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Abstract. This communication addresses the problem of fault detection
and isolation (FDI) for nonlinear systems. Despite a lot of works in this
area, model-based FDI for nonlinear systems still remains a difficult task.
These two last decades have witnessed growing popularity of Takagi-
Sugeno models. This attractivity relies essentially on two advantages: (i)
that kind of models can be considered as universal approximator i.e. they
offer a good flexibility at the modeling stage; (ii) their structure based
on the blending of linear models is able to fully take advantages of the
advances of modern control theory. It is then rather natural to trying to
extent the well-established model-based FDI methods for linear systems
to the systems that can be represented by Takagi-Sugeno models.

1 Introduction

The problem of designing observers for nonlinear systems constitutes an impor-
tant field of research. It is due to a large domain of application such as, estimating
of non accessible states, when sensors are not available or too expensive, design-
ing feedback control laws and generating residual signals in order to detect and
isolate sensor, actuator or process faults. For systems described by linear time-
invariant (LTI) models, the state estimation can be successfully accomplished
from the available inputs and outputs thanks to the well known Luenberger ob-
server or Kalman filter. However, it turns out that LTI models fail for accurately
describing the dynamic behaviour of relatively complex systems in a large op-
erating range. Indeed, LTI models only provide a good representation of such
systems around an operating point (local modeling) and consequently the gen-
erated state estimation is not valid far away from this point. Hence, nonlinear
models become unavoidable in order to represent the behavior of the consid-
ered systems. From the observer design viewpoint, this makes more difficult the
modeling task because the accurate and global description of the input-output
behaviour of the system must be accomplished with the help of a mathematical
model as simple as possible for observer design.

For such a purpose, a multiple model representation of the system under
investigation can be used. In this modeling approach, the dynamic behaviour of
the system is accurately captured by the judicious interconnection of a set of



linear submodels [15], [27], [31]. It should be noted that various realisations of
multiple models can be employed in order to generate the global output of the
multiple model [14], [18]. Two essential realisations of multiple models can be
distinguished whether homogeneous or heterogeneous submodels are taken into
account for modeling the system behaviour. In the first case, an interpolation of
the submodel parameters is considered and the submodels share the same state
space. This approach leads to the so-called Takagi-Sugeno model. It has been
initially proposed, in a fuzzy modeling framework, by Takagi and Sugeno [41]
and in a operating regime-based modeling framework by Johansen and Foss [24].
In the second one, only the submodel outputs are interpolated and consequently
each submodel has its own state space which can be of different dimension; that
kind of models is frequently called decoupled multiple model [33], [44], [47]. In the
sequel, we shall be interested in Takagi-Sugeno models only. This communication
will be focused on the possibility to use such models in the context of FDI.

2 Takagi-Sugeno model

A Takagi-Sugeno (TS) model allows the representation of the behavior of a
nonlinear system by the interpolation of a set of linear submodels. Each submodel
contributes to the global behavior of the nonlinear system through a weighting
function µi(ξ(t)). The TS structure is given by:







ẋ(t) =

r∑

i=1

µi(ξ(t))(Aix(t) + Biu(t))

y(t) =

r∑

i=1

µi(ξ(t))(Cix(t) + Diu(t))

(1)

where x(t) ∈ IRn is the state vector, u(t) ∈ IRm is the input vector, y(t) ∈ IRp

represents the output vector. Ai ∈ IRn×n, Bi ∈ IRn×m, Ci ∈ IRp×n and Di ∈
IRp×m are known matrices. Finally, the functions µi(ξ(t)) are the weighting func-
tions depending on the so-called decision variables ξ(t) which can be measurable
(as the input or the output of the system) or non measurable (as the state of
the system). These functions verify the following properties:







r∑

i=1

µi(ξ(t)) = 1

0 ≤ µi(ξ(t)) ≤ 1, ∀i ∈ {1, 2, . . . , r}
(2)

Of course, the construction of a TS model represents an important and basic
procedure. Two main approaches are mainly employed :

1. Identification using input-output data. The literature about that problem is
very abundant and we refer the interested reader to the following references
[1], [2], [5], [17], [31], [41], [44], [47], [50],



2. Derivation from a given nonlinear model. In that case, two different ap-
proaches can be used. In the first one, the nonlinear model is linearized
around some a priori chosen operating points. Linear models are then ob-
tained for each operating zone. Next, optimization techniques are used to
identify the parameters of the weighting functions by minimizing a function
of the output error [3]. The second approach, probably the most interest-
ing, relies on the the well-known transformation by nonlinear sector [42].
Indeed, this transformation allows to obtain an exact TS representation of
a nonlinear model with bounded nonlinearities.

Let us recall the main idea of this last approach, by considering the following
nonlinear model: {

ẋ(t) = f(x(t), u(t))
y(t) = h(x(t), u(t))

(3)

The system (3) is first rewritten in a quasi-LPV form. Under the hypothesis
that f(x(t), u(t)) and h(x(t), u(t)) are continuous and bounded in U ⊂ IRn with
f(0, .) = 0 and g(0, .) = 0, the system (3) can be expressed in a quasi-LPV form:

{
ẋ(t) = A(x(t), u(t))x(t) + B(x(t), u(t))u(t)
y(t) = C(x(t), u(t))x(t) + D(x(t), u(t))u(t)

(4)

Let us denote ξ(t) = [x(t) u(t)], the so-called decision variable. Every time-
varying entry of the matrices A(ξ(t)), B(ξ(t)), C(ξ(t)) and D(ξ(t)) are considered
as a premise variable, denoted zj(ξ(t)), j = 1, . . . , p.

Notice that the quasi-LPV form (4) for a nonlinear system (3) is not unique.
So choosing a quasi-LPV form is equivalent to choose the premise variable set.
The choice of the premise variable set is important, because it has an influence
on the submodel numbers and on the global model structure. This is a degree
of freedom that should be used to ease the controllability, the observability and
the stability analysis studies [32].

Let zj(ξ(t)) ∈ [zj,min, zj,max]. A convex polytopic transformation for the p
premise variables can be performed. Let define:

Fj,max(zj) =
zj(ξ(t)) − zj,min

zj,max − zj,min

(5)

Fj,min(zj) =
zj,max − zj(ξ(t))

zj,max − zj,min

(6)

with the property Fj,min(zj) + Fj,max(zj) = 1, the jth premise variable can be
expressed as:

zj(ξ(t)) = zj,minFj,min(zj) + zj,maxFj,max(zj) (7)

Using this transformation, r = 2p submodels characterized by p premise vari-
ables can be generated. The matrices Ai (resp. Bi, Ci and Di) are evaluated at



the vertices of the polytope defined by the premise variable partitions intervening
in A(ξ(t)) (resp. B(ξ(t)), C(ξ(t)) and D(ξ(t))). To each submodel i corresponds
a p-uplet σi which codes the partitions of the premise variables occuring in the
corresponding weighting function µi(ξ(t)). Denoting σk

i , the index at the kth

position in σi, the weighting function µi(ξ(t)) can be defined as:

µi(ξ(t)) =

p
∏

k=1

Fk,σk

i

(zk(ξ(t))) (8)

For a more detailed description of this approach, the reader is referred to
[30], [32] and [42]. Clearly, this modeling approach is very attractive as it cor-
responds only to a particular rewriting of the original nonlinear model (without
any degradation, provided the boundness of the nonlinearities). However, the
reader will notice that the state of the system often intervenes in the decision
variables. For being able to design an observer for that kind of model, it is there-
fore necessary to take into account this constraint.

In the following, the considered models will essentially originate from that
type of modeling. So, a particular attention will be devoted to the design of
observer for TS model with unmeasurable decision variables which is a key point
for being able to implement FDI techniques.

3 Observer design for TS model with unmeasurable

decision variables

In the field of state estimation and diagnosis of nonlinear systems using TS
model, most of the published works considered models with measurable decision
variables [4], [9], [35]. It is clear that this choice allows an easy generalization of
the methods already developed for linear systems. When the decision variables
are not measurable, the problem becomes harder. However, this formalism is
essential both, as previously mentioned, in the modeling stage as well in diagnosis
methods based on observer banks to detect and isolate actuator and sensor
faults (see section 5). A few works are devoted to the observer design in that
case, nevertheless, we can cite [6], [7] and [34], where the authors proposed to
use a fuzzy Thau-Luenberger observer which is an extension of the classical
Luenberger observer [43]. The results presented in this section aim to reduce
the conservatism of the existing works by reducing the number of LMIs to be
solved and relaxing the conditions under which the methods are applicable. Two
different approaches are presented. The first one assumes Lipschitz properties
on some functions depending on the weighting functions of the TS model. The
second one expresses the state equation error as a perturbed system and the
observer is designed for guaranteeing that the disturbance attenuation level is
smaller than a given threshold [20].



3.1 First approach based on Lipschitz hypotheses

Non-perturbed systems

Consider first the following non-perturbed TS model:







ẋ(t) =
r∑

i=1

µi(x(t)) (Aix(t) + Biu(t))

y(t) = Cx(t)
(9)

In order to ease the presentation of the method, the ouput equation of the
model is chosen linear with regard to the state, which is frequently the case in
practical situation. Let us consider the matrices A0 and Āi defined in one of the
two following ways:

1. The matrix A0 is the mean of the matrices Ai then:

A0 =
1

r

r∑

i=1

Ai (10)

2. The matrix A0 is chosen as the dominant local model of the system. Let the
jth local model being the dominant one, then:

A0 = Aj (11)

The matrix Āi is then defined by:

Āi = Ai − A0 (12)

Substituting A0 and Āi in the state equation (9) leads to the following equiv-
alent system:







ẋ(t) = A0x(t) +
r∑

i=1

µi(x(t))(Āix(t) + Biu(t))

y(t) = Cx(t)
(13)

The structure of the proposed state observer is based on this rewritting and
has the following classical form:







˙̂x(t) = A0x̂(t) +
r∑

i=1

µi(x̂(t))(Āix̂(t) + Biu(t)) + L(y(t) − ŷ(t))

ŷ(t) = Cx̂(t)
(14)

The state estimation error is given by:

e(t) = x(t) − x̂(t) (15)

and its dynamic can be expressed as:

ė(t) = (A0 − LC)e(t) + ∆(x, x̂, u) (16)



where:

∆(x, x̂, u) =

r∑

i=1

(
Āi(µi(x(t))x(t) − µi(x̂(t))x̂(t)) + Bi(µi(x(t)) − µi(x̂(t))u(t))

)

(17)

This last term is due to the fact that the decision variables of the model
(x(t)) and those of the observer (x̂(t)) are different as the observer cannot be
designed on the basis of unknown variables. In order to study the stability of
(16), let us consider the following hypotheses:

– A1. |µi(x(t))x(t) − µi(x̂(t))x̂(t)| < αi |x(t) − x̂(t)|
– A2. |Bi(µi(x(t)) − µi(x̂(t)))| < βi |x(t) − x̂(t)|
– A3. |u(t)| < ρ

where αi > 0, βi > 0 and ρ > 0.

Using the assumptions A1, A2 and A3, the term ∆(x, x̂, u) can be bounded
as follows:

|∆(x, x̂, u)| < γ |x(t) − x̂(t)| (18)

where:

γ =
r∑

i=1

(σ̄(Āi)αi + βiρ) (19)

where σ̄(M) represents the maximum singular value of the matrix M .

Theorem 1. The state estimation error between the TS model (9) and its ob-
server (14) converges asymptotically toward zero, if there exists matrices P =
PT > 0, a diagonal positive matrix Q and a gain matrix K such that the follow-
ing condition holds:

[
AT

0 P + PA0 − CT KT − KC + γ2Q P
P −Q

]

< 0 (20)

The gain of the observer is computed by L = P−1K. �

Proof. The convergence condition of the state estimation error is obtained by
using a quadratic Lyapunov function:

V (t) = eT (t)Pe(t), P = PT > 0 (21)

Its derivative is given by:

V̇ (t) = ėT (t)Pe(t) + eT (t)P ė(t) (22)

By substituting (16) in (22), this derivative can be written as:

V̇ (t) = eT (t)
(
ΦT P + PΦ

)
e(t) + 2eT (t)P∆(x, x̂, u) (23)



where Φ = A0 − LC.

In order to establish the conditions for the negativity of V̇ (t), let us use the
lemma 1 given in appendix with a diagonal positive definite matrix Q. Therefore
(23) can be bounded as follows:

eT (t)(ΦT P + PΦ + PQ−1P )e(t) + ∆T (x, x̂, u)Q∆(x, x̂, u) < 0 (24)

Taking into account (18), the negativity of V̇ (t) is assured if:

eT (t)(ΦT P + PΦ + PQ−1P + γ2Q)e(t) < 0 (25)

Finally, the inequality (25) holds if:

(A0 − LC)T P + P (A0 − LC) + PQ−1P + γ2Q < 0 (26)

The conditions (26) are not linear with respect to the variables P , L and Q.
In order to solve them with the classical LMI approaches, the change of variable
K = PL, and the Schur complement [8] (recalled in appendix) are used, leading
to the conditions given in theorem 1.

Perturbed systems

Frequently, the considered systems are perturbed by unknown exogenous
disturbances ω(t) and the corresponding model can be written as:







ẋ(t) =
r∑

i=1

µi(x(t)) (Aix(t) + Biu(t) + Eiω(t))

y(t) = Cx(t)
(27)

Assuming that ω(t) ∈ L2, the observer design consists now to compute the
gain L such that the observer error dynamics is asymptotically stable and that
the following specified L2 norm upper bound is below a given threshold.

‖e(t)‖2

‖ω(t)‖2

< ξ, ξ > 0 (28)

By using the matrices defined in (10), (11) and (12), the dynamical equation
of (27) can be written as:

ẋ(t) = A0x(t) +

r∑

i=1

µi(x(t))(Āix(t) + Biu(t) + Eiω(t)) (29)

The proposed observer for this system keeps the structure given in (14) and
its existence is defined by the following theorem.



Theorem 2. The robust observer (14) for the system (27) satisfying (28), is
determined by minimizing the real positive number ξ̄ under the following LMI
constraints in the variables P , K, Q and ξ̄:





Θ P PEi

P −Q 0
ET

i P 0 −ξ̄I



 < 0, i = 1, . . . , r (30)

where:

Θ = AT
0 P + PA0 − KT P − PK + γ2Q + I (31)

The gain of the observer is computed by L = P−1K. The resulting attenuation
level is given by ξ =

√

ξ̄. �

Proof. The dynamic of the state estimation error between (29) and (14) is given
by the following equation:

ė(t) = (A0 − LC)e(t) + ∆(x, x̂, u) +

r∑

i=1

µi(x(t))Eiω(t) (32)

where ∆(x, x̂, u) is defined in (17). Consider the quadratic Lyapunov function
defined in (21), therefore:

V̇ (t) = eT (t)(ΦT P + PΦ)e(t) + 2eT (t)P∆(x, x̂, u) + 2

r∑

i=1

µi(x(t))eT (t)PEiω(t)

(33)
According to the above assumptions and the lemma 1, we have:

V̇ (t) ≤ eT (t)(ΦT P +PΦ+PQ−1P +γ2Q)e(t)+2

r∑

i=1

µi(x(t))eT (t)PEiω(t) (34)

The condition which guarantees the boundedness of the L2 norm of the trans-
fer from ω(t) to e(t) (which satisfies (28)) is given by:

V̇ (t) + eT (t)e(t) − ξ2ωT (t)ω(t) < 0 (35)

Using the derivative of the Lyapunov function (34), we obtain:

eT (t)(ΦT P + PΦ + PQ−1P + γ2Q + I)e(t)

+2eT (t)P

r∑

i=1

µi(x(t))Eiω(t) − ξ2ωT (t)ω(t) < 0 (36)

This last inequality can be written in matricial form:

[
e(t)
ω(t)

]T

M
[

e(t)
ω(t)

]

< 0 (37)



where :

M =

r∑

i=1

µi(x(t))

[
Θ + PQ−1P PEi

ET
i P −ξ2I

]

(38)

Using, the change of variables K = PL, ξ̄ = ξ2 and the Schur complement,
we obtain the following LMIs, which guarantee that (37) holds:





Θ P PEi

P −Q 0
ET

i P 0 −ξ̄I



 < 0, i = 1, . . . , r (39)

Enhancement of the observer performances

For increasing the performances of the observer (in terms of fast and well
damped estimation error e(t) of the observer) it is necessary to assign all the
eigenvalues of (A0 − LC) in a specific region of the complex-plane. In order to
ensure a minimal decay rate a and a damping ratio, the eigenvalues of the system
generating the state estimation error e(t) are clustered in S(a, R, q) defined by

S(a, R, q) = {z ∈ C / |z + q| < R, Re(z) < a, q > 0, a > 0} (40)

(see [11], [35]). The observer eigenvalue constraints can be verified by theorem
3.

Theorem 3. The robust observer (14) for the system (27) satisfying (28) and
such that the eigenvalues of the matrix (A0 − LC) have their eigenvalues in the
region S(a, R, q), is determined by minimizing the real positive number ξ̄ under
the following LMI constraints in the variables P , K, Q and ξ̄:





Ξ P PEi

P −Q 0
ET

i P 0 −ξ̄I



 < 0, i = 1, . . . , r (41)

[
−RP qI + AT

0 P − CT KT

qI + PA0 − KC −RP

]

< 0 (42)

where Ξ = AT
0 P + PA0 − KT P − PK + γ2Q + I + 2aP �

Proof. The proof is based on adding the constraints on the eigenvalues of the
matrix (A0 − LC) (see [35]).

3.2 Second approach relying on the perturbation attenuation

As previously mentioned, the main difficulty in designing an observer when con-
sidering a TS model with unmeasurable decision variable, more specifically the
state of the system x(t), is to handle the fact that the weighting functions of
the model depend on the actual state x(t) when that of the observer depend on
their estimates x̂(t). Therefore, an idea is to express the model using artificially



weighting functions depending on that estimates. Indeed, consider the model
described by (9); it can be rewritten in the form:







ẋ(t) =
r∑

i=1

(
µi(x̂(t)) (Aix(t) + Biu(t)) + δi(t)(Aix(t) + Biu(t))

)

y(t) = Cx(t)
(43)

where:
δi(t) = µi(x(t)) − µi(x̂(t))

Let us define:

∆A(t) =
r∑

i=1

δi(t)Ai = AΣA(t)EA (44)

∆B(t) =
r∑

i=1

δi(t)Bi = BΣB(t)EB (45)

where:

A =
[
A1 . . . Ar

]
, EA =

[
In . . . In

]T
, B =

[
B1 . . . Br

]
, EB =

[
Im . . . Im

]T

ΣA(t) =






δ1(t)In . . . 0
...

. . .
...

0 · · · δr(t)In




 , ΣB(t) =






δ1(t)Im . . . 0
...

. . .
...

0 · · · δr(t)Im






The convex sum property of the weighting functions implies the inequality:

−1 ≤ δi(t) ≤ 1

then:

ΣT
A(t)ΣA(t) ≤ I

ΣT
B(t)ΣB(t) ≤ I

(46)

The system (43) becomes:






ẋ(t) =
r∑

i=1

µi(x̂(t))
(
(Ai + ∆A(t))x(t) + (Bi + ∆B(t))u(t)

)

y(t) = Cx(t)
(47)

Finally, the system (9) with unmeasurable decision variables is transformed
into an equivalent “uncertain” TS model with known decision variables (47).
Attention, as a matter of fact, the terms are not uncertain, but only unknown
(unlike model uncertainties). This writing is used for observer design purpose
only.

For the uncertain model (47), the following observer is proposed:






˙̂x(t) =
r∑

i=1

µi(x̂(t)) (Aix̂(t) + Biu(t) + Li(y(t) − ŷ(t)))

ŷ(t) = Cx̂(t)
(48)



The gains Li must be determined to ensure the asymptotic convergence of
the estimated state x̂ to the actual state of the system x. In the sequel, for the
sake of simplicity, the time variable t will be omitted. The time evolution of the
state estimation error e = x − x̂ is described by the following equation:

ė =

r∑

i=1

µi(x̂) ((Ai − LiC)e) + ∆Ax + ∆Bu (49)

Notice that it depends on the input u(t) and on the state x(t). Then the
problem of designing the observer (48) reduces to finding the gains Li in order
that the system (49) generating e(t) is stable and that the influence of u(t) on
e(t) is minimized.

Let us define the augmented vector ea = [eT xT ]T , from which the following
augmented system is obtained:







ėa =
r∑

i=1

r∑

j=1

µi(x̂)µj(x)
(
Āijea + B̄iju

)

e = Hea

(50)

where

Āij =

[
Φi ∆A
0 Aj

]

, B̄ij =

[
∆B
Bj

]

, Φi = Ai − LiC, H = [I 0] (51)

Theorem 4. The system (50) is stable and the L2 gain of the transfer from
u(t) to the state estimation error is bounded by γ, if there exists two positive and
symmetric matrices P1 and P2, matrices Ki, and positive scalars λ1, λ2 and γ̄
such that the following LMIs hold, ∀ i, j ∈ {1, .., r}:









Ψi 0 0 P1A P1B
0 Ξj P2Bj 0 0
0 BT

j P2 −γ̄I + λ2E
T
BEB 0 0

AT P1 0 0 −λ1I 0
BT P1 0 0 0 −λ2I









< 0 (52)

where:

Ψi = AT
i P1 + P1Ai − KiC − CT KT

i + I (53)

Ξj = AT
j P2 + P2Aj + λ1E

T
AEA (54)

The gains of the observer are computed from Li = P−1
1 Ki and the resulting

L2-gain from u(t) to e(t) is defined by γ =
√

γ̄ �

Proof. The proof of the theorem 4 is established by using the following quadratic
Lyapunov function candidate:

V = eT
a Pea, P = PT > 0 (55)



Its derivative with regard to time is given by:

V̇ = ėT
a Pea + eT

a P ėa (56)

By using the dynamics of the augmented estimation error (50), the following
is obtained:

V̇ =

r∑

i=1

r∑

j=1

µi(x̂)µj(x)(eT
a ĀT

ijPea + eT
a PĀijea + uT B̄T

ijPea + eT
a PB̄iju)(57)

The system (49) is stable and the gain L2 of the transfer from u(t) to e(t) is
bounded by γ if the following condition holds [8]:

V̇ + eT e − γ2uT u < 0 (58)

Using (50) and substituting (57) in (58), this latter becomes:

r∑

i=1

r∑

j=1

µi(x̂)µj(x)(eT
a ĀT

ijPea + eT
a PĀijea

+ uT B̄T
ijPea + eT

a PB̄iju + eT
a HT Hea − γ2uT u) < 0 (59)

or equivalently:

r∑

i=1

r∑

j=1

µi(x̂)µj(x)

[
ea

u

]T [
Xij PB̄ij

B̄T
ijP −γ2I

] [
ea

u

]

< 0 (60)

where:
Xij = ĀT

ijP + PĀij + HT H (61)

According to the convex sum property of the weighting functions µi, the
inequality (60) holds if (62) is satisfied:

[
ĀT

ijP + PĀij + HT H PB̄ij

B̄T
ijP −γ2I

]

< 0, ∀i, j ∈ {1, .., r} (62)

Let us consider the following particular form of the matrix P :

P =

[
P1 0
0 P2

]

(63)

Using (51), (63) and the definition of H , equation (62) can be written as:





ΦT
i P1 + P1Φi + I P1∆A P1∆B

∆AT P1 AT
j P2 + P2Aj P2Bj

∆BT P1 BT
j P2 −γ2I



 < 0 (64)

Notice that the inequality (64) is time-dependent due to the terms ∆A(t)
and ∆B(t). However, these latter are bounded.



Firstly let us rewrite (64) separating the time-dependent terms.





ΦT
i P1 + P1Φi + I 0 0

0 AT
j P2 + P2Aj P2Bj

0 BT
j P2 −γ2I



 +





0 P1∆A P1∆B
∆AT P1 0 0
∆BT P1 0 0





︸ ︷︷ ︸

W

< 0 (65)

The time-dependent matrix W is decomposed according to:

W = Q + QT (66)

where:

Q =





0 P1∆A P1∆B
0 0 0
0 0 0





According to the definition of ∆A(t) and ∆B(t) given in (44) and (45), the
matrix Q is written as follows:

Q =





P1A P1B
0 0
0 0





︸ ︷︷ ︸

θ

[
0 ΣA(t)EA 0
0 0 ΣB(t)EB

]

︸ ︷︷ ︸

Ψ

(67)

Applying lemma 1 to W (66) with the following definition of Ω:

Ω =

[
λ1I 0
0 λ2I

]

(68)

we obtain:

W ≤ ΘΩ−1ΘT + ΨT ΩΨ (69)

After some computations using the properties of ΣA(t) and ΣB(t) (46), the
matrix W is bounded by:

W ≤





Y 0 0
0 λ1E

T
AEA 0

0 0 λ2E
T
BEB



 (70)

where:

Y = λ−1
1 P1AAT P1 + λ−1

2 P1BBT P1 (71)

Substituting W (70) in (65), the following is obtained:





Ξ 0 0
0 Ξj P2Bj

0 BT
j P2 −γ2I + λ2E

T
BEB



 < 0 (72)



with:

Ξ = ΦT
i P1 + P1Φi + λ−1

1 P1AAT P1 + λ−1
2 P1BBT P1 + I (73)

The matrix inequality (72) is not linear with regard to the variables P1, P2,
Li, λ1, λ2 and γ. In order to solve these matrix inequalities, it is necessary to
linearize them to obtain LMIs. To this end, using the Schur complement and
some variable changes Ki = P1Li and γ̄ = γ2 allows to obtain (52).

4 Design of unknown input observers

Processes are often subjected to disturbances which have harmful effects on the
normal behavior of the process and their estimation can be used to conceive
a control strategy able to minimize their effects. The disturbances are called
unknown inputs when they affect the input of the process and their presence
make difficult the state estimation. In the linear system framework, many works
have been achieved concerning the estimation of the state and the output of a
system subjected to unknown inputs [12], [13], [48]. Some extensions to nonlinear
systems have also been proposed [10], [37], [38], [40], For fault isolation purpose,
some inputs are frequently considered as unknown in order to design a bank
of observers. Each of them is fed with a different set of variables. For example,
for detecting actuator faults, it is convenient to design observers using all the
inputs of a considered system but one. The different estimates provided by these
observers give information about the occurrence of faults. This section is then
dedicated to the design of unknown input observer for TS model.

4.1 Partial decoupling observer

Consider the TS model with unmeasurable decision variables and unknown in-
puts: 





ẋ(t) =
r∑

i=1

µi(x(t)) (Aix(t) + Biu(t) + Eid(t))

y(t) = Cx(t) + Gd(t)
(74)

where d(t) ∈ IRd is an unknown input vector and with matrices Ei and G of
compatible dimensions. In the following, it is assumed that the dimension of the
unknown input vector is less than that of the output vector (d < p). Following
the idea developed in the section 3.2, the considered model can be rewritten as
an equivalent perturbed TS model with known decision variable:







ẋ(t) =
r∑

i=1

µi(x̂(t)) (Aix(t) + Biu(t) + Eid(t) + ω(t))

y(t) = Cx(t) + Gd(t)
(75)

with :

ω(t) =

r∑

i=1

(µi(x(t)) − µi(x̂(t))) (Aix(t) + Biu(t) + Eid(t)) (76)



The proposed observer has the following structure:







ż(t) =
r∑

i=1

µi(x̂(t)) (Niz(t) + Giu(t) + Liy(t))

x̂(t) = z(t) − Hy(t)
(77)

The state estimation error is given by:

e(t) = x(t) − x̂(t)

= Px(t) − z(t) + HGd(t) (78)

where:

P = I + HC (79)

and its dynamics can be expressed as

ė(t) = P ẋ(t) − ż(t) + HGḋ(t)

=

r∑

i=1

µi(x̂(t))((PAi − Ni − KiC)x(t) + (PBi − Gi)u(t)

+(PEi − KiG)d(t) + Pω(t) + Nie(t)) + HGḋ(t) (80)

with Ki = NiH + Li. If the following conditions hold:

HG = 0 (81)

Ni = PAi − KiC (82)

PBi = Gi (83)

PEi = KiG (84)

Li = Ki − NiH (85)

the dynamics of the state equation becomes:

ė(t) =

r∑

i=1

µi(x̂(t)) (Nie(t) + Pω(t)) (86)

This equation describes a dynamic perturbed system that can be analyzed
using the methods presented in section 3.

Let us first consider a Lipschitz approach. In that case, the term ω(t) defined
in (76) is assumed to satisfy:

|ω(t)| ≤ γ |e(t)| (87)

where γ is a positive constant.



Theorem 5. An unknown input observer exists for the system (74) if there
exists a symmetric positive definite matrix X, matrices Mi and S, and positive
scalar λ such that the following LMIs hold, ∀i = 1, ..., r :

[
Ψi (X + SC)

(X + SC)T −λI

]

< 0 (88)

SG = 0 (89)

(X + SC)Ei = MiG (90)

where:

Ψi = AT
i (X + CT ST ) + (X + SC)Ai − CT MT

i − MiC + λγ2I (91)

The matrices defining the observer are computed according to:

H = X−1S (92)

Ki = X−1Mi (93)

Ni = (I + HC)Ai − KiC (94)

Li = Ki − NiH (95)

Gi = (I + HC)Bi (96)

�

Proof. The proof of the theorem 5 relies on the existence of a quadratic Lyapunov
function V (t) = eT (t)Xe(t) with X = XT > 0. Evaluating its derivative and
using the lemma 1 lead to the following inequality:

V̇ (t) ≤
r∑

i=1

µi(x̂)eT (t)(NT
i X + XNi + λγ2I + λ−1XPPT X)e(t) (97)

with λ > 0. Thanks to the convex sum property, the derivatives of the Lyapunov
function is negative if:

NT
i X + XNi + λγ2I + λ−1XPPT X < 0, i = 1, . . . , r (98)

Using (82), these last inequalities can also be written as:

(PAi−KiC)T X +X(PAi−KiC)+λγ2I+λ−1XPPT X < 0, i = 1, . . . , r (99)

With the change of variable Mi = XKi and using the Schur complement,
(99) can also be written as the following LMIs, ∀i ∈ {1, ..., r}:

[
AT

i PT X + XPAi − CT MT
i − MiC + λγ2I XP

PT X −λI

]

< 0 (100)

Using (81) and the change of variable S = XH , we have XP = X + SC;
therefore (100) corresponds to inequality (88). The LMIs (89) and (90) are ob-
tained from (81) and (84) using the previous changes of variables. The observer
gains Ni, Li and Gi are then defined by (94), (95) and (96).



4.2 Disturbance attenuation observer

When it is not possible to use a Lipschitz assumption, the observer can still
be designed based on a L2 approach. The main result is summarized by the
following theorem:

Theorem 6. The unknown input observer (77) for the system (74) such that
the state estimation error converges towards zero while minimizing the L2 gain
of the transfer from ω(t) to e(t) is obtained by solving the following constrained
optimization problem:

min
X,Mi,S

γ̄ s.t.

[
Ψi X + SC

(X + SC)T −γ̄I

]

< 0, i = 1, . . . , r (101)

SG = 0 (102)

(X + SC)Ei = MiG, i = 1, . . . , r (103)

where:

Ψi = AT
i (X + CT ST ) + (X + SC)Ai − CT MT

i − MiC + I (104)

The observer matrices are defined by (92)-(96) and the attenuation level is
given by γ =

√
γ̄. �

Proof. Theorem 6 is easily proved using the bounded real lemma already used
in the proof of theorem 2. The state estimation error given in (86) converges
towards zero and the L2 gain of the transfer from ω(t) to e(t) is bounded by γ
if the following LMI holds:

r∑

i=1

µi(x̂(t))

[
NT

i X + XNi + I XP
PT X −γ2I

]

< 0 (105)

The convex sum property allows sufficient conditions to be expressed:

[
NT

i X + XNi + I XP
PT X −γ2I

]

< 0, i = 1, . . . , r (106)

Using the expression (82) of Ni and the change of variable Mi = XKi and
γ̄ = γ2, inequalities (106) becomes:

[
AT

i PT X + XPAi − CT MT
i − MiC + I XP

PT X −γ̄I

]

< 0, ∀i = 1, ..., r (107)

The remaining part of the proof is then identical to that of theorem 5 and it
is omitted for sake of brevity.



4.3 Unknown input estimation

Unknown inputs can be estimated on the basis of the previous state estimation
methods. Indeed, the unknown input d(t) ∈ IRd intervenes in (74) through the
following distribution matrix:

W (t) =





r∑

i=1

µi(x̂(t))Ei

G



 (108)

For being able to estimate the unknown input, the rank of the matrix W (t)
must satisfy the condition:

rank (W (t)) = d, ∀t (109)

If this condition holds, W (t) is full column rank and its left pseudo-inverse
W−(t) exists and is defined by:

W−(t) =
(
WT (t)W (t)

)−1
WT (t) (110)

The unknown input can then be computed according to:

d̂(t) = W−(t)




˙̂x(t) −

r∑

i=1

µi(x̂(t)) (Aix̂(t) + Biu(t))

y(t) − Cx̂(t)



 (111)

In that case, the asymptotic convergence of x̂ towards x implies the asymp-
totic convergence of d̂ towards d.

4.4 Design of proportional-integral observer

In the context of robust observer design, one of the most successful technique is
the use of proportional-integral (PI) observer, in which the unknown inputs are
estimated simultaneously with the states of the system. The PI observer was first
proposed by Wojciechowsky in [49] for single input-single output LTI systems. A
generalization scheme was performed by Kaczorek [25] to multivariable systems.
Thereafter, the PI observer has been used in different studies. In [36] a linear PI
observer is designed and applied to a physical system. In [28] a PI observer for
linear descriptor systems is proposed. However, that kind of observer can be used
only if the unknown inputs are constant over the time, nevertheless in practical
cases the approach is effective if the variations of the unknown inputs are slow in
respect to the dynamic of the system. When it is not the case, the problem can
be solved by using multiple integrals in the observer in order to estimate all of
the derivatives of the unknown inputs. A proportional multiple integral (PMI)
observer was firstly proposed by Jiang in [23]. In [16], [26] a proportional multi-
ple integral observer is proposed to estimate a large class of signals described in
a polynomial form for LTI descriptor systems.



Consider the following perturbed system:






ẋ(t) =
r∑

i=1

µi(ξ(t)) (Aix(t) + Biu(t) + Eid(t) + Riω(t))

y(t) = Cx(t) + Gd(t) + Wω(t)
(112)

where d(t) is the vector of unknown inputs and ω(t) a disturbance vector. In the
following, we assume the three hypotheses:

– A4. the system (112) is stable
– A5. the signals u(t), d(t) and ω(t) are bounded
– A6. ḋ(t) = 0

The proposed observer has the following structure:






˙̂x(t) =
r∑

i=1

µi(x̂(t))
(

Aix̂(t) + Biu(t) + Eid̂(t) + LPi(y(t) − ŷ(t))
)

˙̂
d(t) =

r∑

i=1

µi(x̂(t)) (LIi(y(t) − ŷ(t)))

ŷ(t) = Cx̂(t) + Gd̂(t)

(113)

Notice that the observer must involve estimated decision variable. Using the
idea introduced in section 3.2, the dynamic equation of the model can be rewrit-
ten with weighting functions depending on estimated decision variables:

ẋ(t) =

r∑

i=1

µi(x̂(t))(Aix(t) + Biu(t) + Eid(t) + Riω(t) + ν(t)) (114)

where:

ν(t) =
r∑

i=1

(µi(x(t)) − µi(x̂(t)))(Aix(t) + Biu(t) + Eid(t) + Riω(t)) (115)

This term is seen as a bounded vanishing perturbation to minimize. Indeed,
due to the assumptions A4 and A5 and the definition of the weighting functions,
ν(t) is bounded and if x̂ → x then ν → 0.

Using A6, the system (112) can be written using an augmented state vector:







ẋa(t) =
r∑

i=1

µi(x̂(t))
(
Āixa(t) + B̄iu(t) + Γ̄iω̄(t)

)

y(t) = C̄xa(t) + D̄ω̄(t)
(116)

with:

xa(t) =

[
x(t)
d(t)

]

, Āi =

[
Ai Ei

0 0

]

, B̄i =

[
Bi

0

]

, Γ̄i =

[
I Ri

0 0

]

, ω̄(t) =

[
ν(t)
ω(t)

]

C̄ =
[
C G

]
, D̄ =

[
0 W

]



A similar reasoning makes it possible to transform the proposed PI observer
(113) in the following augmented form:







˙̂xa(t) =
r∑

i=1

µi(x̂(t))
(
Āix̂a(t) + B̄iu(t) + L̄i(y(t) − ŷ(t))

)

ŷ(t) = C̄x̂a(t)
(117)

where:

L̄i =

[
LPi

LIi

]

(118)

The augmented state estimation error ea = xa − x̂a obeys the dynamic equa-
tion:

ėa(t) =

r∑

i=1

µi(x̂(t))
(
(Āi − L̄iC̄)ea(t) + (Γ̄i − L̄iD̄)ω̄(t)

)
(119)

The bounded-real lemma then allows the following theorem to be formulated:

Theorem 7. The PI observer (117) for the system (112) is obtained by solving,
for P = PT > 0, the following constrained optimization problem:

min
P,Mi

γ̄ s.t.

[
ĀT

i P + PĀi − M̄iC̄ − C̄T M̄T
i + I P Γ̄i − M̄iD̄

Γ̄ T
i P − D̄T M̄T

i −γ̄I

]

< 0 (120)

The gains of the observer are given by L̄i = P−1M̄i and the attenuation level
is γ =

√
γ̄. �

Proof. The proof is immediate using the bounded-real lemma.

5 Fault detection and isolation

Fault detection and isolation has been an active field of research over the past
decades. Many techniques have been proposed especially for sensor and/or actu-
ator faults with application to a wide range of engineering fields. Among them,
the model-based techniques have been successfully used in several applications.

5.1 Implementation of an observer bank

A possible way to achieve FDI goals is to use a bank of dynamic observers to
generate residuals for each monitored system output signal. A decision making
system is then designed and tuned to detect and isolate faults. The LMI proce-
dures described in this communication provide practical tools to design banks of
nonlinear observers to be used for the FDI residual generation. The advantages
of the design technique are that the system nonlinearities are directly accounted
for in the observer structure [29].



When using that kind of approach, the output estimation errors of the dif-
ferent observers are used as residuals. To isolate faults, a structured residual
set should be designed. For sensor faults, this design is very straightforward.
For example, if the output vector y = (y1, . . . , ym)T driving a specific observer
is replaced by y = (y1, . . . , yi−1, yi+1, ym)T , the corresponding residual will be
insensitive to the fault in the ith sensor. The design of a structured residual set
for isolating actuator faults is not straightforward but can be solved via the use
of unknown input observers developed in section 4.

Due to lack of space, the use of observers previously developed for FDI is
only illustrated with a basic academic example [22]. Let us consider a system
represented by a TS model with one input u(t) and two outputs yi(t), i = 1, 2:







ẋ(t) =
r∑

i=1

µi(x̂(t)) (Aix(t) + Biu(t))

y(t) = Cx(t) + f(t) + w(t)
(121)

where f(t) represents the sensor fault vector and w(t) a zero-mean noise vector.
A Generalized Observer Scheme (GOS) can be used in order to detect and iso-
late sensor faults. This scheme is represented in figure 1.

The residual signals are defined as follows:

rij(t) = yj(t) − ŷij(t), ∀ i, j ∈ {1, 2} (122)

where i represents the observer number and j the output number.

Clearly, the residual signal r11(t) is not sensitive to the fault f2(t) and sim-
ilarly r22(t) is not sensitive to the fault f1(t). That properties can be used to
develop a decision logic aiming to detect and isolate faults.

Consider the system (121) with r = 2, defined by the following matrices:

A1 =

2

4

−2 1 1
1 −3 0
2 1 −8

3

5 , A2 =

2

4

−3 2 −2
5 −3 0
1 2 −4

3

5 , B1 =

2

4

1
0.5
0.5

3

5 , B2 =

2

4

0.5
1
0.25

3

5 , C =

»

1 1 1
1 0 1

–

The weighting functions are defined by:

{

µ1(x) = 1−tanh(x1)
2

µ2(x) = 1 − µ1(x) = 1+tanh(x1)
2

In a first step, an observer has been built on the basis of the knowledge of
the input u(t) and the two noise-free outputs yi(t), i = 1, 2, using the procedure
described in section 3.2. Minimizing the gain γ̄ of the transfer from u(t) to the
state estimation error e(t) subject to the LMIs given in the theorem 4, gives the



u(t) y1(t)

y2(t)

r11(t)
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ŷ22(t)

ŷ21(t)
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ŷ12(t)

System

Observer 1

Observer 2

Fig. 1. Scheme for sensor fault detection and isolation

following results:

L1 =





−35.66 121.56
57.61 63.59
15.22 −9.55



 , L2 =





−37.01 121.47
56.10 68.80
−0.25 −6.09



 ,

P1 =





0.05 −0.03 0.07
−0.03 0.40 −0.06

0.07 −0.06 0.30



 , P2 =





3.01 1.11 0.35
1.11 2.34 0.07
0.35 0.07 1.09



 ,

λ1 = 3.47, λ2 = 0.0028× 10−5, γ = 0.0894

The input and the three estimation errors are depicted in figure 2.
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Fig. 2. Input of the system (left) and state estimation errors (right)

In a second step, using the same procedure, the two observers described in
figure 1 have been designed on the basis of noisy and faulty outputs. The faults



are given by

f1(t) =

{
1, 2 ≤ t ≤ 4
0, elsewhere

f2(t) =

{
1, 6 ≤ t ≤ 8
0, elsewhere

The time evolution of the four residuals defined in (122) is depicted in figure 3.
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Fig. 3. Residual signals

As expected, the residual r11(t) is insensitive to the presence of f2(t) (while,
at the same time, r12(t) deviates from zero) and symmetrically the residual r22(t)
is insensitive to the presence of f1(t) (while r21(t) deviates from zero). Clearly,
for this low dimension example, the diagnosis scheme allows to detect and isolate
the sensor faults.

5.2 Fault estimation using PI observer

Actuator faults can often be considered as unknown inputs acting on the system,
therefore, the method presented in section 4.4 can be used to estimate these
faults. Consider the model (112) (without disturbance ω(t)), defined by the
following matrices:

A1 =

2

4

−2 1 1
1 −3 0
2 1 −4

3

5 , A2 =

2

4

−3 2 −2
5 −3 0

0.5 0.5 −4

3

5 , B1 =

2

4

1
0.3
0.5

3

5 , B2 =

2

4

0.5
1

0.25

3

5 ,

C =

»

1 1 1
1 0 1

–

, E1 =

2

4

0.5
−1
0.25

3

5 , E2 =

2

4

−1
0.52
1

3

5 , G =

»

0.3
0.9

–

The considered unknown input is a piecewise constant function:

d(t) =

{
0.5, 4.5 ≤ t ≤ 11
0, elsewhere

The PI observer defined by theorem 7 has been designed. The state estimation
errors and the estimate of the unknown input are presented in figure 4.
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Fig. 4. State estimation errors (left); Unknown input and its estimate (right)

Notice that the unknown input d(t) does not fully satisfy the hypothesis
ḋ(t) = 0. There is therefore disturbances on the state estimation errors when the
magnitude of the unknown input changes. One can note that the unknown input
is correctly estimated. Of course, depending on the application requirements, the
convergence rate of the observer can be adjusted by adding some pole placement
constraints. If necessary and based on the same idea, a proportional integral
multiple observer can also be implemented.

6 Conclusion

The results presented in this communication contribute to state estimation and
FDI for nonlinear systems represented by Takagi-Sugeno models. Throughout
this work, existence conditions of the different observers have been established
using a basic quadratic Lyapunov function. Of course, the conservatism of the
obtained solutions could certainly be reduced using more sophisticated non
quadratic Lyapunov functions such as piecewise and basis-dependent functions
[39]. For discrete TS model, let us also mention the promising approach con-
sisting to analyse the Lyapunov function decrease only every k-samples [19]. An
immediate natural extension of this work concerns the use of fault estimates in
an FTC strategy [46], [21]. In the context of FDI, another way of research con-
sists to simultaneously estimate the state and the weighting functions based on
input-output data. This approach could be interesting for systems modeled by
a set of models representing normal and abnormal modes of operation. Indeed,
the knowledge of the time evolution of the weighting functions could provide
information about the active model leading to the diagnosis of the system.

7 Appendix

The following three lemmas are frequently used for bounding expressions, for
transforming inequalities with quadratic terms into linear ones and for minimiz-
ing a L2 gain of a transfer from a disturbance to an output of a system.



Lemma 1. For two matrices X and Y with appropriate dimensions, the fol-
lowing property holds:

XT Y + XY T < XT Ω−1X + Y ΩY T , Ω > 0

Lemma 2. (Schur complement [8]) Let us consider three matrices Q(x) =
QT (x), R(x) = RT (x) and S(x) of compatible dimensions depending linearly on
the variable x. The following LMIs are equivalent:

1.

(
Q(x) S(x)
ST (x) R(x)

)

> 0

2. R(x) > 0, Q(x) − S(x)R−1(x)S(x) > 0

L2 gain of systems. Consider the linear system:
{

ẋ(t) = Ax(t) + Bu(t)
y(t) = Cx(t) + Du(t)

(123)

If the system is stable and u(t) is bounded then there exists γ > 0 such that:

+∞∫

0

y(t)T y(t)dt ≤ γ2

+∞∫

0

u(t)T u(t)dt (124)

The constant γ is called L2 gain of the system. Particularly, for linear sys-
tems such (123), γ is the H∞ norm of the corresponding transfer function.

Lemma 3. (Bounded-real lemma [8]) The constraint (124) holds for any
bounded u(t) with u(t) 6= 0 if and only if there exists a matrix P such that:

(
AT P + PA + CT C PB + CT D

BT P + DT C DT D − γ2I

)

< 0 (125)

For a given γ, (125) defines an LMI in P . When it is desirable to minimize
the influence of an external input u(t) on the output y(t), the value of γ must
be minimized. In order to keep the linearity of the constraint (125), the change
of variable γ̄ = γ2 et the problem is formulated as follows:

min
P

γ̄ s.t. (126)
P > 0 (127)

(
AT P + PA + CT C PB + CT D

BT P + DT C DT D − γ̄I

)

< 0 (128)
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