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Abstract: When a transfer function is expanded on the basis
of Laguerre filters, the question of how well does the
expansion converge arises frequently. Beyond this problem,
the convergence domain of the Laguerre series must be
determined in the s-plane, as is usually done for the Laplace
transform of time-domain functions. In the usual approach,
this analysis is made in two complementary stages: first of
all, the convergence conditions of Fourier (also called
Laguerre or Laguerre-Fourier) coefficients is determined and
then, based on the assumption that these coefficients are
convergent, a worst-case-study is carried out to determine the
convergence domain of the Laguerre series. A novel
approach is proposed in this paper which drops away the
coupling between the convergence of the Fourier coefficients
and the convergence of the Laguerre series. Thus, necessary
and sufficient conditions for Laguerre series convergence are
computed. Laguerre functions are considered in their general
definition : orthogonal w.r.t. an exponential weight function.

1. Introduction

The use of orthogonal bases functions for system and signal
representations is very common in different fields of signal
processing and control engineering. Among the most
commonly used bases, the one which is obtained from
Laguerre polynomials offers particular interest, especially in
the field of automatic control [Bélanger et al., 1994],
[Agamemmomi et al., 1992]. There remains, however, few
points still under discussion such as the optimal choice of the
Laguerre pole (see for instance [Wang et al., 1994] and
[Malti et al., 1998b]), the determination of the truncation
order and the influence of noisy measurements in the
resulting approximation.

Usually, when the Laplace transform of a time function is
computed, its convergence domain in the complex
s-plane is systematically determined. In this paper we are
interested in defining the convergence domain (in the
s-plane) for Laguerre series expansions. Compared to the
existing work, the usually computed convergence domain is
extended. In other words, necessary and sufficient conditions
are determined.

The paper is organized in the following manner. After a brief
reminder on transfer function expansions on Laguerre series,
the usual approach for computing the convergence domain is
presented. It is based on the study of the convergence of
Fourier coefficients (presented in the second part of the
paper) and then according to the previous result the domain
of convergence of the Laguerre series expansion is
determined (third part). Then, in the fourth section, a novel
approach is formulated. It drops away the coupling between

the convergence of the Fourier coefficients and the
convergence of the Laguerre series. The fifth part is devoted
to some academic examples and at last, an application on the
bilateral expansion of non-causal signals is analyzed, by
analogy to the bilateral Laplace transform.

2. Decomposition of a first order transfer function

The continuous time Laguerre functions defined by:
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also known as Laguerre filters. They are orthonormal w.r.t.
the weight function:

( )p t e t( ) = − −γ γ α2

since they satisfy the following equation:
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where ( )., .
p t

 defines the scalar product w.r.t. the weight

function p(t) (see Szegö, 1931 for more details).

Moreover, they form a complete orthogonal set in L2[0, ∞[.
Actually, the mostly known Laguerre functions, in control
engineering literature corresponds to the choice of γ = 2α,
where the weight function is reduced to a constant factor

( )p t = 2α  which square root is injected back in the

definition of Laguerre functions (1), in order to satisfy to the
normality property w.r.t. a unity weight.

Remarks
1. Laguerre functions are a priori defined for any values of
α and γ. However, in order to ensure their convergence, as t
tends to infinity, and by the way obtain stable Laguerre
filters, the choice of α is restricted to the following
condition :
 α > 0

2. Moreover, the Laguerre functions are orthogonal iff (see
[Malti et al., 1998a] for the complete proof):
 γ > 0

3. On the other hand, the Laplace transform of Laguerre
filters exists iff:

( )ℜ > −s α ýý



The Fourier coefficients are computed by minimizing the
weighted least squares criterion:
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and ( )( )L f t F s= ~
( )

Equation (3) corresponds to the weighted quadratic norm of
the approximation error, according to the definition of the
scalar product (2):
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Minimizing the least squares criterion (3) and taking
advantage of the orthogonality of Laguerre functions, the
Fourier coefficients are obtained by performing the following
integration in the time domain:
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which reciprocal in the frequency domain, obtained by
Parseval’s theorem, leads to the computation of the residuals
as indicated below:
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For example, for the transfer function F s
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si is real) the Fourier coefficients are given by:
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Remarks

1. F(s), the Laplace transform of f t A ei
s ti( ) = −  exists, if

and only if s > σf, σf being the abscissa of convergence
(in the previous example σf = -si).

2. The generalization to higher order transfer functions with
multiple poles is straightforward. For the sake of
simplicity and without loss of generality, the coming
examples will be considered for the first order transfer
functions :
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As shown in (6), the Fourier coefficients of the Laguerre
expansion depend on the Laguerre pole α and the parameter
γ. Hence, it is important to make a case-study depending on
α and γ while searching for the convergence conditions of a
first order transfer function having a single pole si.

Remark
The infinite series (4) is often truncated at an order (N + 1)
and the following approximation of F(s) is frequently made:
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Thanks to the orthogonality, the computation of the Fourier
coefficients, using (6) when making this truncation remains
unchanged. ý

3. Convergence of the Fourier coefficients

It appears from (4) that the Fourier coefficients, an evolve as
a complex geometrical series which convergence to zero as N
tends to infinity is satisfied if the norm of its ratio is less than
one:
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The geometrical interpretation of this condition in the
s-plane can be given after defining:

Si as the image of the pole si

A  as the image of α
B  as the image of α − γ.

Note that ASi and BSi are the images of (si − α) and
(si − α − γ) respectively. Hence, the inequality (8) means that

AS BSi i/ < 1 . In other words, Si must be on the LHS of the

axis of abscissa (−α + γ / 2).

From an algebraic point of view, it is easy to check that the
pole si of the transfer function must satisfy the following
inequality :

( )ℜ − < − +si α
γ
2

(9)

The convergence condition expressed by (9), can be
generalized to higher order transfer functions. Indeed, if
multiple poles are present, si is substituted by the dominating
pole (closest to the imaginary axis).

4. Convergence of the Laguerre series expansion

In this section the transfer function F(s) defined in (7) is

compared to its expansion. Using (4) and (6), 
~
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It represents an infinite sum of a complex geometrical series
which general term is:
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Moreover, this series is convergent if the norm of its ratio is
less than one, i.e. if:
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Usually, condition (11) is analyzed in the worst-case study by
assuming that the Fourier coefficients are convergent as n
tends to ∞ (condition (8) is satisfied). This (11) is reduced to:
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Again from a geometrical point of view, the point M which
affixe is s must be on the RHS of the vertical axis of
abscissa : (−α + γ / 2). From an algebraic point of view, (12)
is simplified to:

( )ℜ > − +s α
γ
2

5. Novel proposition (less restrictive)

We wish to examine again the inequality (11). The proposed
approach is intrinsic, i.e. it does not take into account the
convergence of the Laguerre coefficients an. The proposition
formulated in this paragraph is original and gives a
necessary and sufficient conditions for the convergence of the
geometrical series (10). Assuming that M is the image of s
with coordinates (x, y), then the condition (11) can directly
be written as:
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Hence, it can be shown that the locus of the points M

satisfying the condition AS BM BS AMi i=  is a circle. On
the other hand, from an algebraic point of view, (11) is
equivalent to :
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Thus, the inequality (14a) gives the locus of the points M
which ensure the convergence of the Laguerre series

expansion of F(s). According to the sign of ( )δi
2 1−  this

locus will be either inside or outside the circle which
equation is:

( )x a y ri i+ + − =
2 2 2 0 (15)

Moreover, according to the Laguerre parameters α, γ and the
pole si of F(s), the convergence domain varies in the shape
and the position. A crucial point, in this analysis, concerns
the existence of an intersection of the convergence domain
with the imaginary axis. If it is the case, the convergence of
the decomposition in the frequency domain is restricted to
some frequencies only. However, if the imaginary axis is not
included in the convergence domain, the interest of the
Laguerre series expansion is considerably limited, because
the Laguerre series is divergent for all frequencies.

One should keep in mind that the abscissa of convergence, of
the transfer function must be taken into account:

x si> − (16)

Example 1
The domain of convergence of the transfer function

F s
s

( ) =
+
1

3
 is colored in gray in figure (1). The RHS figure

corresponds to the case α = 2 and γ = 3, whereas the LHS
figure corresponds to the case α = 2 and γ = 8. Note that for
both cases δi < 1. The vertical axis at −si defines the Laplace
transform convergence abscissa of F(s). Notice that all the
imaginary axis belongs to the convergence domain of the
Laguerre series expansion. This ensures a good frequency
approximation with a finite number of Laguerre functions.

According to the worst-case study detailed in sections 3 and
4 the convergence domain is located in this example at the
RHS of the vertical axis (−α + γ / 2).

In the first case this axis is located at − 0.5, whereas in the
second one it is located at 2. The worst-case study gives very
restrictive conditions, especially in the latter case where a
wrong conclusion may be drawn, since the imaginary axis
does not belong to the convergence domain which is shown
to be false according to the less restrictive study.

−si −ai −si −ai

(a) (b)

− +α
γ
2

− +α
γ
2

Figure 1. convergence domain of Laguerre series expansion

of ( )F s
s

=
+
1

3
. (a) α = 2, γ = 3, (b) α = 2, γ = 8

Remarks
1. A convergence factor can also be defined which will give
the rate of convergence of the geometrical series. Inequality

(13) would then be replaced by 
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fi

i
c< . This implies

that all δi’s must be replaced by δi / fc in all the equations
following (13).

2. The convergence condition may also be expressed using
only the Laguerre parameters α and γ together with the pole
si of F(s). Indeed, it follows from (14):
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Thus, it is possible to study the influence of the parameters α
and γ in the definition of the convergence domain. This study
is carried out in the following section.



6. Discussion on the convergence domain

According to (14a), the convergence domain is either inside
or outside the circle defined by (15), depending on the

quantity ( )δ i
2 1− .

The expressions (17a-c) can be studied in terms of γ, in order
to represent the various convergence domains that can be
obtained. The complete study will be omitted in order to
alleviate this paper. Instead, the following three cases are
going to be considered. They present a particular interest :
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Indeed, γ1 and γ2 intervene in the study of the sign of ai (the
abscissa of the center of the circle). The value γ3 is useful to

establish the sign of ( )δ i
2 1−  and hence whether the domain

of convergence is inside or outside the circle. Finally, γ1, γ2

and γ3 are used to compute the radius of the circle.

Among all the feasible situations, four of them are presented
herein on the transfer function of example 1 (each situation
has a particularity):

( )F s
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For each example, the Fourier coefficients are computed and
the domain of convergence, Nyquist diagram, step responses
and responses to some random high frequency input signals
are plotted for both the original transfer function and its
approximation.

Example 2
The choice α = 5, γ = 3.75 yields the following
characteristics of the convergence domain: δi = 1.11, ri = 18,
ai = −15. The first four Fourier coefficients are respectively:
2.143, −2.449, 2.799, and −3.199.

Note that the Fourier coefficients are divergent. The
convergence domain of the Laguerre series is located inside
the circle of figure 5. Only the segment of the imaginary axis
which is around the origin is included in the convergence
domain. Thus, the Laguerre series is convergent only in low
frequencies. This fact is validated by the Nyquist plot. In the
time-domain, the step response can be judged satisfactory,
the gain of the decomposition being correctly approximated
(the real gain is 0.3333, the expansion gain is 0.3338).
However, the response to a high frequency input signal is
less satisfactory, as expected.

Example 3
The choice α = 5, γ = 6 yields the following characteristics of
the convergence domain : δi = 0.5, ri = 4, ai = −7. The first
four Fourier coefficients are respectively: 1.500, −0.750
0.351 and −0.187. They are convergent now. In the time
domain as well as the frequency domain the decomposition is
judged satisfactory (the expansion gain is 0.3333). The

convergence domain (figure 6), corresponds to the plane
located on the RHS of the vertical axis at −3. It extends the
one obtained by the worst-case study (half plane at the RHS
of the vertical axis at −2).

Example 4
The choice α = 1.5, γ = 0.5 yields the following
characteristics of the convergence domain: δi = 0.75,
ri = 0.857, ai = −2.143. The first four Fourier coefficients are
respectively: 0.250 0.187 0.141 and 0.105.

The real gain remains unchanged, whereas the expansion
gain equals 0.3125. Here again the convergence domain was
extended, compared to the worst case study (figure 7).

Example 5
The choice α = 1.75, γ = 5 yields the following
characteristics of the convergence domain: δi = 0.2,
ri = 1.042, ai = −1.958. The first four Fourier coefficients are
respectively: -0.8, 0.16, 0.032, and 0.0064.

The coefficients converge to zero. Moreover, there is a good
approximation in the Nyquist plane (figure 8) for all
frequencies which is reflected by a good approximation of the
responses to both signals (step and random). The worst case
study does not include the imaginary axis in the convergence
domain, contrary to the newly proposed approach.

7. Extensions to the bilateral decomposition

In this section signals defined for both positive and negative
time domains are treated. The functions expansion principle
on orthogonal basis holds again. The only difference is that
both (positive and negative) parts of the signal are
decomposed separately on Laguerre functions i.e. the
parameters α and γ change from one expansion to the other.

A non-causal signal f(t) can always be written as an addition
of the negative-time and the positive-time signals:
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It may be useful to consider the signal which is symmetrical

to f t− ( )  in order to compute its Laplace transform. Hence,
define:
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Using (5a), the Fourier coefficients of both expansions are
given by:
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Both poles α −  and α +  are chosen positive in order to
obtain stable Laguerre filters used as expanding basis
functions for the signals f − (−t)  and f + (t)  (the expansion
is truncated at the order N). The Laplace transforms obtained
from these expansions are :
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Hence, the bilateral Laguerre transform of f(t) is
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The bilateral expansion of a time signal on Laguerre
functions can be summarized in the following steps:

Ø decompose the positive-time part of f t( ) , which gives
~

( )F s+ ,
Ø decompose the positive-time part of f (−t) , which gives
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( )F s− ,
Ø sum up both parts to obtain the desired expansion:
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Hence, the bilateral decomposition of the function:
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and the convergence conditions (11) is now :
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Consequently, applying the results of section 5, the
convergence domain can be defined as:
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Example 6
When m = 1, a = 1 and b = 1, the following definition
results:

f t e t+ −=( ) and     f t e t− =( )

Choosing α+ = 2/3, γ+ = 1/3 and α− = 1/2, γ− = 1/3, one gets :
δ+ = 1/2, δ− = 3/5, c+ = 7/9, c− = 11/16, r+ = 2/9  and r−

 = 5/16.

The Fourier coefficients are given in the following table.
Note that the positive and negative-time expansions are
carried out respectively with 5 and 4 Laguerre functions.

n fn
+ fn

−

1 0.400 0.500
2 0.240 0.250
3 0.144 0.125
4 0.086 0.062
5 0.052

Hence, the following decomposition can be written :
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Since the values of δ are less than 1, the convergence domain

of 
~

( )F s  corresponds to the exterior of the circles defined
previously.

Figure 2 shows the aspect of the convergence domain. It
corresponds to the gray zone, comprised in the interval
-1 < x < 1 and excludes the disks delimited by the circles:

( )x y+ + − =7 9 2 9 0
2 2 2/ ( / )

and  ( )x y+ + − =11 16 5 16 0
2 2 2/ ( / ) .

The domain obtained by the worst-case study is restricted to
the interval -1/2 < x < 1/3.

-1 1

-1/2 1/3

6/16

-5/9

Figure 2. Convergence domain of the expansion of
f t t( ) exp( )= −



Figure 3 shows the superposition of the original signals and
their expansions whereas figure 4 shows Bode plots in the
interval [0.1rd/sec 10π rd/sec].

-10 -8 -6 -4 -2 0
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1
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Figure 3. Bilateral expansion in the time domain

A simple example was selected on purpose for this paper.
However, if more complex functions are treated, the
computation of Fourier coefficients can be done using either
numerical softwares such as Matlab or symbolic computation
softwares such as Maple V or Mathematica.
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Figure 4. Bode plots

8. Conclusion

The convergence domain of the Laguerre series expansion
was studied in this paper. From a theoretically point of view,
the results obtained are important because they define the
locus of the convergence domain in the complex s-plane.

In practice, it permits to the user to determine the frequency
domain where the Laguerre model can correctly be utilized.
As shown by different examples and by the analytical
expressions, the tuning parameters α and γ can be adapted to
validate the approximation in a preferred frequency domain.
The future developments of our work, concern the conception
stage. Indeed, it would be interesting to propose an algorithm
for choosing appropriate parameters to reach a convergence
domain imposed by frequency constraints, for example.
Moreover, the method presented for signals may be extended
to the convolution relations in order to treat systems from
input-output data.

9. References

Agamemnoni O., Paolini E., Desages A., On robust stability
analysis of a control system using Laguerre series.
Automatica, 28 (4), pp. 815-818, 1992.

Belanger R.P., Arafat O., Gaber M., Gendron S., Vurgait-
Cherson D., Direct performance optimisation using Laguerre
models. Automatica, 30 (5), pp. 883-996, 1994.

Kautz W.H., Transient synthesis in the time domain.
Transactions Int. Radio Engrs., vol. CT1, pp. 29-39, 1954.

Malti R., Maquin D., Ragot J., Bilateral decomposition of a
time function into Laguerre series. Application to LTI
systems identification. Journal of Franklin Institute, vol.
335B, n° 5, pp. 851-869, 1998a.

Malti R., Ekongolo S.B., Ragot J. Dynamic SISO and MISO
system approximation based on optimal Laguerre models.
IEEE Transactions on Automatic Control, 43 (9) , pp.1318-
1323, 1998b.

Szegö G., Orthogonal polynomials, American Mathematical
society. 1931

Wahlberg, B., System identification using Laguerre models.
IEEE Transactions on Automatic Control, 36 (5), pp. 551-
562, 1991.

Wang L., and Cluett W.R., Optimal choice of time-scaling
factor  for linear system approximations using Laguerre
models. IEEE Transactions on Automatic Control, 39 (7),
pp. 1463-1467, 1994.



-20 -10 0 10 20

-20

-10

0

10

20

-0.2 0 0.2 0.4
-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05
Nyquist plot

0 2 4 6
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Step input

0 2 4 6
-0.4

-0.2

0

0.2

0.4
Random input

Convergence
domain

Figure 5. Expansion results of example 2
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Figure 6. Expansion results of example 3
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Figure 7. Expansion results of example 4
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Figure 8. Expansion results of example 5


