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Abstract— This paper addresses the problem of multiple
fault isolation based on kernel principal component analysis
and proposes a sparse fault estimation method to evaluate the
reconstruction-based contribution. The fault magnitude estima-
tion is here formulated as an optimization problem under non-
negativity and sum-to-one constraints. A multiplicative iterative
scheme and its initialization procedure are proposed to solve it.
The effectiveness of the proposed method is demonstrated on
the simulated continuous stirred tank reactor (CSTR) process.

I. INTRODUCTION

Kernel Principal Component Analysis (KPCA) is one of
the most popular methods for fault detection of nonlinear
systems since the work of [1] and [2]. KPCA maps mea-
surements from their original space into a higher dimensional
feature space where principal component analysis (PCA) is
performed. Fault detection is then performed in this feature
space through straightforward extensions of PCA detection
indices.

Fault isolation has been less addressed in the literature due
to complexity related to the nonlinear mapping. Among the
popular contribution methods, [3] proposed a reconstruction-
based contribution (RBC) method for KPCA. They defined
the estimation of fault magnitude minimizing the fault
detection index along a presumed faulty direction as the
contribution of that variable. However, their method suffers
from three main shortcomings. Firstly, they only addressed
single fault isolation. Secondly, due to nonlinear mapping,
the RBC is not the estimated fault but the difference between
the detection indices of the faulty measurement and its
reconstruction. Finally, to solve this nonlinear optimization
problem, they proposed an iterative fixed-point algorithm.
In fact, this mapping back from the feature space into the
input space is a pre-image problem which deals with a wider
multivariate estimation issue. Furthermore, solving the pre-
image problem, known as being ill-posed, can be tricky.
For example, among the methods proposed to solve it, an
iterative fixed-point scheme similar to that proposed by [3]
was shown to be unstable and suffer from local minima [4].
A solution consists of minimizing the detection index subject
to constraints or with additional penalty terms that are related
to these constraints.

Addressing the more general issue of multiple fault iso-
lation, we show that the estimation of fault’s magnitude
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can be written as a linear combination of the difference
between training data and faulty measurement along the
reconstruction directions, the coefficients being training data
contributions to the estimation. Thus positive and negative
coefficients can balance in the linear combination taking
into account they are normalized to sum to one. Therefore a
sparse solution should be obtained by minimizing the number
of coefficients different from zero. As an initial approach, `0
or `1 regularization function could be added as penalty in
order to control the sparsity degree of solution. However,
the detection index is already nonlinear with respect to
fault magnitude, thus, this approach yields a computation-
ally expensive problem and moreover the balance between
regularization and estimation is often difficult to tune. Since
sparse solution is more likely to arise in problems with
nonnegativity constraints [5], [6], the fault magnitude esti-
mation is then formulated as an optimization problem under
nonnegativity and sum-to-one constraints on the coefficients.

To solve this fully constrained optimization problem, pop-
ular approaches are presented in literature, such as projected-
gradient type methods and their extensions [7] and mul-
tiplicative update methods [5], [8]. At each iteration, the
former essentially evaluates the gradient of the objective
function and the projection onto the unit simplex defined by
the constraints. Its main difficulty is the selection of the step-
size to ensure the algorithm’s convergence without constraint
violations. The latter differs from projected-gradient methods
because the constraints are involved in the update scheme in
order to ensure that they are satisfied at each iteration. In
the following, a multiplicative update algorithm based on
the split gradient method [8] is proposed to solve the fully
constrained optimization issue presented above.

The paper is organized as follows: after a short recall of
fault detection by kernel principal component analysis in
section II, multiple fault isolation by reconstruction-based
contribution method is presented and the lack of sparsity
of the solution is highlighted in section III-A. This fault
magnitude estimation is then reformulated as an optimization
problem under nonnegativity and sum-to-one constraints
and a multiplicative iterative scheme and its initialization
procedure are proposed to solve it in section III-B. Finally,
in section IV, the proposed method is applied to a commonly
used benchmark : a non-isothermal continuous chemical
reactor on which different faults are simulated [9].

II. FAULT DETECTION WITH KPCA

In this section, we briefly describe KPCA and define its
use for Fault Detection. KPCA maps a dataset from the input



space X onto a high dimensional feature space H using a
nonlinear function ϕ( · ). The transformed data obtained in
this feature space are then analyzed using linear PCA.

A. Kernel PCA

Let us consider a data matrix defined by n measurement
vectors xi ∈ X ⊆ IRm collected on the system under normal
operation:

X = [x1, · · · ,xn]
> ∈ IRn×m

Let ϕ( · ) denotes the nonlinear mapping function from the
input space X into the feature space H:

ϕ : X 7→ H
xi 7→ ϕi = ϕ(xi) ∈ IRh

where h is the dimension of the feature space.
The matrix gathering the mapped vectors are writen as

follows:
Φ = [ϕ1, · · · ,ϕn]

> ∈ IRn×h

and its columns are assumed to be centered in the follow-
ing.

KPCA is performed in the feature space H by diagonal-
izing the empirical covariance matrix:

S =
1

n− 1
Φ>Φ

The primal formulation of KPCA in the feature space is
an eigenvalue/eigenvector problem:

1

n− 1
Φ>Φvi = λi vi i = 1, . . . , n

where vi and λi (i = 1, . . . , n) are the eigenvectors and
eigenvalues of the covariance matrix S.

However, ϕ( · ) does not need to be explicitly defined, the
Gram matrix K = Φ Φ> is then evaluated from the kernel
κ : X × X 7→ IR fulfilling Mercer’s conditions by:

κ(xi,xj) = ϕ(xi)
>ϕ(xj)

Indeed, the covariance matrix S and the matrix 1
n−1 K

have the same non-zero eigenvalues and their eigenvectors
are related by:

V = Φ>A

with
A =

1√
n− 1

U Λ−1/2

and r = min(n, h), V = [v1, · · · ,vr] ∈ IRh×r,
U = [u1, · · · ,ur] ∈ IRn×r are the matrices of the
eigenvectors associated to the diagonal matrix of eigenvalues
Λ = diag(λ1 . . . λr).

By choosing a number ` of principal components, the
feature space is decomposed into the principal and residual
subspaces, spanned respectively by V̂ (the ` first eigenvectors
of V corresponding to the ` largest eigenvalues) and Ṽ
(the r − ` last eigenvectors of V). The same partitioning
is considered for U and Λ.

In the following, the Gaussian kernel is used:

κ(xi,xj) = exp

(
− (xi − xj)

T (xi − xj)

2 c

)
(1)

where c is the kernel dispersion parameter.

B. Fault detection

After the KPCA model has been built, we now examine
its use for sensor fault detection.

The detection index SPE (squared prediction error) is
usually used to detect fault in the residual space since it
measures the lack of fit of the mapped data to the KPCA
model. Since the projection of x onto the residual subspace
Ṽ is evaluated as:

t̃(x) = Ṽ> ϕ(x)

the detection index SPE is given by:

SPE(x) = t̃
>

(x)t̃(x)

= 1− κ>(x) Q̂κ(x)

where

Q̂ = Â Â>

κ(x) = [κ(x1,x), · · · , κ(xn,x)]
>

Abnormal situation in the data x is detected when
SPE(x) is greater than a threshold δ2.

1) Remark.: The tuning of KPCA parameters goes beyond
the scope of this paper. Interested readers should consult the
extensive literature on the subject.

III. SPARSE RECONSTRUCTION-BASED CONTRIBUTION

The reconstructed directions are assumed to be known a
priori. Then the reconstruction-based contribution for these
different subsets of variables is evaluated and the variables
belonging to the subset with the maximum RBC are consid-
ered as faulty.

A. Position of the problem

Let us show how to calculate the RBC for a subset R of
supposed faulty variables. The reconstructed observation is
defined by:

zR = x−ΞΞΞR fR (2)

where ΞR is the matrix of fault directions with 1 to indicate
the faulty variables and 0 for the other variables.

The estimation of fault magnitudes is obtained by mini-
mizing the detection index SPE:

f̂R = arg min
fR

SPE(zR) (3)

Then the reconstruction-based contribution of subset R is
defined by:

RBCR = SPE(x)− SPE(ẑR) (4)

where ẑR is the reconstructed observation obtained by re-
placing f̂R in (2).



To solve the minimization problem (3), SPE(zR) is
derived with respect to vector fR:

∂SPE(zR)

∂fR
= −2

∂κ>(zR)

∂fR
Q̂κ(zR)

Let us evaluate the component-wise derivative of κ(zR)
with respect to vector fR:

∂κ(zR,xj)

∂fR
=
∂z>R
∂fR

∂κ(zR,xj)

∂zR

From (2) and the gaussian kernel, we obtain:

∂κ(zR,xj)

∂fR
=

1

c
κ(zR,xj)ΞΞΞ>R (zR − xj)

Finally, the gradient can be written as:

∂SPE(zR)

∂fR
= −2

c

n∑
j=1

βj ΞΞΞ>R (zR − xj) (5)

with
βj = κ(zR,xj)ξξξ

>
j Q̂κ(zR) (6)

and ξξξj is the jth column of the identity matrix.
Let us replace zR (2) in (5) and set the gradient to zero

to obtain the first order stationary condition.
Taking into account the following necessary condition:

Â> κ(ẑR) 6= 0,

the solution is thus given by:

f̂R =

n∑
j=1

α̂j ΞΞΞ>R (x− xj)

with

α̂j =
κ(ẑR,xj)ξξξ

>
j Q̂κ(ẑR)∑n

t=1 κ(ẑR,xt)ξξξ>j Q̂κ(ẑR)

ẑR = x−ΞΞΞR f̂R

which could be solved by an iterative fixed-point scheme.
The estimate f̂R is thus a linear combination of the

differences between training data and faulty measurement
along the reconstruction directions ΞΞΞ>R . The coefficients α̂j ,
acting as training data contributions to the estimation, could
be positive or negative but their sum is one, which may lead
to compensation in the linear combination.

B. Estimation subject to nonnegativity and sum-to-one con-
straints

By analogy with [6], instead of directly estimating fR, fR
is defined as the weighted sum of the differences between the
faulty observation and training data along the considered re-
construction directions, and the weight vector α. Therefore,
the previous optimization problem (3) can be reformulated
as the following constrained optimization problem:

f̂R = arg min
α

SPE(zR)

with 
zR = x−ΞΞΞR fR

fR =

n∑
j=1

αj ΞΞΞ>R (x− xj)
(7)

subject to the constraints:

αj ≥ 0, j = 1, . . . , n
n∑

j=1

αj = 1

To solve more easily this fully constrained nonlinear
optimization problem, a procedure similar to that proposed
by [8] is used:
• We introduce the following variable change:

αj =
ωj∑n
i=1 ωi

with ωj ≥ 0, j = 1, . . . , n (8)

• We proceed to the minimization with respect to the new
variable ωj , subject to nonnegativity constraint only,
using a component-wise gradient descent,

• We come back to the initial variables αj .
The Lagrangian function for nonnegativity constraint prob-

lem is then given by:

L(ω,µ) = SPE(zR)− µ>ω

At the optimum (ω∗,µ∗), the Karush-Kuhn-Tucker (KKT)
conditions reduce to:

ω∗j
∂SPE(zR)

∂ωj

∣∣∣∣
ωj=ω∗

j

= 0 j = 1, . . . , n (9)

∂SPE(zR)

∂ωj

∣∣∣∣
ωj=ω∗

j

≥ 0 j = 1, . . . , n (10)

ω∗j ≥ 0 j = 1, . . . , n (11)

To solve this nonlinear equation (9) under the constraints
(10) and (11), the following gradient descent updating
scheme is defined:

ω
(t+1)
j = ω

(t)
j − η

(t)
j gj(ω

(t)
j )ω

(t)
j

∂SPE(z
(t)
R )

∂ωj

where η(t)j is the step-size which controls the convergence
of the algorithm, gj(ω

(t)
j ) > 0 is a positive function scaling

the gradient and ∂SPE(z
(t)
R )

∂ωj
= ∂SPE(zR)

∂ωj

∣∣∣
ωj=ω

(t)
j

to simplify

notations.
This above equation could be re-written as follows:

ω
(t+1)
j = ω

(t)
j m

(t)
j (12)

with

m
(t)
j = 1− η(t)j gj(ω

(t)
j )

∂SPE(z
(t)
R )

∂ωj
(13)

To avoid an expensive step-size computation for each
component of ω, in practice, a single step-size η(t) is chosen.



Now let us come back to the initial variables (8). First, let
us demonstrate the following equality:

n∑
t=1

ω
(t+1)
t =

n∑
t=1

ω
(t)
t

Proof: By summing each side of the equality (12), we
have

∑n
j=1 ω

(t+1)
j =

∑n
j=1 ω

(t)
j if:

n∑
j=1

ω
(t)
j gj(ω

(t)
j )

∂SPE(z
(t)
R )

∂ωj
= 0 (14)

First, let us evaluate the partial derivatives of SPE( · )
with respect to ωj :

∂SPE(zR)

∂ωj
=

n∑
i=1

∂SPE(zR)

∂αi

∂αi

∂ωj

with
∂αi

∂ωj
=
δji − αi∑n

i=1 ωi

Then the following equation is obtained:

∂SPE(zR)

∂ωj
=

1∑n
i=1 ωi

(
∂SPE(zR)

∂αj
−

n∑
i=1

αi
∂SPE(zR)

∂αi

)
(15)∑n

i=1 ω
(t)
i being the same for all components, the scaling

function is chosen as :

gj(ω
(t)
j ) =

n∑
i=1

ω
(t)
i (16)

Let us replace (15) and (16) in (14) :
n∑

j=1

ω
(t)
j gj(ω

(t)
j )

∂SPE(z
(t)
R )

∂ωj
=

n∑
j=1

ω
(t)
j

∂SPE(z
(t)
R )

∂αj
−

n∑
j=1

ω
(t)
j∑n

i=1 ω
(t)
i

n∑
i=1

ω
(t)
i

∂SPE(z
(t)
R )

∂αi

= 0

Since these two sums are equal, we divide respectively by∑n
i=1 ω

(t+1)
i and

∑n
i=1 ω

(t)
i the left and right sides of (12)

to obtain:
α
(t+1)
j = α

(t)
j m

(t)
j (17)

Let us evaluate the partial derivatives of SPE( · ) with
respect to αj :

∂SPE(zR)

∂αj
=
∂SPE(zR)

∂f>R

∂fR

∂αj
(18)

From (7), we obtain:

∂fR

∂αj
= ΞΞΞ>R (x− xj) (19)

Let us replace (18) and (19) in (15):

gj(ω
(t)
j )

∂SPE(zR)

∂ωj
= (zR − xj)

>
ΞΞΞR

∂SPE(zR)

∂fR

Let us suppose that α(t)
j > 0, in order to ensure the

nonnegativity of α(t+1)
j , the sign of m(t)

j , defined in (13),
has to be considered:

• If ∂SPE(z
(t)
R )

∂ωj
≤ 0, then m(t)

j ≥ 1, the nonnegativity con-

straint is satisfied ∀ η(t) and the weight α(t)
j increases,

• if ∂SPE(z
(t)
R )

∂ωj
> 0, then the step-size must be computed

by a line search to ensure the convergence of the
algorithm such as:

0 ≤ η(t) ≤max
j∈C

gj(ω
(t)
j )

∂SPE(z
(t)
R )

∂ωj
(20)

with C =

{
j | ∂SPE(z

(t)
R )

∂ωj
> 0

}

then 0 ≤ m(t)
j ≤ 1 and the weight αj decreases.

Let us also note that:

• since the step-size is chosen such that m(t)
j is posi-

tive (20) and taking into account that
∑n

i=1 α
(t+1)
i =∑n

i=1 α
(t)
i , the vector α(t+1)

j satisfies the nonnegativity
and sum-to-one constraints as long as its initialization
α(0) satisfies these two constraints,

• let us suppose that the maximal step in (20) is obtained
for the ith observation:

η(t)max =
1(

z
(t)
R − xi

)>
ΞΞΞR

∂SPE(z
(t)
R )

∂fR

and that at iteration t, η(t) → η
(t)
max then:

m
(t)
j →

1−

(
z
(t)
R − xj

)>
ΞΞΞR

∂SPE(z
(t)
R )

∂fR(
z
(t)
R − xi

)>
ΞΞΞR

∂SPE(z
(t)
R )

∂fR


and the weight α(t)

i tends to converge to zero. This could
explain the sparse side-effect obtained with nonnegativ-
ity constraints.

Moreover, fixed points of the updating rule (17) occur
when αj = 0 and ∂SPE(zR)

∂ωj
> 0 or when αj > 0 and

mj = 1, which implies that ∂SPE(zR)
∂ωj

= 0. These are
consistent with the KKT conditions and thus they define the
stopping rule of the iterative algorithm.

IV. SIMULATION ON THE CSTR BENCHMARK

The efficiency of the proposed method is illustrated on a
nonisothermal continuous chemical reactor (CSTR) bench-
mark defined in [9].

A. Model of the CSTR

We make certain assumptions : the reactor contains well
mixed constituents and has constant physical properties. A
first order reaction is taken into consideration where reactant
A is mixed with a solvent in order to obtain a product B.



The mass balance and the energy balance describe the
dynamic behavior of the CSTR as follows :

dCA

dt
=

F

V
CA0 −

F

V
CA − k0e−

E
RT CA

V ρCP
dT

dt
= ρCPF (T0 − T ) + (−∆Hr)V k0e−

E
RT CA

−
aF b+1

C

FC +
aF b

C

(2ρCCPC)

(T − TC)

(21)
In the equation (21), V is the volume of the tank, F the
input flow rate, ∆Hr the heat of reaction, k0 the reaction
velocity constant, ρ the reaction mixture density, ρC the
coolant density, CP the volumetric heat capacity, CPC the
coolant capacity, E the activation energy, R the gas constant,
the temperature T , the cooling water temperature TC , the
inlet temperature T0, the coolant flow FC , and the outlet
concentration CA.

The overall flow rate of the CSTR is formed by the flow
rate of the reactant and the solvent and the inlet concentration
is determined by : CA0 = CAA FA+CAS FS

FA+FS
, with the inlet

concentrations CAA and CAS , the solvent flow FS , and the
reactant flow FA. In the CSTR model, T is controlled by
FC using a proportional-integral (PI) controller.

Nine variables are measured for fault detection and isola-
tion process defining an observation x at each instant with:

x = [TC T0 CAA CAS FS FC CA T FA]> (22)

A first-order autoregressive model defines all disturbances
on the reactions, namely : xt = φxt−1 + σe et, where et

is a Gaussian distribution and σ2
e is the variance of et. In

addition to these disturbances, Gaussian measurement noises
with variance are added to the variables. More details can
be found in [9].

The initial conditions are as follows : T0 = 370 (K),
TC = 365 (K), FC = 15 (m3/min), T = 368.25 (K), FS

= 0.9 (m3/min), FA = 0.1 (m3/min), CA = 0.8 (kmole/m3),
CAS = 0.1 (kmole/m3), CAA = 19.1 (kmole/m3).
The parameters of the simulation are given by : V = 1 (m3),
ρ = 106 (g/ m3), E/R= 8330.1 (K), CP = 1 (cal/gK), CPC

= 1 (cal/gK), b = 0.5, k0 = 1010 (m3/kmole × min), a =
1.678 ×106 (cal/min K), ∆Hr = −1.3× 107 (cal/kmole).
The parameters of the PI are : KC = −1.5, TI = 5.

A set of 100 observations were used during training,
where KPCA is applied using a Gaussian kernel, defined
by (1), with c = 0.36. 28 principal components were needed
to define the KPCA model and a detection threshold was
estimated with a value of 0.21.

In order to test the efficiency of the proposed method, two
sets of 100 observations each were used with two different
faults added as described in the following.

B. Fault affecting the inlet temperature T0
The first fault affects the inlet temperature T0. To this end,

we add a step of 1.5K on the sensor when measuring the
inlet temperature T0 starting at instant 51, on the first set of
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Fig. 1. Detection of fault on the inlet temperature T0

100 observations. As we can see from figure 1, the fault is
detected and the SPE is only greater than the threshold 0.21
highlighted with red line, after instant 51.

Once, the fault was detected, we proceed with the recon-
struction of each one of the nine variables of x. Figure 2
illustrates the cumulative reconstruction-based contribution
(RBC) defined by (4) evaluated on the 50 faulty observations.
The cumulative RBC corresponds to the sum of RBC over the
50 faulty observations. As we can see, the second variable,
that represents T0 in observation x defined in (22), is the
one with the highest contribution. We evaluate the SPE after
reconstruction of T0, the obtained value is 0.08 (compared to
1 before the reconstruction) which is less than the threshold
estimated during the training process namely 0.21. Thus, the
fault was corrected, T0 was accurately reconstructed and the
estimated fault amplitude is 1.49.
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Fig. 2. Cumulative RBC for fault affecting T0

C. Fault affecting the temperature T

Let us now introduce the second fault. To this end, a new
set of 100 observations is used. A step of 1K is added on the
temperature T starting at instant 51. The fault was correctly
detected and a figure similar to figure 1 was obtained.
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Fig. 3. Cumulative RBC for fault affecting T

Once, we detect the presence of fault, we seek the variable
affected by the fault. Therefore, we apply the proposed
method and reconstruct each one of the nine variables
and evaluate the reconstruction-based contribution. Figure 3
shows the cumulative RBC of all faulty observations. As we
can see, the first nine bars present the contribution when we
reconstruct each one of the nine variables. Variable 6 which
represents the coolant flow FC has higher contribution by
comparing it to the other eight variables. However, if we
evaluate the SPE after the reconstruction of FC , we obtain
0.82 which is greater than the threshold 0.21, indicating that
the fault was not corrected.

It is worth nothing to mention that if we compare the
contributions of FC and T0 in figure 2, we see that FC has
a smaller contribution making it easier to explain the fact
that SPE is greater than the threshold. Therefore, we seek a
combination of different variables for which the SPE after
reconstruction is less than the threshold.

However, the fault on T has a complex effect on the
system. This can be explained by the fact that T is controlled
by a PI. The temperature, increasing due to sensor fault, will
be corrected by increasing the coolant flow FC . However, the
real temperature inside the reactor is less than the one needed
for normal functioning. In consequence, the concentration of
the product at the output defined by CA is increasing too.
Then, the three variables T , FC and CA are affected by the
fault on T . Thus, by reconstructing these three variables,
the SPE obtained after reconstruction is 0.07 which is less
than threshold. The contribution of these three variables is
shown in the last bar (number 10) of figure 3. Clearly, the
contribution of the combination of these three variables is
greater than the contribution of reconstructing FC alone and
is similar to the contribution of T0.

It is worth nothing to mention that, by comparing our
results to those of Alcala and Qin [3], our proposed method
shows the importance of reconstructing more than one vari-

able using the contribution of figure 3. However, in [3], the
authors evaluate an average RBC using the square of the
estimated amplitude of fault, which is not similar to RBC
evaluated as a difference between the SPE before and after
reconstruction. The results in figure 4, in the aforementioned
paper, indicate an average RBC for the variable FC that is
almost identical to the one after reconstructing the three vari-
ables. Thus, it is not clear why it is necessary to reconstruct
more than one variable. Based on their results, it could have
been enough to reconstruct the coolant flow FC . This is not
the case with our approach since the RBC between the two
reconstructions are very different.

In such cases, where the fault has a complex effect on
the system, the fault isolation will be subject to a structural-
functional analysis of the system in order to determine the
candidate subsets of variables to be reconstructed. Due to the
fact that many variables were needed to correct the fault, it
is important to study the propagation of the effect in order
to get to the main cause. It is not the aim of this paper.

V. CONCLUSION

This paper proposes a sparse fault estimation method to
evaluate the reconstruction-based contribution for multiple
fault isolation. The fault magnitude estimation is here for-
mulated as an optimization problem under nonnegativity
and sum-to-one constraints. A multiplicative iterative scheme
is proposed in order to solve it. The effectiveness of the
proposed method is demonstrated on a simulated continuous
stirred tank reactor (CSTR) process.

A future work is necessary to determine the useful poten-
tial reconstruction directions in order to handle the combi-
natorial nature of multiple fault isolation.
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