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Abstract: For process control improvement, coherency of information supplied by
sensors must first be ensured. Because of the presence of random and possibly gross
errors, the model equations of the process are not generally satisfied. The problem of
data reconciliation in order to satisfy the model constraints is considered in this article.
The simultaneous presence of errors in process input and output measurements poses
serious problem in the rectification of data. The proposed procedure to solve this
problem involves the use of a special filter to estimate both the parameters, the states
and the inputs of a process; smoothing of both estimations of the input and the output
is increased by adding in the filter a variance term. Application is proposed for rainfall
data validation in order to improve urban sewer network control.
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1. INTRODUCTION should obey the mass and energy conservation constraints.
In the following this concept of balance constraints will be
considered.The estimation of the state of a process is a fundamental

part of modelling, monitoring and control strategies. For
example, in the field of diagnosis, the success of fault
detection and isolation mainly depends on the estimation of
the state of the process. Generally, for diagnosis purpose,
estimation has to be performed through on-line techniques
either in a recursive form or not. This has been extensively
studied and Kalman filter, in the stochastic case, (Karjala,
1996) or Luenberger observer, in the deterministic case, are
well known approaches. Some extensions have also been
considered for processes with unknown parameters; in this
case, general non linear estimation involving both data
reconciliation and parameter estimation has been developed
(Roberston, 1996). However, in these approaches, the
estimation problem is generally reduced to the state
estimation, the input of the process being known.

On a general point of view, the problem of state
estimation of a process may be formulated as follows:

From measurements Ym (t)  collected on the process, whose
functioning is characterised by state variables X(t ) , from
the knowledge of the measurement Y (t ) = g X(t )( ) , and
from the knowledge of the model of the process
f X(t),θ( ) = 0 , where θ  describes the parameters of the

process, is it possible to give an estimation ˆ X (t )  of the
state of the process ?

Generally this problem is too complex and no analytical
solution may be found. However, with some specifications
on the measurement system and when considering
particular descriptions of the model of the process, it is
possible to establish the existence conditions of the
solution and the solution itself (Bousghiri et al., 1994;
Karjala and Himmelblau, 1996; Liebman et al., 1992). For
example, it is the case when the process and the
measurement system may be modelled by linear equations
(with respect to the state) for which, when the parameters
θ  are known, the observer theory (Muske et al., 1993)
gives adequate solutions.

Although our presentation is limited to linear model, the
problem addressed in this article is more general than those
mentioned in the previous works, since it is desired to
simultaneously estimate the state, the input of the process
and its parameters. In the field of process engineering, state
estimation is generally seen through the classical concept
of data reconciliation (Simson, 1988). Data reconciliation
is mainly a physical problem: the variables of the process



The problem under consideration here is however more
general while the parameters θ  are unknown.
Consequently, our aim is to estimate the state of the
process and simultaneously the parameters of its model.
On a general point of view, this problem may be addressed
as a non-linear estimation one. Cox (1964) is probably one
of the first being concerned with such difficulties and has
proposed an iterative solution based of the maximisation of
the likelihood function of the measurement constrained by
the model of the system. El Sherief (1982) has also
proposed an estimation method based on the Kalman filter.
These methods are also known as "Bootstrap" methods and
Puthenpura (1986) has given some refinement in order to
increase the robustness of the estimation. With regard to
existing techniques, our contribution may be point out in
the following directions. First, a complete analytic
formulation of the estimation problem is presented.
Second, errors affecting the measurement of both input and
output of the process are taken into account. Third, data
which are representative of the system, i.e. verifying all
the state equations with some good properties of
smoothing, are estimated.

The computation of the estimations of the variables ˆ y (k )
and ˆ x (k)  and the parameters ai  and bi  is achieved by
minimising the criterion (2) taking into account the
constraint (3) which is applied at each sampling time. On a
numerical point of view, the problem is reduced to the
optimisation of a quadratic criterion (with respect to state
variable and parameters) subject to non-linear equality-
constraints (the non-linearity resulting from the link
between variables and parameters). Despite of a classical
and well know formulation, the dimension of the problem
(number of variables and parameters in a dynamical model)
being high and noise affecting the measurements,
conventional techniques for the resolution are not always
powerful; consequently, we have developed and proposed an
original way based on a hierarchical estimation.

3. PRACTICAL IMPLEMENTATION

In order to solve the preceding optimisation problem, the
following Lagrange function is considered:

L = ˆ y (k) − ym (k)( )2 +
k =1

N

∑ ˆ x (k) − xm (k)( )2
k=1

N−1

∑ +

    λ(k ) ˆ y (k ) − ai ˆ y (k − i)
i=1

n

∑ − bi ˆ x (k − i)
i=1

m

∑
 

 
 

 

 
 

k=1

N−1

∑
(4)

2. GENERALISED ESTIMATION METHOD

When considering single-input-single-output system, let us
note x(t )  the input and y(t )  the output, both being
sampled at the same constant rate; xm (t )  and ym (t ) will
represent the corresponding measurements. It is supposed
that the true data x(t )  and y(t )  are subjected to a linear
dynamic constraint:

The complexity of the optimisation procedure is greatly
simplified if a matricial presentation is used. For that
purpose, let us define the following vectors of variables
and parameters:

y(k ) = ai y(k − i)
i=1

n

∑ + bi x(k − i)
i=1

m

∑    n ≥ m (1) Z = y(1) x(1) y(2) ... x(N − 1) y(N )( )T
(5a)

ˆ Z = ˆ y (1) ˆ x (1) ˆ y (2) ... ˆ x (N − 1) ˆ y (N )( )T
(5b)

θ = a1   …  an  b1  ... bm( )T (5c)From N  measurements ym (t ) and xm (t ) , the aim is to
estimate the parameters ai  and bi  of the system model.
Unfortunately, the measured data being subject to errors,
they don't verify the model constraints; thus, one tries to
simultaneously estimate the true data y(k ) and x(k) ; in
the following, these estimations are noted ˆ y (k ) and ˆ x (k) .

The constraint (3), expressed for the duration N , may be
condensed under the form:

M θ( ) ˆ Z = 0 (6)
The principle used for the extended estimation (estimation
of the parameters and the variables) is the constrained
minimisation between the estimation and the
measurement; here, for reason of simplicity, a quadratic
criterion is suggested:

where M ∈ℜ (N −n ).(2 N−1)  and θ ∈ℜp  with p = n + m .

The Lagrangian (4) associated to the optimisation problem
may be written:

Φ = ˆ y (k) − ym (k )( )2

k=1

N

∑ + ˆ x (k) − xm (k)( )2
k=1

N−1

∑ (2)
L =

1

2
ˆ Z − Z

2
+ λT M θ( ) ˆ Z (7)

Without restriction to generality, the deviation between
estimation and measurement have not been weighted;
however, it is easy to introduce weights, for example
according to the precision of the measurement or to use
more specific information about the probability density
function of measurement errors. As previously said, the
estimations have to satisfy the constraint:

in which we recall the dimensions:

Z ∈ℜ2N −1 ˆ Z ∈ℜ2N −1

M ∈ℜ (N −n ).(2 N−1) λ ∈ℜ N− n

The optimality conditions are formulated ( Ip  being the

identity matrix of dimension p ):

ˆ y (k ) = ai ˆ y (k − i)
i=1

n

∑ + bi ˆ x (k − i)
i=1

m

∑ (3) ∂L

∂ ˆ Z 
= ˆ Z − Z + MT θ( )λ = 0 (8a)



∂L

∂λ
= M θ( ) ˆ Z = 0 (8b)

∂λ
∂θT = M(θ)MT (θ)( )−1

∂M(θ)

∂θT Ip ⊗ Z( ) −
∂ M(θ)MT (θ)( )

∂θT Ip ⊗λ( )
 

 

 
 

 

 

 
 

(13b)∂L

∂θ
= Ip ⊗λT( ) ∂M θ( )

∂θ
ˆ Z = 0 (8c)

(See the involved derivative rule)1

with:

∂ M θ( )MT θ( )( )
∂θT = ∂M θ( )

∂θT I p ⊗ M T θ( )( ) +

            M θ( ) ∂M T θ( )
∂θT

(13c)

Equations (8), which are non-linear, may be solved
according to the following strategy. From equations (8a)
and (8b), one obtains:

λ = M θ( )MT θ( )( )−1
M θ( )Z (9a)

ˆ Z = I2N −1 − MT θ( ) M θ( )M T θ( )( )−1
M θ( ) 

 
  

 
 Z (9b) Summarising, the estimation is performed according to the

following steps:

Step 1: i = 0It is important to note that if M(θ)  is a full row rank

matrix, then the matrix M(θ)MT (θ)  is regular. The
equation (8c) being non-linear with respect to θ , this last
parameter may be obtained by an iterative way. For that
purpose, a Newton-Raphson algorithm is used and estimate
at iteration i+1 is expressed:

select initial values for the parameters θ i

Step 2: compute M θ i( )
compute the state ˆ Z i  of the system (9b)

Step 3: with (14a, b, c), compute the gradient (11) and 
the Hessian (12a)
adjust the values of the parameters θ i+1

θ i+1 = θ i − ∆
∂2L

∂θ∂θT

 

 
 

 

 
 

i

−1
∂L

∂θ
 
 
  

 
 

i
(10) Step 4: if the gradient of the criterion is more that a

given threshold, start again at step 2, elsewhere
the last estimation is considered as satisfactorily.

It is useful to write the two forms allowing the
computation of the gradient of the criterion with respect to
θ :

4. SOME SIMULATION RESULTS

The figure 1a shows the input and the output signals of a
dynamical system of first order; the data are somewhat
noisy. After applying the proposed estimation method to a
first order model, the following parameters have been
obtained:

∂L

∂θ
= Ip ⊗λT( ) ∂M θ( )

∂θ
ˆ Z (11a)

∂L

∂θ
= Ip ⊗ ˆ Z T( ) ∂M θ( )

∂θ
λ (11b)

a1 = 0.895

b1 = 0.202

 
 
 

From (11a) and (11b), the second order derivative are
computed:

∂2L

∂θ∂θT = Ip ⊗λT( )M0
∂ ˆ Z 

∂θT + I p ⊗ ˆ Z T( )M0
T ∂λ

∂θT (12a)
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with the following definition of the constant matrix M0 :

M0 =
∂M θ( )

∂θ
(12b)

The derivatives of  and ˆ Z  with respect to θ  are given by:
Fig. 1a. Measurement of the input and the output.

∂ ˆ Z 

∂θT = −
∂MT

∂θT Ip ⊗λ( ) + MT θ( ) ∂λ
∂θT

 

 
 

 

 
 (13a) The figure 1b compares the estimated values of the input

and output variables. One may appreciate the quality of the
model through its ability to reconstruct the input and the
output variables of the process. However, let us note that
these reconstructions may be characterised by a filtering
effect which seems more important for the output than for
the input data. Moreover, in many situations, we have
observed that, although data reconciliation is perfect, the
estimation of the input is not well smoothed.

1Derivative rule of a matrix product with regard to a
matrix:

A ∈Rn.m ,  B ∈ Rm.q ,  θ∈ Rr .s

∂ AB( )
∂θ

=
∂A

∂θ
Is ⊗ B( ) + Ir ⊗ A( ) ∂B

∂θ
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Fig. 1b. Measurement and estimation of input and output. Fig. 2b. Measurement and estimation of input and output.

The quantity:
5. IMPROVEMENT OF THE METHOD

ϕ = ˆ x (k + 1) − ˆ x (k)( )2
k =1

N−1

∑ (14)When measurement are corrupted by an important noise,
the method (as many others) is inadequate to reconstruct an
input signal with a certain degree of smoothness, although
the obtained estimation perfectly verifies the state
equations of the process. The figure 2 corresponds to such
situation; we have used the same example as previously
but involving more important noise measurements (fig.
2a).

represents the sum of squares of the variations of the
estimated input. Using the following criterion thus
modifies the estimation problem:

Φ m = ˆ y (k) − ym (k)( )2
k =1

N

∑ +

ˆ x (k ) − xm (k)( )2
k=1

N−1

∑ +α 2 ˆ x (k + 1)− ˆ x (k )( )2

k=1

N −1

∑
(15)
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with respect to the constraint (3).

The parameter α2  allows modulating the filtering effect of
the estimate of the input data. Its precise choice is the fact
of the user according to the particular problem to be
solved.Fig. 2a. Measurement of the input and the output

As previously, a matricial formulation is more attractive.
For that purpose, the following C  matrix is defined:

It clearly appears, on figure 2b, poor filtering effect on the
input signal although the output signal is correctly
smoothed. It is a well known problem due to the fact that
the reconstruction of an input signal generally involves an
"inversion" of the transfer function of the system under
consideration. C =

0 1 0 −1 0 ...

... 0 1 0 −1 0 ...

...

... 0 1 0 −1 0

 

 

 
 
 
 

 

 

 
 
 
 In order to reduce variation of the input estimated signal, a

supplementary constraint have been added. Intuitively, by
taking into account the results shown in figure 2b, the
variations of the estimated input of two consecutive
samples are minimised.

that allows writing the criterion ϕ  (14):

ϕ = C ˆ Z 
2

The reader should modify this choice and use other filtering
effects, for example, by reducing the variations of
magnitude between samples (k + 2)  and k .



The optimality conditions of the Lagrangian associated to
the optimisation problem are expressed as:

constitute the input and the output of the process The
parameters of a first order linear model have been
estimated:

∂L

∂ ˆ Z 
= ˆ Z − Z +α 2CT C ˆ Z + M T θ( )λ = 0 (16a) a = 0.6155

b = 0.0126∂L

∂λ
= M θ( ) ˆ Z = 0 (16b)

The estimations (height and flowrate) are given by the
superposed curves. One can compare the measured and the
estimated values and appreciate the good level of
smoothing of the estimated values.

∂L

∂θ
= Ip ⊗λT( ) ∂M θ( )

∂θ
ˆ Z = 0 (16c)

The resolution technique is similar as those previously
given. First, the equations (16a) and (16b) are solved:

0 20 40 60 80
-0.1

0

0.1

0.2

0.3

0 20 40 60 80
0

5

10

15

λ = (M(θ)QM T (θ))−1M(θ)QZ (17a)
ˆ Z = Q I2N −1 − MT θ( )(M θ( )QMT θ( ))−1M θ( )Q( )Z

(17b)
with:

Q = I +α 2CT C( )−1
(17c)

The values of θ  are obtained by solving, with a recursive
procedure, the equations (16c). To illustrate the
performances of the proposed method, the data of the
previous example are used. The weight associated to the
filtering criterion is α = 2 . The figure 3 points out the
filtering effect on the input data estimations and the reader
could compare the results obtained without (figure 2b) and
with filtering (figure 3).

Fig. 4. Measurement and estimations of input and output

6.1 Application to sensor fault detection
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The figure 5 shows the occurrence of a fault on the output
sensor; this fault is a bias between samples 10 and 15. The
upper part of the figure shows the measured flowrate and
its estimation obtained from the model and the
measurement of input and output; the lower part of the
figure shows the residual between the two flowrates
(estimated and measured) and the jump corresponding to the
failure can be easily detected. A systematic use of this
technique may be done and although the estimation is
performed off line after the data collecting, it gives the user
a real help for analysing the sensor behaviour.
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6. RAINFALL DATA VALIDATION

The proposed technique is still under validation on a
process involving rainfall data validation. The figure 4 has
been drawn using the data collected during a rain event and
is issued from the data bank of the Urban District of
Nancy, France. The upper part of the figure relates to the
precipitation (in mm/h of water) and the lower part is
dedicated to the flowrate of water in pipes (m3/s) which

Fig. 5. Presence of a of rain gauge fault between samples
10 and 15



6.2 Extension to several events 7. CONCLUSION

In order to establish a more realistic model, the proposed
technique may be extended when several data series are
available. The problem may be formulated as follows.
Each data serie is now marked by the subscript i . The
vectors of the different variables are noted Zi  for the

measurement and ˆ Z i  for the estimations. The dimensions
of the corresponding vectors depend on data series:

In this paper, an estimation technique of the parameters of
a linear dynamic model when both input and output signals
are corrupted by errors has been presented. It is based on a
simultaneous estimation of the state and parameters. The
amount of calculus is limited because a hierarchical
procedure is used. The estimation of the variables is done
analytically; only the estimation of the parameters requires
an iterative calculus. The proposed technique could
probably be extended to an on-line treatment as proposed in
(Muske et al., 1993; Ragot et al., 1990) for state
estimation.

Zi ∈ℜ2N i −1 ˆ Z i ∈ℜ2N i −1

where Ni  corresponds to the number of samples in the ith
campaign. However, it is important to remember that the
parameters θ  are constant for the different campaigns
because a unique model is considered. Consequently, one
must solve the stationary conditions of the Lagrangian:
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H
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It is important to notice that the analysis of several
campaigns increases the robustness of the model, the
parameters of the model being representative of a more
important amount of data, which also increases the quality
of the failure diagnosis i.e. the analysis of the residuals
between the measured and estimated flowrates.


