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Abstract— This paper deals with state estimation and fault
detection in the presence of unknown but bounded state pertur-
bations and measurement noise. In this context, most available
results are for linear models. Based on interval analysis, a
state estimator for nonlinear dynamical systems is presented.
Given the perturbation and noise bounds, the proposed method
evaluates a set estimate guaranteed to contain all values of the
state that are consistent with the available observations. The
estimator is then used to regime shift detection. A numerical
example is given.

I. INTRODUCTION

The aim of process diagnosis is to detect and identify
faults affecting the process. The main idea of model-based
fault diagnosis is to compare the behaviors of the process
and its model when both are fed with the same inputs.
As the process state is generally unknown, this compari-
son is generally achieved between the process output and
the model output, this last being reconstructed by a state
observer. State estimation using the exact knowledge of the
input and output signals is well solved for processes with
constant and known parameters (e.g. using a Luenberger
or a finite memory observer). However, real processes are
often affected by disturbances and noises which cause the
generation of false alarms during the diagnosis. Therefore,
state observer designs were extended to deal with disturbance
and measurement noise.

However the situation becomes more critical when the
considered system is subjected to unknown disturbances
or unknown inputs. When the systems are subjected to
perturbations with known statistic characteristics, Kalman’s
filter may be used to reconstruct the system state. In fact
the observer design techniques for processes affected by
uncertainties may be roughly divided into three groups.

The first group relies on robust estimation. The estimator is
made robust to both exogenous signals (e.g. unknown inputs)
and model uncertainties. In this framework, state estimation
deals with the minimization of an induced norm (e.g. Hs or
H,) from disturbances to estimation errors.

In the second group, the state estimation is performed
on a reduced system corresponding to the unknown input
(UI) free subsystem (which exists under some restrictive
conditions). For that, the state equation is splitted into
two parts, one being sensitive to the UI, the other being
decoupled from this input. It is then possible, under specific
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conditions, to eliminate the Ul influence on the state and the
measurement equations by using an appropriate projection
matrix, [5]. Another proposed observer design uses the slid-
ing mode approach. Sliding observer is a high performance
state estimator well adapted for nonlinear uncertain systems
[14]. The sliding function of this observer is based on the
estimation error of the available output of the system. Indeed,
it uses a classical Luenberger observer with a nonlinear term
depending on the estimation error.

The last group of methods relies on the description of
the uncertainties by known compact sets. In the field of
diagnosis, robust model-based fault detection of dynamic
systems using interval observers has been already addressed.
One of the main techniques consists in checking whether
the measurements of the output belong to the interval of all
possible estimated outputs obtained considering uncertainty
on model parameters [15], [10], [13]. Original applications in
the field of flow rate sensor diagnosis and data validation are
presented in [11] and [1]. Although interval approaches need
very little a priori information (only the uncertain parameter
bounds), only few published works are dedicated to process
diagnosis, like [9] or [12].

The paper is organized as follows: after a brief overview, in
section 2, the ideal observer structure is defined. In section 3,
fault diagnosis techniques for nonlinear systems are derived
from the estimation method. The last section is devoted to
a numerical example dealing with the determination of the
active mode of a system under supervision.

Notations. In this study, only real intervals are considered.
As a definition, a real interval, denoted [z], is a closed and
connected subset of R, defined by:

7] =[r7 2t]={zeR /2" <z <z}

This definition can be extended to the v-dimension space:
an interval vector [z] of RY is an v-dimensional rectangle or
“box” of R and is the Cartesian product of intervals. The
set of all boxes of R” is denoted TR".

A. Problem formulation

The behavior of the system is described by a discrete-time
uncertain nonlinear model. The uncertainties are induced by
a vector of interval parameters 6(k), and by the interval dis-
turbances v(k) and w(k) affecting the state and measurement
equations respectively:

w(k+1) = f(a(k),u(k), 0(k), v(k))
° { y(k) = h(z(k),0(k)) +w(k) ()



where f and h are known nonlinear functions and z is the
state, y is the output, v € R" is the input, v € IR™ and w €
IR™* are input and output disturbances. Since the parameter
vector 0(k) and the disturbances v(k) and w(k) are interval
and neglecting the coupling between the state variables and
the outputs, the state and output vectors will be bounded by
some boxes, x € IR™ and y € IRP. The interval parameters
allow to take into account the evolution of the system i.e.
changing operation point. The initial state x(0) is assumed
to belong to some a priori known compact set D, o € IR™.
The sequences {6(k)}, {v(k)} and {w(k)} are unknown, but
are assumed to belong to known compact sets:

X~ (k) < X(k) < XT(k), X e€{0,v,w}

where inequalities are element wise inequality and where
the indicated bounds are known at each time k. It should
be noticed that, excepted the input w(k), all the signals are
intervals, including the outputs of the model. Nevertheless
the measured output, y,,,(k) € RP, is not an interval. It
should be understood in the sense that the measured output
belongs to the interval y(k) which stands for all the possible
output values consistent with the model.

A guaranteed state estimator, also named set-valued ob-
server (SVO) constructs sets of admissible states which are
consistent with the a priori bounds v—, v, w™, w™ .

The main idea for that construction consists in determining
the set of the possible state values which are consistent with
the known bounds of the uncertainties, the model equation
and the current measurements (i.e. the admissible domain).
The book [6] presents the basic statements of such methods.
More recent works may be found in [7].

II. IDEAL OBSERVER

The first objective is to estimate the state of the system (1).
The state estimation can be obtained, on the one hand, by
inversing the output equation of (1) or, on the other hand, by
recursively integrating the state equation of (1). The former
is based on the measurements y,, (k) and the bounds of the
output disturbances w™ (k) and w* (k). The latter is based
on the knowledge of the previous estimation, the input u(k —
1) and the bounds of the uncertainties and the disturbances
0= (k —1), 0 (k — 1), v=(k — 1), v (k — 1). Obviously,
the sought estimated interval of the state values, denoted
D,,k, must be consistent with both the measurements and
the model, which leads to compute the intersection of the
intervals obtained by the two methods.

To begin with, the initial state x(0) of system (1) is
assumed to belong to the compact set D, o € IR™. Then,
for a given k, D, j, represents the set of all the state values,
x(k), consistent with the available informations I, :

Iy ={Da.0, {uli), ym (i), 07 (1), 07 (i), v~ (i), v™ (i),
w™ (i), w* (i) iy}
The estimation process is detailed in the following steps:
e Observation step. The observation allows to deduce the

possible values of the state (k) consistent with the measure-
ment y,,, (k). First, the sets of the output values which are

consistent with the measurements y.,, (k) and the uncertainty
bounds are defined by:

Dy ={y €IR?/ w™ (k) <y—ym(k) <w™(k)}
The set of possible state values z(k) is deduced from:

Dz’k ={z €IR" / h(z,0(k)) € Dy,
0~ (k) < O(k) <07 (k)} )

In words, DY . contains all state values x(k) which could
have led to the observation ¥, (k). In most situations, nu-
merical algorithms are used to approximate the true domain
with guarantee to enclose it.

e Prediction step. This step involves the evaluation of the
state equation to propagate the current set of estimated states
and parameters. The obtained domain, denoted D: k> 18 the
set of possible z(k + 1), predicted by the state equation,
computed with measurement and estimation up to time k:

D:k*{f(v ()9 )/IGD’I‘k7 ’Ui(k)§1)§1;+(k)7
07 (k) <0 <0"(k)} 3)

o Correction step. Finally, the admissible domain D, 41
compatible with the information Ij; is obtained by the
intersection of the two domains obtained using the model
equation and the measurement equation, as follows:

Dy 1 = D$ k0 Da: k+1 S

Remark 1. In some situation, depending on the measurement
values, it is possible to obtain an empty intersection when
using (4) because of contradictory knowledges. If necessary,
this problem may be overcome by using an expansion
operator allowing to enlarge the domain of the admissible
output. However, when the objective of the state estimation
is included in the general framework of diagnosis, this
particular situation may be analyzed in order to detect and
identify faults.

Remark 2. Repeated applications of the intersection
procedure (4) generally leads to a complex shape (and
consequently a complex description) of the set D,
and may be serious drawbacks for real-time application.
To overcome this problem, it is possible to reduce the
complexity of the procedure by evaluating an approximated
(but guaranteed) set ﬁm’k of D, 1, as suggested in several
papers (e.g. [3]). Consequently, the SVO algorithm is
structured as follow:

Algorithm 1: state estimation

e Step 0. Initialize D+O with Dy. Let £k =1
o Step 1. Collect the data u(k) and y,,, (k)
e Step 2. Compute the output domain D, j:

Dy ={y [ w (k) <y —ym(k) <wF(k)}
e Step 3. Compute the state domain Dgyc’ K

DY, = {a € IR" /h(z,0(k)) € Dy, 0 (k) <O(k) <O*(k)}



o Step 4. Compute the admissible state domain D, ;:

— Pt Y
Dl’vk - Dx,kfl n Dx,k:

e Step 5. Reduce the domain complexity:
bx,k 2Dk
e Step 6. Predict the state set
D} ={f(x,u(k),0,v) / © € Do, v~ (k) <v < vt (k),
0= (k) <0 <0 (k)}
e Step 7. Increase k :=k + 1, go to Step 1
III. APPLICATION TO DIAGNOSIS

When applying the previous procedure, one assumes im-
plicitly that both sources of information are coherent. For
diagnosis purpose, it is precisely the problem of inconsis-
tency of information which prevails. The impossibility of
merging the two sources of information (the two domains
D;r w1 and DY .x) reveals the incompatibility between the
measurements and the model of the system. During this
diagnosis analysis, one is particularly interested in estimating
the system outputs to be compared with the measured outputs
in order to generate the so-called residuals, whereas this
analysis is not possible for the system state.

A. Principle of fault detection

The output domain D;  predicted by the model of the
system is deduced from the state domain Di . Which has
been already defined (see algorithm 1):

Df=1{y* [y =h(a".0) +w, o* = f(z, (k),e, )
€Dy 0 (k+1) SO<OT(k+1),07 (k) <6< 67 (h),

)<
v (k) < v < vt (k) w (k) < w < w(k)}
@)

In the same way, the admissible output domain Dy j1,
evaluated from the measurements, is defined by:

Dyier = {y/w () <y —yu(k +1) <wh(®)}  (©)

Consequently, starting from these two domains, a fault indi-
cator can be defined. Let us consider:

Tht1 = D;:k N Dy k+1 )

A fault is detected if 7,41 = 0 (equality is element wise
equatlity and thus a fault is detected if at least one component
of r is the empty set). One should note that, determining the
frontiers of the two domains at every time may result in
an important computational load. For this reason, the exact
domain is often approximated by a domain of simpler form,
for example presenting less vertice. Thus, modifying (7), a
fault is detected if the following residual is empty:

o1 =D N Dykia ®)
where D * is an overestimation of Dy jor 1€
Dt C D 9

y,k =

If ﬁ;k is easier to compute than D;k, the residuals (8)
are simpler to compute that (7); however, the domain 15; k
results to detect less faults than the domain D;’k. In fact,
if D, NDyri1 # 0 and D) NDyr1 = 0, then a
fault occurred but was not detected [2]. Thus the difficulty
is to define a compromise between the complexity of the
determination of the state domain or the output domain and
the tolerable rate of no detection. The reader will notice
that, compared to what was presented at the section II,
within the framework of the state estimation, the reduction
of complexity was not carried out on the same domain.
According to the difficulty of implementation, the user can
choose to do this reduction at any step of the proposed
algorithms, keeping in mind that this latter always generates
an approximation.

The preceding formalism makes it possible to detect incon-
sistencies of data. Nevertheless, this diagnosis remains a little
vague, thus it is worth specifying how, in a more general way,
to highlight the occurrence of a fault. A solution consists in
computing the interval state estimate using only a part of the
output measurements. Analogously to the design of banks of
dedicated observers in [4], p domains can be built, where
each domain is computed with only one component of the
measurement Vector .

B. Principle for change detection of operating mode

In the framework of supervised diagnosis, one admits
that all the failures affecting a system have been listed
and associated to a known model. Therefore, each normal
operating mode or dysfunctioning mode is thus described by
a model.

M. { zi(k +1) = fi(xi(k), u(k),0(k),v(k))
' yi(k) = hi(zi(k),6(k)) + w(k)

where v and w already denotes the uncertainties affecting
the model and the measurement system.

In a more general way, the set of the models
M;, i = 0...N represents all the operating modes
including the healthy modes related to the absence of
faults. Thus, the diagnosis consists, starting from available
measurements, in determining which model, among a
set of models, is compatible with the measurements and
the bounds of the uncertainties. In our case, the selected
principle is the invalidation of model. At any moment k,
each model M; allows to predict the state x in an interval
form (defining a domain Dx x.i» Where the subscript ¢ is
related to the number of the model). If a prediction is
incompatible with the state D, ., ; deduced from the
measurements y, then the corresponding model does not
reflect the current situation and thus the system does not
operate in the corresponding mode. The algorithm to be
implemented, inspired of [9], is then the following:

(10)

Algorithm 2: state estimation (multiple modes)

o Step 0. Define the initial state domains DI g-and setk = 1.
e Step 1. Collect the data u(k) and y,, (k)



e Step 2. Compute the output domains D, ;, for i =
0,...,N,

Dyki = {y/w; (k) <y —ym(k) < wi (k)}
o Step 3. Compute the admissible state domains starting from
the output domain, for ¢ =0,..., N:

ny

x,k,i

= {x € IR"/hy(x,0) € Dy 1,0~ (k) < 0 < 07 (k)}

e Step 4. Compute, at the moment k, the admissible state
domains D, .4, for ¢ =0,..., N:

. — Pt Y
Dm,k‘ﬂ - Dr,k—l,i n Dm ki

e Step 5. Analyse the domains D, j—1;. If Dy 1, = 0,

the 7¢ is not an active mode

e Step 6. Reduce the domains complexity, for i = 0,..., N:
D+ C 'ZA)+

z,k,i z,k,i

e Step 7. Characterize the admissible state domains using
prediction based on the i** model, for i = 0,..., N:

Djm ={fi(z,u(k),0,v) /| = € f)x,k,z‘a

v (k) <v<ot(k),0 (k) <0<0t(k)} A1)

e Step 8. Increase £ = k + 1 and go to Step 1.

The interpretation of the various domains D, j ; is done
in the following way. Let us recall that D, 3, ;, ¢ =0,..., N
is the set of all the admissible states consistent with the
measurements and the uncertainty bounds, considering the
it" model. If Dy ki, 1s empty, it means that the current
evolution is not correctly described by the 45" mode.

Obviously, if the domains D, ,, and D,y ,, are not
simultaneously empty, there is an ambiguity. Indeed, the two
modes 77 et io are candidates to describe the corresponding
situation. In this case, additional information is necessary
to refine the diagnosis and to distinguish the modes ¢; and
i5. The concept of persistence can be a useful recourse.
The method is to build and analyze the various domains
at consecutive moments, the vacuity of the domains is then
analyzed over a more significant duration.

C. Residual generation and diagnostic
Algorithm 3: diagnosis (multiple modes)

e Step 0. Define the initial state domains D; , and set k = 1.
o Step 1. Collect the data u(k) and y,, (k).

o Step 2. Characterize the admissible state domains using a
prediction based on the i*" model, for i = 0,..., N:

:{fi(xa u(k)7 0,’0)/3} € @I,k,ia 0~ (k) S 0 S (9+(k‘),
v (k) <v <ot (k)} (12)

D-‘r

x,k,i

o Step 3. Characterize the admissible output domains D;r’ ki
e Step 4. Compute the bounds of the output domains

{ y;;(k) = infy/y € D;kz

. . (13)
Yy (k) = supy/y € D, ;

where the j is the number of the component output.
e Step 5. Compute the interval residuals

(i ()] = [y3; (k) = ym;i (k) 435 (k) = ym; (K)]

e Step 6. Test the residual by checking if:

(14)

0e [Tij(k‘)], 1=0...N,j=1,...,p
e Step 7. Increase £ = k + 1 and go to Step 1.

The active mode detection is computed, using the residual
signals as follows. For a given k, the i*" mode is said

« not active, if 0 ¢ [r;;(k)], 35 € {1,...,p}

o active, if 0 € [r;;(k)], Vj e {1,...,p}

IV. EXAMPLE: SEARCH FOR ACTIVE MODE

Let us consider a system which can be in a normal opera-
tion mode (¢ = 0) or in two abnormal modes of dysfunction
(2 = 1,2). It is assumed that the three corresponding models
and the measurements of the inputs and outputs are known.
The arising problem is to determine the current operating
mode of the system at every moment.

A. System models

To simplify the presentation of the numerical results, the
three models are taken as linear relations between the input
u and the state = € IR? and as nonlinear relations between
the state = and the output y; = (i1 wi2)? € IR% At
each time k, the system is running under a particular mode
(characterized by a particular function h;) according to an
external or internal variable.

M, { xz(k+1) = Az(k) + Bu(k) + Fo(k)

yi(k) = hi(z(k),0) + w(k), (15)

with

0.6 0 1 0.05 0
A= <—0.2 0.5)’ B= <0)’ F‘( 0 0.05)
x1 (k)+61(k)
1+05(k)xq1(k
ho(x(k), 0(k)) = <x1<5ﬂ2&%$93(k))
01 (k)+z2(k)

z1(k)40.54-61 (k)
ha(z(k), 0(k)) = (;@fﬁz&%0'5?5%’:@)
0.5+01 (k)+x2(k)

z1(k)+1.560: (k)
ha(a(k), 8(k)) = <m&z><£§’;2‘;i%’?%>féé’§%k>)
1.50, (k) +z2 (k)
—1<v(k) <1, —0.04 <w;(k) <0.04
0.8 <6;(k)<1.2 1.3<6(k)<1.7

Although the system has varying parameters, it is desired to
detect, at each time k, in which mode the system lies.

B. Improving, or not, the output estimation
The system output y(k) can be predicted from the input
z(k) using each of the three operating models:
Dy,k,i :{y/y = fz(x(k)a 0) +w, 67(16) < 0 < 9+(k)a
w (k) <w < wh(k)} (16)
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Fig. 1. Parameter and output domains (Mo model).

The figure 1 illustrates the D, ;, o domain construction, at
a particular time k&, for which the state is defined by x (ko) =
[2 I]T. In this case, the parameter polytope, defined by a set
of inequalities, is drawn in the plan of the components of
on the left side of figure 1. The two other polytopes relating
to the parametric domains of the models M; and M» may
be built in a similar way.
The outputs y,,01 and y.,02 (15) are given by:
{ Ymo1 (ko) = % + w1 (ko) (17

Ymoz (ko) = i’IZ?ﬁ’;gﬁ + wa (ko)

which has been represented on the right part of figure 2.
Taking into account the bounds of 8, one obtains yo,,1(ko) =
[0.596 0.929] and yoma (ko) = [1.915 2.651]. However, it
should be noticed that yg,,1 and yg.,2 are coupled via the
two standardized uncertainties 1; and 72. The couplings are
highlighted by eliminating 6, (ko) or 62(ko) in (15), which
can be rewritten more explicitly as:

2461 (ko)
(k)= ZoaRo)—wa (ko)) (TF01(Ro) Funho) g
Yolko 3+602 (ko) +w (k )
(14202 (ko)) (yo1 (ko) —w1 (ko)) —1 2170

The domain corresponding to this description is represented
on the figure 1 in the plan of the outputs. The “complex”
shape of this domain (grayed zone of the right part of the
figure) results from (15) and (18). In the sequel, in order to
simplify the fault detection procedure, the selected domain is
the smallest orthotope [, o containing the exact domain,
defined by (15). In other words the coupling between the
outputs is not taken into account. Same construction applies
to the polytopes resulting from the two other models. Finally,
one can state that: to the moment considered, the vector
parameter 6 belongs to one of the three polytopes of the
figure 2 (left-hand side). For this particular example, one can
note that the three zonotopes [, 1. ;,% = 1,2,3 (right-hand
side of the figure) are almost totally disjoined.

C. Generation of the active mode indicators

The previous construction, taking into account available
measurements is carried out on-line, after each acquisition of
measurements. In order to avoid the representation of the do-
mains obtained at every moment for every model, an interval
representation is now adopted. The interval [y;; (k) yjj'(k:)]
denotes the bounds of y;; (k) the 4t component of the output

0 05 1 15 2 25 0 0.5 1 15 2

Fig. 2. Parameter and output domains (M; models).
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Fig. 3.

Interval outputs estimated by the three models.

computed with the i*” model:

Y, (k) yijwirépyvk,i“( ) (19a)
yii (k)= sup  y(k) (19b)

y%j(k’)eDy,k,i

where y;; has been defined in (15). The figure 3 shows
the bounds of the two outputs ;1, ¥;2 (in columns) of each
model (in rows) computed thanks to (19). The simulation was
done on the horizon [0 50], the changes of operating mode
occured at the moments 15 (switching from My to M),
40 (switching from M; to M>) and 45 (return to the mode
My). On each part of the figure, the output y;,,, (k) is drawn
in dash-line in order to be compared with its estimates based
on each model. Therefore the admissible output domains are
defined for the three models. The active mode is determined
by analyzing the measured output of the system together with
these three domains. In the considered example, the output is
corrupted by a bounded noise and can be directly compared
with the bounds of the output interval of the three models.
For each component y,,; of the measured output and each
model M;, one defines the residuals:

rij (k) = Y35 (k) = Ymj (k), v (k) = ym; (k)]

with ¢ = 0,1,2, j = 1,2 and y,; et yz being the lower
and upper bounds of the output of the model M; (19). The
residuals 7;; are shown on figure 4. Clearly, it is possible
to detect when each model presents an interval residual

(20)
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containing the value 0. Thus, the analysis of the residuals
is based on the sign of the residual bounds:

(1 — sign(y;; (k) — y; (k) (v (k) — y;(k)))
2

where i and j respectively relates to the i*” model and
the j*" component of the output. The i*" mode is declared
active if all the components of the corresponding outputs
are consistent with the t* model, that is to say: if all
the residuals 7;; contain the zero value. Therefore, the
residuals 7;(k) are computed by the logic multiplication of
the residuals Tij(lf) . Tz(k) = Til(k) and ... and Tlm(k)

The residual evolutions are represented on the figure 5,
where 7 = 1 (resp. 7 = 0) testifies to (resp. invalidates) the
membership of the origin to the interval residual. The ob-
tained results are discriminating with respect to the changes
of mode. The examination of 791 and 7y corresponding to
mode 0, enables to conclude that the mode O is active in
the time intervals [0 12] and [45 50]. The analysis of the
residuals resulting from the two other models confirms and
supplements this conclusion. The six graphs are coherent and
enable to define the active mode, at every moment.

V. CONCLUSION

Undoubtedly, taking benefits of any knowledge about
uncertainties is one of the fundamental points of current
research and development in system analysis. This com-
munication was focused on the bounded approach which
uses a representation of each uncertainty by an interval. The
propagation of the intervals along the time in the system
equation results in defining interval observers, which provide
interval estimates of the system state. Within the framework
of the diagnosis, that leads to define fault indicators of the
interval type. As a further research, the separability of the
mode of functioning will be analyzed including the effects
of noise, disturbances and outliers.
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