+ = θ − H−1G, (13)

where θ is the vector of parameters at a particular
iteration, θ+ this evaluated vector in the following



iteration, H = ∂2J
∂θ∂θT is the Hessian matrix and

G = ∂J
∂θ

the gradient vector. The calculus of the
gradient vector and the Hessian matrix is based
on the calculation of sensitivity functions of out-
put multiple-model with respect to sub-models
parameters.

Often, Hessian may not be invertible (singular
matrix) or the inverse may not be definite positive,
then the parameter update is not possible. To
avoid these problems, the Marquardt’s algorithm
is used for ill-conditioned problems:

θ+ = θ − ∆(H + λI)−1G, (14)

where ∆ is the step size that minimise the cri-
terion in the direction of vector H−1G, λ is a
scalar and I the identity matrix of appropriate
dimension. If λ is small then the Gauss-Newton’s
algorithm is used. On the other hand, if λ is
great then the method of gradient descent is used.
Notice that if H is a positive definite matrix then
there is always a ∆ ≤ 1 that minimises the crite-
rion in the direction of H−1G.

The convexity of problem is not ensured then the
algorithm solution may not be a global minimum.
Consequently, the choice of an initial guess for
the parameter vector is a difficult and delicate
step in order to ensure the algorithm convergence.
Sometimes, in difficult cases, several choices of
initial parameters may be necessary.

3.3 Parametric estimation with global criterion

The gradient GG of JL is given by the simple
derivation of the global criterion (6) with respect
to parameters θ:

GG =
∂JG

∂θ
=

N∑

k=1

ε(k)
∂ŷ(k)

∂θ
, (15)

where
∂ŷ(k)

∂θ
=

L∑

i=1

µi(ξ(k))
∂ŷi(k)

∂θ
, (16)

∂ŷi(k)
∂θ

are the sensitivity functions of the ith out-
put with respect to unknown parameters of the
multiple-model. The sensitivity functions are de-
fined as follows:

∂ŷi(k)

∂θp,q

=
∂Ci

∂θp,q

x̂i(k) + Ci

∂x̂i(k)

∂θp,q

.
p = 1, 2, ..., L
q = 1, 2, ..., qp

(17)
The state is unknown at the present moment k,
the sensitivity functions are calculated at the next
moment k +1 by derivation of (5) with respect to
each parameter θp,q:

∂x̂i(k + 1)

∂θp,q

=
∂Ai

∂θp,q

x̂i(k) + Ai

∂x̂i(k)

∂θp,q

+
∂Bi

∂θp,q

u(k) +
∂Di

∂θp,q

. (18)

Hessian matrix HG is obtained by a double deriva-
tion of the global criterion (6) with respect to
parameters θ:

HG =
∂2JG

∂θ∂θT
=

N∑

k=1

ε(k)
︸︷︷︸

→0

∂2ŷ(k)

∂θ∂θT
+

N∑

k=1

∂ŷ(k)

∂θ

∂ŷ(k)

∂θT
.

(19)

Here, we have employed the Gauss-Newton’s al-
gorithm in order to reduce the costly in compu-
tational time. Indeed, the second order derivation
term in equation (19) is neglected with the as-
sumption that the error ε(k) tends to zero. Hence,
an approached Hessian is obtained by sensitivity
functions used in the gradient vector calculus:

HG ≈

N∑

k=1

∂ŷ(k)

∂θ

∂ŷ(k)

∂θT
, (20)

3.4 Parametric estimation with local criterion

The calculation of the gradient vector GL and the
Hessian matrix HL is performed as in the case of
the global criterion. By noting that the sensitivity

functions ∂ŷi(k)
∂θ

in the local criterion and global
criterion are identical.

Assuming that the weighting functions are not
much blended, the distinction between global cri-
terion and local criterion disappears; the two ap-
proaches of identification offer similar results. On
the other hand, if the weighting functions are
strongly blended, we will be able to choose the
combined criterion (10) in order to weight the sub-
models interpretation compared to the quality of
the global model.

It is well worth noting that the expressions (16),
(17) and (18) are the generics forms often sim-
plified in the algorithm implementation. Indeed,
these equations may be rewritten as:

∂ŷi(k)

∂θp

= 0 when p 6= i
i = 1, 2, ..., L
p = 1, 2, ..., L

,

because the parameters of each sub-model are
completely independent (uncoupled structure) of
the parameters of the other sub-models.

4. IDENTIFICATION EXAMPLE

Let us use the uncoupled structure to mimic the
behaviour of the non-linear system:

x(k + 1) = Ax(k) + sin(γu(k))(β − u(k)),

y(k) = x(k), (21)

with A = 0.95, γ = 0.8π and β = 1.5.

Here, the identification of the multiple-model is
realised with a global criterion. We want a pre-
diction multiple-model without interpretation of
the local behaviours. The parametric estimation
is based on relation (14), the gradient vector GG



and the Hessian matrix HG are defined by the
relations (15) and (20). The multiple-model com-
prises arbitrarily L = 6 sub-models (this quantity
may be optimised).

The parameters Ai, Bi,Di and Ci of the sub-
models are scalar type (first order sub-model).
The weighting functions µi depend on the in-
put signal ξ(k) = u(k), the centres are: ci =
[0, 0.2, 0.4, 0.6, 0.8, 1] and the dispersion σ = 0.2.

4.1 Linearized multiple-model

The multiple-model is obtained by local linearisa-
tion of the non-linear system (21) around different
operating points ci. The dynamic behaviour of the
linearised multiple-model is shown in figure 2.
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Fig. 2. Non-linear system output and linearised
multiple-model output

This new multiple-model structure reveals a new
undesirable phenomenon, called unhooking, that
produces the ”peaks” in the commutation zones.
On the other hand, using weighting functions
strongly blended produces, in this case, an im-
portant static error. Indeed, the local characteri-
sation of the sub-models is not guaranteed by the
weighting functions.

However, the parameters issued from linearisation
may be employed as an initial guess for the
parameters in the next identification procedure.

4.2 Identified multiple-model

The input u(k) of the system is formed by the
concatenation of piecewise constant signals with
variable amplitude (u ∈ [0, 1]). A set of 5000
input/output data points is used to build the
multiple-model. A set of identical dimension in-
put/output data points is used to validate the
multiple-model. We now employ as the initial
parameters those obtained by linearisation of the
non-linear system.

The identified multiple model yields a bad mimic
of the dynamic behaviour of the non-linear sys-
tem (21) (see figure 3). Indeed, the appearance
of ”peaks”, in the commutation zones of the con-
trol signal, deteriorates considerably the quality
of the obtained approximation. The undesirable
unhooking phenomenon produces a noise effect in
the identification procedure. Next section presents

some explanations and an original solution in or-
der to eliminate this undesirable phenomenon.
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Fig. 3. Non-linear system output and identified
multiple-model output

5. MODIFICATION OF MULTIPLE-MODEL
STRUCTURE

The unhooking phenomenon is due to trade-off
between the sub-models outputs at commutation
moment and the consequence may be strong vari-
ations on the global output.

Indeed, let us remember that each sub-model
involves independently in their own state space.
Hence, jumps (at commutation moment) between
outputs of the sub-models produce sometimes
a discontinuous global output of the uncoupled
state multiple-model.

Therefore an unhooking phenomenon is presented
if the sub-model outputs are significantly different
at contribution moment. If the sub-model out-
puts are close, at the contribution moment, then
the unhooking phenomenon decreases and it is
removed if the outputs are identical.

To sum up, the unhooking phenomenon is related
to an initial condition problem of the sub-model
outputs at the contribution moment (notice that
this phenomenon does not exist in the coupled
state multiple-model approach). Consequently, in
the presence of a unhooking phenomenon the
parametric estimation may be deteriorated and
the multiple-model identified gives, in the unhook-
ing zones, a bad approximation of the N.L.S. (see
figure 3).

A first idea in order to avoid this phenomenon is
to consider strongly blended weighting functions
and a greater number of sub-models. On the other
hand, Gawthrop (Gawthrop, 1995) has proposed
the incorporation of the local feedback via classi-
cal observer theory to each of the sub-models.

We propose an original solution which consists to
filter the control signal, the decision signal of µi

and the multiple-model output, by adding three
low-pass filters in the multiple-model structure.
The purpose of this approach is to consider grad-
ually the contribution of each sub-model and to
soften commutation between sub-model outputs.
These three filters are considered as the unknown



parameters in the identification procedure of the
multiple-model.

The new multiple-model is defined by:

x̂i(k + 1) = Aix̂i(k) + Biũ(k) + Di,

ŷi(k) = Cix̂i(k), (22)

ỹ(k) =

L∑

i=1

µi(ξ(k))ŷi(k), with ξ(k) = û(k),

ũ(k) = F1(q
−1)u(k), (23)

û(k) = F2(q
−1)u(k), (24)

ŷ(k) = F3(q
−1)ỹ(k), (25)

where ŷ is the new multiple-model output.

New sensitivity functions are calculate as in the
section 3.3, obviously taking into account the new
parameters of the three low-pass filters (here, F1,
F2 and F3 are first order filters).

Figure 4 shows the new dynamic behaviour of
the multiple-model with the three filters. We can
notice the good approximation provided by the
identified multiple-model. Let us be clear that the
phenomenon of unhooking is rejected.
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6. CONCLUSION

We have investigated a non-linear system identifi-
cation using an uncoupled state multiple-model in
contrast to classically used coupled state multiple-
model (Takagi-Sugeno).

The uncoupled state multiple-model provides a in-
teresting alternative in the modelling, the control
and the diagnosis of non-linear systems. Indeed,
the particularity of this structure is to have the
completely independent sub-models. Therefore,
one can suppose that analysis tools available for
linear systems can be a priori easily applied in
contrast to coupled state multiple-model.

On the other hand, an undesirable phenomenon,
called unhooking, that deteriorates the quality
of the obtained approximation is revealed. An
original solution is suggested to avoid this phe-
nomenon. The solution is based on the incorpora-
tion of three low-pass filters in the identification
procedure. An academic example is also provided
to demonstrate the good efficiency of this solution.

The proposed identification procedure can be ex-
tended to include the optimisation of multiple-
model dimension: sub-model orders and their
number. It is possible also to consider an optimisa-
tion procedure of the weighting functions µi. The
identification of MISO non-linear systems may be
also contemplated.
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